By Hiroshi UEHARA

(Communicated by Y. Komatu)

As is snown by S.Eilenberg in his paper "On the problems of topology", Annals of Math., 1949, it may well be said that the homotopy classification problem is a central problem in modern topology. It is to enumerate effectively all the homotopy classes of mappings f of one space X into the other space Y by some computable invariants of f , X and Y. This general problem has not yet been solved, but in several special cases various kinds of brilliant results are known.

Some of them have much to do with the problem discussed in this paper and therefore are shown as follows. Witold Hurewicz reported in 1936 that all the homotopy classes of mappings of an n-dimensional connected finite polyhedron X into an arcwise connected topological space Υ with $\pi_{L}(\Upsilon) = 0$ for i > 1 are in one-to-one correspondence with all the classes of equivalent-homomorphisms of $\pi_i(X)$ to $\pi_1(Y)$. The homotopy classification problem in case where X is an n-dimensional finite connected complex X and Y an n-sphere, was originally solved by H.Hopf and reproduced by H.Whitney with use of cohomology group. S.Eilen-berg generalized the Hopf-Whitney's Theorem to get far reaching results that when X is also an \mathfrak{n} -dimensional geometrical cell complex and Y an arcwise connected topologi-

cal space with $\pi_i(Y) = 0$ for $n > i \ge 1$, all the homotopy classes are in (1 - 1) correspondence with an π -dimensional cohomology group $H_n(X, \pi_n(Y))$ with the coefficient group $\pi_n(Y)$.

It is reported that the homotopy classification problem of an m-dimensional finite connected complex with a fixed decomposition into an arcwise connected topological space with $\pi_i(\Upsilon) = 0$ for m > i > 1, has recently been solved completely by several topologists, P.Clum (Bull. Amer. Math. Soc., 53 (1947)), M.M.Postnikov (Doklady Akad. Nauk SSSR, 66 (1949)), and S.T.Hu (Akad. Sinica Science Record 2, (1949)). Eut details are not yet to hand in Japan. I also intend to impart a solution to this problem by the aid of Eilenberg Mac-Lane's cohomology group of abstract group and of Steenrod's cohomology theory with local coefficients. I am deeply grateful to Mr. Nobuo Shimada for his helpful criticisms and suggestions.

 Reproduction of Hurewicz's result and its application to this problem.

Let Ω be the totality of all the mappings of X into Y and of an point \mathfrak{X}_0 of X into a fixed point \mathfrak{Y}_0 of Y Ω is usually designated by the symbol $\Upsilon(\mathfrak{X}_0,\mathfrak{Y}_0)$. For two maps f. $\mathfrak{g} \in \Omega$ is said to be homotopic to g (in notation; $\mathfrak{f} \sim \mathfrak{g}$) if there exists a homotopy $\mathfrak{K}_0 \in \Upsilon$ (for $i \ge t$ ≥ 0) such that $\mathfrak{K}_0 = \mathfrak{f}$ and $\mathfrak{K}_1 = \mathfrak{g} \cdot \Omega$ is divided by this equivalent relation into mutually disjoint homotopy classes of mappings.

A mapping $f \in \Omega$ induces a homomorphism h_f of $\pi_1(X, x_0)$ into $\pi_1(Y, y_0)$. If $f \sim q$ for two mappings $f, g \in \Omega$, there exists a homotopy k_t . Let $\eta \in \pi_1(Y, y_0)$ be represented by the closed path $k_t(x_0)$ (for $i \ge t \ge 0$), then we have $h_f(3) = \eta h_0(3) \eta'$ for any 3 $\in \pi_1(X, x_0)$. Thus it is proved that if $f \sim q$, h_f and h_g are equivalent (in notation: $h_f \sim h_g$).

Two mappings f, $\mathfrak{f} \in \Omega$ are said to be \mathfrak{F} -homotopic (in notation: $\mathfrak{f} \curvearrowright \mathfrak{F}$) if $\mathfrak{f} | X^{\tau} \sim \mathfrak{F} | X^{\tau}$, where X^{τ} is the τ -skeleton of X. Then \mathfrak{n} -homotopy is the usual homotopy defined above. Since γ -homotopic relation is an equivalent relation, Ω is also divided into τ -homotopy classes. Then we have

<u>Theorem 1.</u> The set of all the (n-1)-homotopy classes is in one to one correspondence with the set

of all the classes of equivalent homomorphisms of $\pi_{i}(X)$ into $\pi_{i}(Y)$.

In order to prove this it is necessary and sufficient to show that for a given homomorphism \mathcal{G} there exists a mapping $f \in \Omega$ such that $h_f = \mathcal{G}$ and that if $f \in \mathcal{J}$ for two mappings $f \cdot \mathfrak{G} \in \Omega$, we have $h_f \sim h_g$, and vice versa.

The former statements are obvious. Before we prove the inverse relation, some preliminary remarks are given. Let B be the topological tree in the complex X', which starts \mathfrak{X} . and involves all the vertices of X . Since B is contractible to a point \mathfrak{X} , in itself, for any mapping $\mathfrak{f} \in \mathfrak{A}$ there exists a mapping $\mathfrak{f} \in \mathfrak{A}$ there exists a mapping $\mathfrak{f} \in \mathfrak{A}$ there exists a mapping $\mathfrak{f} \in \mathfrak{A}$ there for , in order to prove that if $\mathfrak{h}_f \sim \mathfrak{h}_g$, we have $\mathfrak{f} \sim \mathfrak{I}_f$ it is sufficient to show that if $\mathfrak{h}_f \sim \mathfrak{h}_g$, we have $\mathfrak{f} \sim \mathfrak{I}_f$, where $\mathfrak{f}', \mathfrak{f}'$ are such mappings as referred to above.

<u>Proof of Theorem 1.</u> Put $X \times I = Z$, $Z' = (X \times 0)^{\circ} (X \times 1)^{\circ}$, and $Z'^{*+} = (X' \times I)^{\circ}$ $Z' \cdot Let \sigma_{ij}$ be a 1-simplex $x_i x_j$ and let u_i be a path joining in B a vertex x_i to a vertex x_{i-} of X · Putting v_{ij} $= u_i \sigma_{ij} u_j^{\circ}$, the element $[V_{ij}]$ of $\mathcal{T}_i(X, \pi_o)$ which is represented by the closed path v_{ij} is a generator of $\pi_i(X, \pi_o)$ · As $h_i \sim h_{ij}$, we have $h_{ij}([V_{ij}])$ $= 3 h_{ij}([V_{ij}])^{3/2}$ for any generator (V_{ij}) of $\mathcal{T}_i(X, \pi_o)$. In order to prove Theorem 1, it is sufficient to show that there exists a mapping $F : Z' \to Y$ such that $F(\pi, 0) = f'(\pi)$ and $F(\pi, 1) = g'(\pi)$ for any $x \in X$ · Now, let $\mathcal{T}_i(1)(for 1 \ge 1 \ge 0)$ be a representative of 3 and we define a mapping $F : z' \to Y$ as follows:

$$F(x, 0) = f'(x) , \text{ for } x \in X,$$

$$F(x, 1) = g'(x) , \text{ for } x \in X,$$

$$F(x_i, t) = T(t), \text{ for } x_i \in X^\circ \text{ and } 12t20.$$

Then, for any σ_{ij}^4 of X^4 , $F[a(\sigma_{ij}^i \times I)$ is homotopic to zero, because

 $[f'(\sigma_{ij}^{1})] = [f'(v_{ij})] = h_{f'}([v_{ij}])$ $= 3 h_{g'}([v_{ij}]) 3^{-1} = 3 [g'(v_{ij})] 3^{-1}$ $= 3 [g'(\sigma_{ij}^{1})] 3^{-1} .$

Therefore F can be extended to a mapping $F: \mathbb{Z}^* \to Y$. For any 2-simplex σ_i^2 of $X, F \mid \mathfrak{d}(\sigma_i^* \times I)$ is also inessential in virtue of

 $\pi_{a}(Y) = o$, so that F is again extended to a mapping F: $z^{3} \rightarrow Y$. Through the same arguments we have an extended mapping F: $\pi^{m} \rightarrow Y$, using the assumptions that $\pi_{a}(Y) = \dots = \pi_{m-1}(Y) = o$. It follows that we have f'aig' Thus Theorem 1 has even established.

2. A generalized obstruction theory with use of Steenrod's cohomology group with local coefficients.

It is the main aim of the rest part in this paper to find a necessary and sufficient condition that two maps in an (n-1)-homotopy class are n-homotopic each other. To do this Eilenberg's obstruction theory should be slightly retouched to apply to our case, because the space Υ is not assumed to be n-simple. In this section § 2 this point is clarified with use of Steenrod's cohomology group with local coefficients and, moreover, an n-cohomology class $C_s(f)$ (refer to 2.1) which plays an eminent rôle in this problem, is discussed in § 3 in connection with Eilenberg-Mac Lane's cohomology group of abstract group. In the last section § 4 a general theory established will be reduced to the results obtained by Hopf and Eilenberg as special cases.

2.1. Definition of an η -coho-mology class $C_{g}(f)$ and a formula concerning

All the mappings considered in the rest part of this paper are assumed to belong to an $(\pi-1)$ -homotopy class Π^{∞} , so that without loss of generality they may be assumed to coincide on χ^{n-1} . It may be also assumed that they map the topological tree β into ϑ_0 because β is contractible in β to a point \varkappa_0 . Now, let fbe such a mapping and \Uparrow_f an induced homomorphism of $\pi_1(\chi)$ into $\pi_1(\chi)$. We denote by ϑ_f the centralizer of the subgroup \Uparrow_f $(\pi(\chi))$ of $\pi_1(\chi)$; in notation $\vartheta_f^{\lambda} = [3; \Im_a = a\vartheta_f$ for every $a \in \Uparrow_f(\pi_i(\chi))]$. Then for any two mappings f, ϑ_i in an $(\pi-1)$ -homotopy class Π^{λ} we have $\vartheta_f^{\lambda} = \vartheta_f$ from the assumptions referred to above, and therefore ϑ_f^{λ} can be merely designated by ϑ^{λ} . Let $\pi(t)$ (for $i \ge t \ge 0$) be a representative oi an element $\vartheta \in \vartheta^{\lambda}$. Now a mapping $f: \mathbb{Z}^{1} \to \Upsilon$ is defined as follows: $E(\pi \Omega) = f(\pi)$ $\pi \in X$

 $F(x,D) = f(x), \quad x \in X,$ $F(x,1) = f(x), \quad x \in X.$

Since $[f(\tau_{ij})] = [f(\tau_{ij})] \in h_f(\pi_i(x))$ and so 3 commutes $[f(\tau_{ij})]$, F can be extended to a map F $Z \to Y$. Moreover, from the as-sumptions that $\pi_i(Y) = \dots = \pi_{n-1}(Y) = 0$, F can be extended to a map $F: Z^n$ $\to Y$. Now, all the vertices of X are ordered linearly so that for any simplex of X the first vertex in this order is preassigned vertex in this order is preassigned. vertex in this order is preassigned. Let \mathcal{U}_{c} be the first vertex of an n-simplex σ_{i}^{n} and \mathcal{C}_{j} the first vertex of its (n-1)-face σ_{j}^{n-1} . $F \mid \partial (\sigma_{i}^{n} \times [])$ represents an element $C(F, \sigma_{i}^{n})$ of $T_{m}(Y,$ $f(\alpha_{c})=\mathcal{J}_{c})$, and $c(F)=\sum_{i}^{n} c(F,\sigma_{i}^{n})$ $\cdot\sigma_{i}^{n}$ may be regarded as an m-cocyle of m-complex X with local group as coefficient group. An m-cocycle C(F) may indeed depend on i) the choice of a representaon i) the choice of a representa-tive of 3 and also on i) the way of extending the mapping F way of extending the mapping F, but it can be shown that, indepen-dently of i), ii), C(F) deter-mines uniquely a cohomology class of H_n(X, $\pi_n(Y, 3_*)$) (n-th coho-mology group of X with local co-efficients) for a mapping f and for $3 \in 9$, which we designated by C_n(f) . As to i), ii) it is sufficient to prove that when for the mapping f and for a representative $\Upsilon'(t)$ (for $1 \ge t \ge 0$) of $3 \in 3$, another mapping $F'; z'' \rightarrow \Upsilon$ is constructed in the same way as used in case of F, C(F) is cohomologous to C(F'). From the homotopy extension property of a polyhedron there exists a mapping $F'', Z'' \rightarrow Y$ such that $F' \cong F''$ and F''|Z' = F|Z'. Then we have C(F') = C(F'). Then we have C(F') = C(F'). Moreover, both the same property of a polyhedron and the assumptions $\pi_{2}(Y) = \cdots = \pi_{n-1}(Y) = 0$, assure the existence of a mapping F'': $2^{n} \rightarrow Y$ such that $F' \cong F''$ and $F''| 2^{n-1} = F| 2^{n-1}$ It is clear that we have C(F'') = C(F'') = C(F'). Then we shall show that C(F) is cohomologous to C(F'') As from $F|2^{n-1} = F''| 2^{n-1}$ we have $F| \Im(c_{1}^{n-1} \times I) = F''| \Im(c_{1}^{n-1} \times I)$ for any $\sigma_{1}^{n-1} \in X^{n-1}$, following Eilenberg (Annals of Math., 41, 1940), $d(F,F'', c_{1}^{n-1}) \in \pi_{n}(Y, Y) = f(t_{2})$ can be defined and also we have an (n-1) -cochain we have an (n-1)-cochain $d^{n-1}(F,F^{\alpha}) = \sum 4 (F,F^{\alpha}, \sigma_1^{n-1}) \sigma_1^{n-1}$. Now, with Steenfod's cohomology theory with local coefficients (Annals of Moth 1049) we have Math. 1942), we have

δ d" (F, F") (σ;")

 $= \sum_{\boldsymbol{\sigma}_{i}^{n} \succ \boldsymbol{\sigma}_{j}^{n-1}} [\boldsymbol{\sigma}_{j}^{n-1} : \boldsymbol{\sigma}_{i}^{n}] \boldsymbol{h}_{\boldsymbol{\sigma}_{i}^{n} \boldsymbol{\sigma}_{j}^{n-1}} d(\boldsymbol{F}, \boldsymbol{F}^{'', \boldsymbol{\sigma}_{j}^{n-1}})$ $= C(\boldsymbol{F}, \boldsymbol{\sigma}_{i}^{n}) - C(\boldsymbol{F}^{'', \boldsymbol{\sigma}_{i}^{n}})$

so that $\int d^{n-1}(F,F'') = c(F) - c(F'')$, This proves that C(F) is cohomologous to C(F').

It should be noticed that for any element C of the cohomology class $C_j(f) = [C(F)]$ we can construct a mapping $F': Z' \to Y$ such that C(F') = C; namely all the elements of $C_j(f)$ can be obtained through the procedure referred to above from f and 3. Since C(F) is cohomologous to C; there exists an (n-1) -cochain $d^{n-1}(\sigma_i^{n-1}) = \alpha_i \quad \alpha_i \in (T_n(Y, Y_0))$, such that $\delta d^{n-1} = c(F) - C$. As is easily seen, there exists a mapping $F': Z^n \to Y$ such that $F'_i Z^{n-1} = F_i Z^{n-1}$ and $d^{n-1} = d^{n-1}(F, F')$. As $\delta d^{n-1}(F, F') = C(F) - C(F') = C(F) - C$, we have C = C(F'). This remark is employed essentially in discussions appeared later.

Now we show a formula concerning $C_3(f)$.

(2.1.1)
$$\Gamma_{i}(f) - \Gamma_{\eta}(f) = \Gamma_{\eta'}(f)^{\prime}$$

where 3, $\eta \in \mathcal{J}^{\lambda}$ and $\mathbb{L}_{\eta'3}(f)^{\eta'}$ is represented by a cocycle $\sum_{n} \alpha_{i}^{\eta} \overline{\sigma_{i}}^{n}$, putting $\mathbb{L}_{\eta'3}(f) = [\sum_{n} \alpha_{i} \overline{\sigma_{i}}^{n}]$.

Proof. Let $C(F) = \sum_{i} \beta_i \sigma_i^{n}$, $C(G) = \sum_{i} \gamma_i \sigma_i^{n}$ be representatives of $U_3(f)$, $U_n(f)$ respectively, where $\beta_i = c(F, \sigma_i^{n})$ and $\gamma_i = c(G, \sigma_i^{n})$. A mapping $\Phi : Z^n \to \Upsilon$ is defined such that

$$\Phi^{(\mathbf{x},\mathbf{t})} \equiv \begin{cases}
\widehat{\mathbf{f}}^{(\mathbf{x},\mathbf{l}-\mathbf{zt})}, \frac{1}{2} \ge t \ge 0, \\
F^{(\mathbf{x},\mathbf{zt}-1)}, 1 \ge t \ge \frac{1}{2}.
\end{cases}$$

Since we have $\Phi(\mathbf{x}, \mathbf{o}) = \Phi(\mathbf{x}, \mathbf{i}) = \int (\mathbf{x})$, and $\Phi(\mathbf{x}_i, \mathbf{i}) (f_{ort} \mathbf{i} \geq \mathbf{t} \geq \mathbf{o})$ represents an element $\eta^{-1} \mathbf{j} \in \mathcal{J}$ for any vertex α_{λ} , $C(\Phi) = \sum \alpha_i \sigma_i^{-1}$ represents $\bigcup_{\eta \neq \mathbf{j}} (f)$. Then it is easily seen in consideration of reference points that we have $\beta_{\lambda} - \gamma_{\lambda} = \alpha_i^{-1}$. This proves that $\bigcup_{\mathbf{j}} (f) - \bigcup_{\eta} (f) = \bigcup_{\eta \neq \mathbf{j}} (f)^{-1}$.

2.2 Definition of $\mathfrak{F}(f, \sharp)$ and some theorems concerning $\mathfrak{F}(f, \sharp)$.

We intend to introduce a concept "3 -homotopy". If for two mappings f. f belonging to U^{λ} , f is n homotopic to g, where f(B) =g(B) = g. is assumed, there exists a homotopy k_t (for $1 \ge t \ge 0$) such that $h_o = f$ and $k_1 = g$. It is easily verified that for any vertex A_t of X, $h_t(A_t)$ (for $1 \ge t \ge 0$) represents an element g of g. Then g is said to be "g -homotopic" to f (in notation: f a g, or simply $f \sim g$).

Lemma 2.2.1 For a mapping $f \in U^{\lambda}$ which maps B into J., and for an element $3 \in \mathcal{F}$ there exists a mapping f such that $f|\chi^{n-1}$ = $g|\chi^{n-1}$ and $f \sim g$.

<u>Proof.</u> Let $\mathcal{C}(t)$ (for $1 \ge t \ge 0$) be a representative of 3 . A mapping $F: (X < 0)^{\vee}(X^{\vee} \times I)$ $^{\vee}(X^{\circ} \times I) \to Y$ can be defined as follows:

$$F(x, 0) = f(x), \quad x \in X,$$

$$F(x, 1) = f(x), \quad x \in X^{n-1},$$

$$F(x_{i}, t) = \tau(t), \quad x_{i} \in X^{0}, \quad t \in I.$$

As $[f(\sigma_{ij})] \stackrel{\sim}{=} [f(v_{ij})]$ commutes 3, $F[\sigma(\sigma_{ij} \times I)]$ is inessential. Therefore \vdash can be extended to a mapping $F: (X^{\times 0})^{\vee}$ $(X^{\pi^{\times} I}) \stackrel{\sim}{\to} Y$. By the aid of the assumptions that $\pi_i(Y) = 0$ for 1 < i < m We have a mapping $F: (X^{\times 0})^{\vee} (X^{\pi^{-1}} \times I) \rightarrow Y$. Then from the homotopy extension property of a polyhedron a desired mapping $F: Z \rightarrow Y$ is obtained, for $F[(X^{\times} 1) = g$ is 3 -homotopic to f and $g|X^{\pi^{-1}} = f|X^{\pi^{-1}}$.

For two mappings $f, g \in U^{\lambda}$ which coincide on X^{n-1} and map B into \mathcal{F}_{\bullet} , we construct an m -cocycle $d^{n}(f,g)(\sigma_{\bullet}^{n}) = d(f,g,\sigma_{\bullet}^{n})$ where $d(f,g,\sigma_{\bullet}^{n}) \in \pi_{\bullet}(Y, g,)$ following Eilenberg. We designate by $\mathcal{O}(f, g)$ a cohomology class of $(\mathcal{H}_{\bullet}(X, \pi_{\bullet}(Y)))$ to which $d^{n}(f,g)$ belongs. Then we have

Existence Theorem 2.2.2. For any element \mathcal{B} of $H_n(X, \pi_n(Y))$ and for a mapping $f \in U^{\lambda}$ there exists a mapping $g \in U^{\lambda}$ such that $\mathcal{D}(f,g) = \mathcal{B}$

<u>Proof</u>. Let \mathcal{Y} be represented by a cocycle $\sum_{i} \alpha_i \sigma_i^n$, where $\alpha_i \in \pi_n(Y, Y_n)$ then it is proved with Eilenberg that there exists a mapping g such that $d(f, g, \sigma_i^n) = \alpha_i$ for any σ_i^n of X Homotopy Theorem 2.2.3. For two mappings f, f' we have $f \stackrel{1}{\xrightarrow{}} f'$ if and only if $\int (f, f') = \bigcup_{g^{-1}} (f)$.

This theorem corresponds to the Eilenberg's Homotopy Theorem. Since in his case $\pi_i(Y) = o$ is also assumed, we have $C_{\mathbf{s}^i}(\mathbf{f}) = o$ so that $\mathfrak{F}(\mathbf{f}, \mathbf{f}') = o$. Therefore two mappings \mathbf{f}, \mathbf{f}' are homotopic each other if and only if $\mathbf{d}^n(\mathbf{f}, \mathbf{f}') \otimes o$. This theorem will be again discussed in § 4 in a slightly generalized form.

Proof. Since $f \stackrel{3}{\sim} f'$, there exists a homotopy h_t ($i \ge t \ge 0$) such that $h_o = f$ and $h_i = f'$. Then $h_{\ge}(\pi_{\ge})$ (for $i \ge t \ge 0$) for any $\pi_{\ge} \in X^\circ$ represents an element $g \in \mathcal{F}^\circ$. Let $\mathcal{T}(\mathfrak{t})$ be a representative of \mathfrak{F} , then we define a mapping \mathcal{F} as follows:

 $\begin{cases} \mathcal{F}(x, 0, 0) = f(x), & x \in X; \ \mathcal{F}(x, 1, 0) = f(x), \\ & x \in X; \ \mathcal{F}(x, s, 0) = f(x), & x \in X^{n-1}, & s \in I, \\ & \mathcal{F}(x, 1, t) = h_{1-t}(x), & x \in X, & t \in I, \\ & \mathcal{F}(x, 0, t) = f(x), & x \in X, & t \in I, \\ & \mathcal{F}(x, s, 1) = \mathcal{T}(1-s), & x_i \in X^\circ, & s \in I. \end{cases}$

Then it is easily seen that $\mathcal{F}|_{\partial(x_i \times I \times I)}$ is homotopic to zero, so that \mathcal{F} can be also defined on $x_i \times I \times I$ for any $x_i \in X^\circ$. As $\mathcal{F}| Z^n$ has a partial homotopy on the subcomplex $(X^{\times 0})^{\vee}(X^{\times 1})^{\vee}(X^{\circ \times I})$ = Z' of Z^n , in virtue of the homotopy extension property of a polyhedron we have $\mathcal{F}: Z^* I \to Y$. Since $\mathcal{F}|_{\partial(x_i^n \times I \times \circ)}$ represents $d(f, f', \sigma_i^n)$ and $\mathcal{F}|_{\partial(\sigma_i^n}$ $\times I \times 1)$ represents $C_{3^{\times 1}}(F, \sigma_i^n)$, in consideration of the homotopy we have $d(f, f', \sigma_i^n) = C_{3^{\times 1}}(F, \sigma_i^n)$. This proves that $\mathcal{Q}(f, f') = C_{3^{\times 1}}(f)$.

Conversely, a mapping $D\colon \mathbb{Z}^n {\longrightarrow}\, Y$ is defined as follows:

$$D(x, o) = f(x) , x \in X,$$

$$D(x, 1) = f'(x) , x \in X,$$

$$D(x, t) = f(x) , x \in X^{n-1}, t \in I$$

Then $d(f, f', \sigma_i^n)$ is represented by a mapping $D[\partial(\sigma_i^n \times I)]$. If we choose suitably a representative $C(F) = \sum_i c(F, \sigma_i^n) \sigma_i^n$ of $C_{2^{n-1}}(f)$, by the remark given in the last part of 2.1 we have d(f, f') = C(F)Now we define a mapping $\Phi: \mathbb{Z}^n \longrightarrow \mathbb{Y}$ such that

$$\overline{\Psi}(x,t) = \begin{cases} \overline{F}(x, 1-2t) & j \neq 1 \\ D(x, 2t-1) & j \neq 1 \\ \hline \end{array}$$

Then $\Phi(\mathbf{x}, t)$ (for $1 \ge t \ge 0$) for any $\alpha_{\lambda} \in X^{\circ}$, represents β , and we have $\Phi(\mathbf{x}, \circ) = f(\mathbf{x})$, $\Phi(\mathbf{x}, 1) = f'(\mathbf{x})$. Now, $\Phi[\partial(\sigma_i^n \times \mathbf{I})]$ represents $(d(f, f', \sigma_i^n)) = -c(F, \sigma_i^n)]^{3'}$, regarding $\Phi(\mathbf{a}, \mathbf{x}, \circ)$ $= \mathbf{y}_{\bullet}$. as a base point. As $d(f, f', \sigma_i^n) = C(F, \sigma_i^n)$, it follows that $\Phi[\neg \sigma_i^n \times \mathbf{I})$ is inessential for any σ_i^n . Therefore Φ is extended to a mapping $Z^{n_i} \to Y$, so that we have $f \not\subset m f'$. The proof has been established.

We can mention in more genera-lized forms another formulaes corresponding to those shown by Eilenberg, but only several formulaes, which will be used in § 4, are given here without proof.

(2.2.4)
$$\partial(f, h) - \partial(f, g) = \partial(g, h)$$

(2.2.5) $\partial(f, g) - \partial(f, g)^3 = C(f) - C(g)$

$$(2, 2, 5) \qquad \mathcal{O}(f, g) - \mathcal{O}(f, g)^{2} = C_{g}(f) - L_{g}(g)$$

(2.2.6) If
$$f \stackrel{3}{\rightarrow} f'$$
, we have
 $C_{\gamma}(f')^3 = C_{3\gamma 3^{-1}}(f)$ for any $\gamma \in \mathcal{F}^{\lambda}$.

3. Computation of the cocycles $C_{1}(f)$

In this section we give some meaning to the cocycles $C_1(f)$ There was found an invariant coho-mology class 2^{n*1} in the cohomo-logy group of $H_{n+1}(\pi_i(Y), \pi_n(Y))$ by Eilenberg. Here is shown that the class is reducible from 2011

3.1. Let \prod be a discrete group, $K(\pi)$ an abstract closure finite complex defined as follows. An ordered (n+1) -ple $[w_0, w_1, \cdots, w_n]$ of elements of TT is an n-cell of the complex K(TT) . The boundary of an m-cell is an (m-1)chain defined by

$$\Im[\mathsf{W}_{\mathsf{o}},\mathsf{W}_{\mathsf{i}},\cdots,\mathsf{W}_{\mathsf{n}}] = \sum_{\mathsf{o}}^{\mathsf{n}} (-\mathsf{i})^{\mathsf{c}} [\mathsf{W}_{\mathsf{o}},\cdots,\widehat{\mathsf{W}}_{\mathsf{c}},\cdots,\widehat{\mathsf{W}}_{\mathsf{n}}].$$

By putting $w \cdot [w, w_1, w_n] =$

By putting $w_1(w_1,w_1,\dots,w_N) = [ww,w_1,w_1,\dots,w_N]$. [ww,ww,w,ww,m], T is considered as a group of automor-phisms of $K(\Pi)$ without fixed cells. Let $C^n(\Pi)$ be the n-th chain group of $K(\Pi)$ with in-teger coefficients. Let T be an abelian group which admits Π as a group of operators. An equivariant M -cochain f'' is a homomorphism of $C^{n}(\pi)$ into \mathcal{J} such that $f^{n}(w.[w_{0},w_{1},...,w_{n}]) = w.f([w_{0},...,w_{n}]).$

The coboundary of
$$\int^n$$
 is defined by

$$\mathfrak{Sf}^{n}([w_{o,:},w_{n+1}]) = \mathfrak{f}^{n}(\mathfrak{I}[w_{o,:},w_{n+1}])$$

By usual procedure, we can define the n-th equivariant cohomology group $H_n(\pi, J)$

3.2. From now on we regard $\pi_{i}(Y, J_{o})$ as \prod and $\pi_{n}(Y, J_{o})$ as \int . Let $S_{i}(X)$ be a closure finite complex defined be by singular simplexes in Υ such that all the vertices of the counthat all the vertices of the coun-ter-image simplex are mapped into a fixed point j_0 in γ . Let $K'(\Pi)$ be the \mathfrak{N} -skeleton of $K(\Pi)$. We consider mappings F of $K'(\Pi)$ into $S_1(\gamma)$ as follows. All o-cells [W] are mapped into the point J_0 . A 1-cell $[W, W_1]$ is mapped into a closed peth peppesenting The element w_0^{-1} is a singular for a 2-cell (w_0, w_1, w_2) , $For a 2-cell (w_0, w_1, w_2)$, simplex defined as follows. Define a mapping \top of a Euclidean 2 -simplex $\sigma^2 \leq P_0, P_1, P_2 >$ into Y first on its boundary, such that

$$\Gamma(P_{i}) = Y_{o}, \ T(P_{o}P_{i}) = F[W_{o}, W_{i}],$$

 $T(P_{o}P_{2}) = F[w_{o}, w_{1}], T(P_{1}P_{2}) = F[w_{1}, w_{2}].$

As easily seen, the mapping \top can be extended to the interior of σ^2 .

If we notice the assumption that $\pi_1(Y) = 0$ for $1 \le i \le m$, we can always extend the mapping given by F on the boundary of a Euclidean (l+1) -simplex into its interior such that F[www.,ww.,..,ww. $\equiv F[w_{o}, \dots, w_{i+1}]$ for any $v \in T$, and $F(w_0, \dots, w_{i+1}) = \operatorname{for any } w_{i+1}$ and $F(\pi(w_0, \dots, w_{i+1})) \ge \varepsilon_{\pi} F[w_0, \dots, w_{i+1}]$ where π denotes a permutation of w_0, \dots, w_{i+1} and ε_{π} equals ± 1 according as π is even or odd permutation. Thus the mapping F of $K^{\pi}(\pi)$ into $S_i(\gamma)$ is de-fined. fined.

3.3. We consider the set $\,M\,$ of all such mappings \vdash of $k^{n}(\pi)$ into $S_{1}(Y)$. For each \vdash and an (n+1) -cell $[w_{o}, \cdots, w_{n+1}]$, let

$$\vdash (\Im[w_0, \cdots, w_{n+1}]) = \top (\Im \sigma^{n+1})$$

represent an element $\forall \in \pi_n(Y, \mathcal{Y}_o)$. To every (n+1) -cell $[w_{a_1}, \cdots, w_{n+1}]$ we attach the element \forall^{w_o} , then we obtain an equivariant (n+1) cochain $\Re_F^{n_1}$. It is easily seen that \Re_F is a cocycle and that \aleph_F is cohomologous to $\aleph_G^{n_1}$ for any two mappings $F, G \in M$. Thus we get the invariant cohomology class $\Re_{g}^{n+1} \in H_{n+1}(\pi_1(Y), \pi_n(Y))$.

3.4. Suppose all the vertices of χ^n are linearly ordered. A mapping f of χ^n into χ , which maps χ^o into χ_o , defines a singular simplex in χ on each simplex of χ^n . Thus (χ^n, f) is considered as a subcomplex of $S_i(\chi)$.

Let R be the group ring of $TT = T_{\tau_1}(Y)$ with integer coefficients. We construct a chain-transformation κ of the chain group $C(X^*, R)$ of X^* with coefficient group R into the chain group C(TT)of K(TT) as follows:

Let $\sigma^{m} = \langle P_0, \cdots, P_m \rangle$ be a simplex of X, then $f(P_i) = Y_0$, and $f(P_i, P_i)$ represents an element w_i of TT. Put

$$(\kappa(1,\sigma^{m}) = [1, w_{1}, \cdots, W_{m}]$$

and $(c_1, \sigma^m) = \gamma \cdot (c_1 \sigma^m) \quad \text{for } \gamma \in \mathbb{R}$, where 1 denotes the unit element of \mathbb{R} .

If we define

$$\Im (1 < \flat_{0}, ..., \flat_{m} >)$$

 $= W_{1} < \vartheta_{1} ... \vartheta_{m} > + \sum_{n} (-n)^{2} < \vartheta_{0}, ..., \vartheta_{2}, ..., \vartheta_{m} >,$

it follows immediately that $(c) = \Im(c)$ and (c) is a chain-transformation. From this we can define the dual homomorphism $(k^* \text{ of the equivariant}$ cohomology group $H_m(\pi, \mathcal{T})$ into the equivariant cohomology group $H_m(X, \mathcal{T})$, which may be regarded as the cohomology group with

local coefficients. In the case m = m, (C^{*} is defined on the equivariant cochain

group $C_n(\pi, \mathcal{T})$ •

3.5. Let $| \neg \rangle$ be a subgroup $\Re_f(\pi, (\chi^n))$ of TT, and let $\Im \in Z^{\lambda} = \Im_H$, then the following m-cochain of K($| \neg \rangle$) becomes equivariant:

$$(5.1) \quad \begin{array}{l} k_{3,F}^{n}[w_{0}, ..., w_{n}] = \sum_{0}^{n} (-1)^{1/2} k_{F}^{n11}[w_{0}, ..., w_{0}, \\ \Im w_{0}, ..., \Im w_{n}]. \end{array}$$

Now let $F \in M$ be an extension of f such that $F(c(i \cdot \sigma^n) \equiv f(\sigma^n))$ for any $\sigma^n \in X$. Denote by M(f) the set of all the mappings F which are extensions of f.

We show that

(52)
$$k^* k_{3,F}^n \in U_3(\mathbf{f})$$

3.6. To prove (5.2) we make use of certain subdivision Z of the product space $X^{n} \times I$. The vertices of Z are those of $X^{n} \times 0$ and $X^{n} \times I$. The order of the vertices are definite on $X^{n} \times 0$ and $X^{n} \times I$ respectively, we set that the vertex P_{x} of $X^{n} \times 0$ is antecedent to the corresponding \overline{P}_{x} of $X^{n} \times I$. Thus the vertices of Z are partially ordered. Now define a subdivision of $\sigma^{n} \times I$ as follows:

$$\begin{array}{ll} \textbf{(L1)} & d\left(1 \cdot \sigma^n \times \mathbf{I}\right) = d\left(1 \cdot \langle P_0 \cdots P_n \rangle \times \mathbf{I}\right) \\ &= \sum_{i=1}^{n} (-1)^{i} 1 \cdot \langle P_0 \cdots P_n \overline{P_n} \rangle, \end{array}$$

where d denote subdivision operation and (m+1)-cells $< p_0 \cdots p_i \overline{p_i} \cdots \overline{p_n} >$ admit p_0 as their first vertices.

Denote by \overline{Z}^n the n-skeleton of Z .

Consider a mapping $F_{g}: \overline{Z}^{n} \longrightarrow Y$ such that $F_{g} = f$ on $X^{n} \times 0$ and $X^{n} \times 1$, and the paths $F_{g}(f; F_{\ell})$ represent $g \in \mathcal{G}_{H}$.

Let the path $\int (\rho \rho)$ represent the element ψ : of H, putting

(6.2)
$$\mathcal{K}'(1 \cdot \langle P_1 \cdots P_i, \overline{P_1} \cdots \overline{P_n} \rangle)$$

= $[1, w_1, \dots, w_i, \Im w_i, \dots \Im w_n],$

we obtain a chain-transformation k' of C(Z,R) into $C(\pi)$. Let $F \in M(f)$ be an extension of Fg such that

(6.3)
$$Fk' = F_3$$
 on $\overline{2}^n$,

then by (6.1), (6.2) and (6.3) and No.3, No.5 $\,$

$$C(F_{3})(1 \cdot \langle \uparrow_{0}, \dots, \uparrow_{n} \rangle) = \left\{ F_{3} \partial(1 \cdot \langle \uparrow_{0} \dots \uparrow_{n} \rangle \times I) \right\}$$
$$= \left\{ F_{0} \kappa' d(1 \cdot \langle \uparrow_{0} \dots \uparrow_{n} \rangle \times I) \right\}$$

$$(6.4) = \sum_{i=1}^{n} (-1)^{n} \mathcal{R}_{F}^{n+1} [1, w_{i}, \dots, w_{i}, 3w_{i}, \dots, 3w_{n}]$$

= $\mathcal{R}_{3,F}^{n} [1, w_{i}, \dots, w_{n}]$
= $\kappa^{*} \mathcal{R}_{3,F}^{n} (1 \cdot \langle P_{0} \cdots P_{n} \rangle)$

The classification of an (n-1) -homotopy class.

Select a mapping f, of an (n-1) -homotopy class U^{\wedge} which maps the topological tree B into \Im , then there exists at least one mapping g in any n-homotopy class in U^{\wedge} , such that $f_0|X^{n-1}$ $= g|X^{n-1}$. If we choose from each m -homotopy class involved in U^{\wedge} all the mappings, which satisfy the condition, and construct $\mathcal{D}(f_0, g)$, it is easily seen from Existence Theorem 2.3.2 that every element of $H_n(X, \pi_n(Y))$ is obtained. Also, the analysis of the relation between $\mathcal{D}(f_0, g)$ and $\mathcal{D}(f_0, g')$ for two homotopic mappings g, g'belonging to U^{\wedge} gives, in some sense, a classification of an (n-1)homotopy class U^{\wedge} .

Main Theorem 4.1.

For two maps $\{3, 3'\}$ belonging to \Box^{*} such that $g = g' = f_{0}$ on X^{*}, g' is 3-homotopic to g if and only if $\hat{\mathcal{S}}(f_{0}, g') - \mathcal{S}(f_{0}, g)^{3^{-1}} = C_{g^{-1}}(f_{0}).$

Proof. The necessity of Theorem can be proved directly, but we intend to prove it here utilizing some formulaes mentioned in § 2. From (2.2.4) we have $\mathcal{O}(f_{\circ}, g') = \mathcal{O}(f_{\circ}, g')$ + $\mathcal{O}(g, g') = \mathcal{O}(f_{\circ}, g')$ and from (2.2.3) $\mathcal{O}(g, g') = \mathbb{C}_{g^{-1}}(g)$ holds. Thus $\mathcal{O}(f_{\circ}, g') = \mathcal{O}(f_{\circ}, g) + \mathbb{C}_{g^{-1}}(g)$ and therefore we have g^{-1}

 $\mathcal{O}(f_{0},g') - \mathcal{O}(f_{0},g)^{g^{-1}} = \mathcal{O}(f_{0},g) - \mathcal{O}(f_{0},g)^{g^{-1}} + C_{g^{-1}}(g)^{g^{-1}}$

Lastly, from (2.2.5) it is concluded that $\mathcal{O}(f_{\circ}, g') - \mathcal{O}(f_{\circ}, g)^3 = \overline{U_{3^{-1}}}(f_{\circ})$.

Sufficiency: Let $d(f_0, g)$ and $d(f_0, g')$ be representatives of $\mathfrak{G}(f_0, g)$ and $d(f_0, g')$ respectively, then $d(f_0, g)$ and $d(f_0, g')$ are represented by mappings $\mathcal{D}, \mathcal{D}'$: $\mathcal{Z}' \longrightarrow \bigvee$ respectively. Choosing suitably a representative C(F)of $C_{g^{-1}}(f_{0})$, we have $d(f_{0},g')-d(f_{0},g)^{-3} = C(F)$ in virtue of the remark given in §2. Defining a mapping Φ : $Z \xrightarrow{n} Y$ such that

$$\Phi(\mathbf{x}, \mathbf{t}) = \begin{cases}
D(\mathbf{x}, 1-3\mathbf{t}), & \frac{1}{3} \geq \mathbf{t} \geq 0, \\
D(\mathbf{x}, 2-3\mathbf{t}), & -\frac{2}{3}\mathbf{z}\mathbf{t} \geq \frac{1}{3}, \\
D'(\mathbf{x}, 3\mathbf{t}-2), & 1 \geq \mathbf{t} \geq \frac{2}{3}
\end{cases}$$

we have $\Phi(x, o) = D(x, 1) = q(x)$ $\Phi(x, 1) = D'(x, 1) = q'(x)$ and $\Phi(x, t)$ (for $1 \ge t \ge 0$) represents g, because $F(x_2, 2-5t)$ (for $\frac{2}{3}$ $2 \ge t \ge \frac{1}{3}$) represents g. Regarding $\Phi(a_1 \times \frac{2}{3})$ as a base point, $\Phi(a_1 \times \frac{2}{3})$ as a base poi

 $\begin{array}{c} q \stackrel{1}{\nearrow} q \stackrel{2}{\rightarrow} \\ & \text{Now, assuming that } Y \text{ is } n-simple in the sense of Eilenberg,} \\ & \text{we can classify an } (n-1) -homotopy \\ & \text{class } \bigcup^{h} \text{ by a rather simple method.} \\ & \text{Since in (2.11) } \bigcup_{n=1}^{n} (f_n)^{1} = \bigcup_{n=3}^{n} (f_n) \\ & \text{in virtue of } n-\text{simplicity of } Y \\ & \text{we have } \bigcup_{q(f_n)} - \bigcup_{n=1}^{n} (f_n)^{1} = \bigcup_{n=3}^{n} (f_n) \\ & \text{so that the totality } A_n(X, \pi_n(Y)) \\ & \text{of all the elements } \bigcup_{q(f_n)} (f_n)^{n} \\ & \text{for any } 3 \in \mathscr{F} \\ & \text{, constitutes } \\ & \text{a subgroup of } H_n(X, \pi_n(Y)) \\ & \text{Because from (2.2.5) we have } \\ & \bigcup_{q(f_n)} = \bigcup_{q(g)} (f_n) \\ & \text{for any } \Re \in \bigcup^{h} \\ & \text{AK}, \pi_n(Y)) \\ & \text{does not depend } \\ & \text{on } f_n \\ & \text{, but depends only on an } \\ & (n-1) \\ & -homotopy \\ & \text{class } \bigcup^{h} \\ & \text{ otherwise } \\ \\ & \text{for any } \Re \text{ als c be regarded as the } \\ & \text{image of the group } \mathbb{F}^h \\ & \text{ by the homomorphism of } \mathbb{F}^h \\ & \text{into } H_n(X, \pi_n(Y)) \\ & \text{Choosing from each } n-homotopy \\ & \text{class involved in } \bigcup^{h} \\ & \text{all such mappings } \\ & \text{that coincide with } f_n \\ & \text{ on structing } \\ & \text{of them, it is seen from Existence } \\ & \text{Theorem 2.2.2 that every element of } \\ & H_n(X, \pi_n(Y)) \\ & \text{ is obtained } \\ & \text{through this construction. From } \\ & \text{the two considerations that for two } \\ \end{array}$ through this construction. From the two considerations that for two mappings g, g' belonging to \Box^{*}, g' is n-homotopic to gif and only if $\mathfrak{O}(\mathfrak{f}_{0},\mathfrak{g}') \equiv \mathfrak{O}(\mathfrak{f}_{0},\mathfrak{g})$ mod $A_{n}(X, \pi_{n}(Y))$ because of the main theorem 4.1 and that from Lemma 2.2.1 and from Homotopy Theorem 2.2.3 the totality of $\mathcal{L}(f, f_o)$, for any $f \approx f_o$, coincides with $A_n(X, \pi_n(Y))$ all the n-homotopy classes involved in \bigcup^{λ} is in one-to-one correspondence with the factor group of $H_n(X, \pi_n(Y))$ by $A_n(X, \pi_n(Y))$.

In case where the fundamental group of Y vanishes, Y is, of course, m-simple in the sense of Eilenberg. In this case there is just one m -homotopy class and also $A_n(X, \pi_n(Y)) = 0$ by definition, so that all the n-homotopy classes are in one-to-one correspondence with $| \dashv_n(X, \pi_n(Y))$, which is so-called Eilenberg's generalized Hopi Theorem.

(*****) Received Dec. 30, 1950.

Mathematical Institute, Nagoya University.