ON A HOMOTOPY CLASSIFICATION PROBLEM

By Hiroshi UEHARA

(Communicated by Y. Komatu)

As is snown by S.Eilenberg in his paper "On the problems of topology", Annals of Math., 1949, it may well be said that the homotopy classification problem is a central problem in modern topology. It is to enumerate eifectively all the homotopy classes of mappings f of one space X into the other space Y by some computable invariants of f, X and Y. This general problem has not yet been solved, but in several: special cases various kinds of brilliant results are known.

Some of them have much to do with the problem discussed in this paper and therefore are shown as follows. Witold Hurewicz reported in 1936 that all the homotopy classes of mappings of an n-dimensional connected finite polyhedron X into an arcwise connected topological space Y with $\pi_{i}(Y)=0$ for
i >1 are in one-to-one correspondence with all the classes of equivalent-homomorphisms of $\pi_{1}(X)$ to $\pi_{1}(Y)$. The homotopy classification problem in case where X is an n-dimensicnal finite connected complex X and Y an $n-s p h e-$ re, was originally solved by H. Hopf and reproduced by H . Whitney with use of cohomology group. S.Eilenberg generalized the Hopf-Whitney's Theorem to get far reaching results that when X is also an n-dimensional geometrical cell complex and an arcwise connected topological space with $\pi_{i}(Y)=0$ for
$n>i \geqq 1$, all the homotopy classes are in (1-1) correspondence with an n-dimensional cohomology group $H_{n}\left(X, \pi_{n}(Y)\right)$ with the coefficient group $\pi_{n}(Y)$.

It is reported that the homotopy classification problem of an $n-d i-$ mensional finite connected complex with a fixed decomposition into an arcwise connected topological space with $\pi_{i}(Y)=0$ for $n>i>1$ has recently been solved completely by several topologists, P.Olum (Buli. Amer. Math. Soc., 53 (1947)), M.M.Postnikov (Doklady Akad. Nauk SSSR, 66 (1949)), and S.T.Hu (Akad.

Sinica Science Record 2, (1949)). Eut details are not jet to hand in Japan. I also intend to impart a solution to this problem by the aid of Eilenberg Mac-Lane's cohomology group of abstract group and of Steenrod's cohomology theory with local coefficients. I an deeply gratefiul to Mr. Nobuo Shimada for his helpful criticisms and suggestions.

1. Reproduction of Hurewicz's result and its application to this problem.

Let Ω be the totality of all the mappings of X into Y and of an point x_{0} of X into a fixed point y_{0} of Y, Ω is usually designated by the symbol $Y^{x}\left(x_{0}, y_{0}\right)$. For two maps $f, g \in \Omega, f$ is said to be homotopic to g (in notation; $f \sim g$) ${ }_{x}{ }^{\text {if }}$ there exists a homotopy $h_{t} \in Y^{X^{\prime}}$ (for $1 \geqq t$ $\underline{2} 0$) such that $h_{0}=f$ and $h_{1}=g \quad \Omega$ is divided by this equivalent relation into mutually disfoint homotopy classes of mappings.

A mapping $f \in \Omega$ induces a homomorphism h_{f} of $\pi_{1}\left(X, x_{0}\right)$ into $\pi_{1}\left(Y, y_{0}\right)$. If $f \sim g$ for two mappings $f, g \in \Omega$, there exists a homotopy k_{t} - Let
$\eta \in \pi_{1}\left(Y, y_{0}\right) \quad R_{t}$ be $\dot{r e p r e s e n-~}$ ted by the closed path $k_{t}\left(x_{0}\right)$ (for $1 \geqq t \geq 0$), then we have $h_{f}(3)=\eta h_{g}(3) \eta^{-1}$ for any 3
$\in \pi_{1}\left(X, x_{0}\right)$. Thus it is proved that if $f \sim g$, h_{f} and h_{g} are equivalent (in notation: $h_{f} \sim h_{g}$).

Two mappings $f, g \in \Omega$ are said to be -homotopic (in notation: $f \underset{r^{r}}{ }{ }^{\text {en }}$ if $\left|X^{r} \sim g\right| X^{r}$ where X^{r} is the r-skeleton of
X - Then n-homotopy is the usual homotopy defined above. Since r-homotopic relation is an equivalent relation, Ω is also divided into r-homotopy classes. Then we have

Theorem 1. The set of all the $(n-1)$-homotopy classes is in one to one correspondence with the set
of all the classes of equivalent homomorphisms of $\pi_{1}(X)$ into $\pi_{1}(Y)$ 。

In order to prove this it is necessary and suificient to show that for a given homomorphism φ there exists a mapping $f \in \Omega$ such that $h_{f}=\varphi$ and that if $f_{n=1} g$ for two mappings $f, g \in \Omega$ ，we have $h_{f} \sim \hbar_{g}$ ，and vice versa．

The former statements are ob－ vious．Before we prove the inverse relation，some preliminary remarks are given．Let B be the topolo－ gical tree in the complex X^{1} ， which starts x_{0} and involves all the vertices of X 。 Since B is contractible to a point x_{0} in it－ self，for any mapping $f \in \Omega$ there exists a mapping f^{\prime} such that $f \tilde{n}$
f^{\prime} and $f^{\prime}(B)=y$ ．It is easily verifiec that $h_{f}=h_{f^{\prime}}$ ．There－ fore，in order to prove that if $h_{f} \sim h_{g}$ ，we have $f \overbrace{n-1} g$ it is sufficient to show that if

$$
h_{y^{\prime}} \sim h_{f^{\prime}}, \text {, we have } f^{\prime} n_{n-1} g^{\prime}
$$ where f^{\prime}, g^{\prime}＇are such mappings as referred to above． Prool of Theorem $l_{\text {。 }}$ Put $X \times I=Z$,

$Z^{\prime}=(X \times 0)^{\prime}(X \times 1)$, and $Z^{r+1}=\left(X^{r} \times I\right)$
Z^{\prime} Let $\sigma_{i j}^{\prime}$ be a $1-$ simplex
$x_{i} x_{j}$ and let u_{i} be a path joining in B a vertex x ．to a vertex x_{i} of X ．Putting $v_{i j}$ $=u_{i} \sigma_{i j} u_{j}{ }^{-1} \quad$ ，the element ［ $\left.v_{i j}\right]$ of $\pi_{1}\left(X, x_{0}\right)$ which is represented by the closed path $v_{i j}$ is a generator of $\pi_{1}\left(x, x_{0}\right)$ ．As
 tor ${ }_{\text {where }}^{\left[v_{i j}\right]}{ }_{3} \in \pi_{1}\left(Y, y_{0}\right) \quad \pi_{1}\left(X, x_{0}\right)$ in order to prove Theorem l，it is sufficient to show that there exists a mapping $F: Z^{n} \rightarrow Y$ such that $F(x, 0)=f^{\prime}(x)$ and $\quad F(x, 1)=g^{\prime}(x)$ for any $x \in X \quad$ ．Now，let $\tau(t)($ for $1 \geq t \geq 0)$ be a representative of 3 and we define a mapping $F: z^{\prime} \rightarrow Y$ as fcllows：

$$
\begin{array}{ll}
F(x, 0)=f^{\prime}(x), & \text { for } x \in X, \\
F(x, 1)=g^{\prime}(x), & \text { for } x \in X, \\
F\left(x_{i}, t\right)=\tau(t), & \text { for } x_{i} \in X^{\circ} \text { and } 1 z t \geq 0 .
\end{array}
$$

Then，for any

$$
\begin{aligned}
& \sigma_{i j}^{1} \text { of } X^{1} \\
& \text { is homoto }
\end{aligned}
$$

$F \mid \partial\left(\sigma_{i j}^{\prime} \times I\right)$ zero，because

$$
\left[f^{\prime}\left(\sigma_{i j}{ }^{1}\right)\right]=\left[f^{\prime}\left(v_{i j}\right)\right]=h_{f^{\prime}}\left(\left[v_{i j}\right]\right)
$$

$$
=\xi h_{g^{\prime}}\left(\left[v_{i j}\right]\right) 3^{-1}=3\left[g^{\prime}\left(v_{i j}\right)\right] 3^{-1}
$$

$$
=3\left[g^{\prime}\left(\sigma_{i j}^{i}\right)\right] \xi^{-1} .
$$

Theretore F can be extended to a mapping $F: Z^{2} \rightarrow Y$ © For any 2－simplex σ_{i}^{2} of $X, F \mid \partial\left(\sigma_{i}^{2} \times I\right)$ is also inessential in virtue of
$\pi_{2}(Y)=0$ ，so that F is again extended to a mapping F ： $Z^{3} \rightarrow Y$ ．Through the same argu－ ments we have an extended mapping
$F: Z^{n} \rightarrow Y$ ，using the assump－ tions that $\pi_{3}(Y)=\cdots=\pi_{n-1}(Y)=0$ It follows that we have $f^{\prime} \approx g^{\prime}$ Thus Theorem 1 has oeen established．

> 2. A generalized obstruction theory with use of Steenrod's cohomology group with local coet'ficients.

It is the main aim of the rest part in this paper to find a neces－ sary and sufficient condition that two maps in an（ $n-1$ ）－homotopy class are n－homotopic each other．To do this Eilenberg＇s obstruction theory should be slightly retouched to ap－ ply to our case，because the space
Y is not assumed to be n－simple． In this section § 2 this point is clarified with use of Steenrod＇s cohomology group with local coeffi－ cients and，moreover，an n－cohomo－ logy class $C_{3}(f)$（refer to 2．1）which plays an eminent rôle in this problem，is discussed in $\delta 3$ in connection with Eilenberg－Mac Lane＇s cohomology group of abstract group．In the last section § 4 a general theory established will be reduced to the results obtained by Hopf and Eilenberg as special cases．

> 2.1. Definition of an n-cohomology class $\Gamma_{3}(f)$ and a formula concerning

All the mappings considered in the rest part of this paper are assumed to belong to an $(n-1)$－ho－ motopy class U^{λ} ，sc that without loss of generality they may be assumed to coincide on X^{n-1} It may be also assumed that they map the topological tree B into y_{0} because B is contractible in B to a point x_{0} ．Now，let f be such a mapping and h_{f} an indu－ ced homomorphism of $\pi_{1}(x)$ a into
$\pi_{1}(Y)$ ．We denote by z_{f}^{n} the centralizer of the subgroup h_{f}
（ $\left.\pi_{1}(x)\right)$ of $\pi_{1}(Y)$ ；in notation

$$
\partial_{f}^{\lambda}=\left\{\xi ; \xi a=a 3 \text {, for every } a \in h_{f}\left(\pi_{i}(x)\right)\right\} \text {. }
$$

Then for any two mappings f ，g in an $(n-1)$－homotopy class \dot{U}^{λ} we have $z_{f}^{\lambda}=z_{y}^{\lambda}$ from the assump－ tions referred to above，and there－ fore $\mathfrak{a}^{z^{\lambda}}$ can be merely designated by $3^{\lambda^{\alpha}}$ ．Let $\tau(t)$（for $1 \geq t \geq 0$ ）
be a representative oi an element
$\xi \in \xi^{x}$－Now a mapping $F: Z^{\prime} \rightarrow Y$
is defined as follows：

$$
\begin{array}{ll}
F(x, 0)=f(x), & x \in X, \\
F(x, 1)=f(x), & x \in X,
\end{array}
$$

$$
F\left(x_{i}, t\right)=\tau(t), \quad x_{i} \in X^{0} \text { and } 1 \geq t \leq 0
$$

Since $\left[f\left(\sigma_{i j}^{\prime}\right)\right]=\left[f\left(v_{i j}\right)\right] \in h_{f}\left(\pi_{1}(x)\right)$ and so 3 commutes $\left[f\left(\sigma_{t j}^{1}\right)\right]$ F can be extended to a map F. $Z^{2} \rightarrow Y$. Moreover, from the assumptions that $\pi_{2}(Y)=\cdots=\pi_{n-1}(Y)=0$ $\underset{\rightarrow}{F}$ can be extended to a map $F: Z^{n}$ X are ordered linearly so that for any simplex of X the first vertex in this order is preassigned. Let a_{i} be the first vertex of an n-simplex σ_{i}^{n} and b_{j} the first vertex of its $(n-1)$-face $\sigma_{d}{ }^{n-1}$.
$F \mid \partial\left(\sigma_{i}^{n} \times I\right) \quad$ represents an element $C\left(F, \sigma_{i}{ }^{n}\right)$ of $\pi_{n}(Y$, $\left.f\left(a_{i}\right)=y_{0}\right)$, and $c(F)=\sum_{i n}^{n} c\left(F_{i}, \sigma_{i n}^{n}\right)$ cocyle of n-complex X with local group as coefficient group. An n cocycle $C(F)$ may indeed depend on i) the choice of a representative of 3 and also on ii) the way of extending the mapping F, but it can be shown that, independently of i), ii) , $C(F)$ determines uniquely a cohomology class of $H_{n}\left(X, \pi_{n}\left(Y, y_{0}\right)\right)(n-t h$ cohomology group of X with local coefficients) for a mapping f and for $3 \in g^{n}$, which we designated by $C_{i}(f)$. As to i), ii) it is surficient to prove that when for the mapping f and for a representative $\tau^{\prime}(t)$ (for $1 \geq t \geq 0$) of $3 \in \xi^{\lambda}$, another mapping $F^{\prime} ; Z^{n} \rightarrow Y$ is constructed in the same way as used in case of F $C(F)$ is cohomologous to $C\left(F^{\prime}\right)^{\prime}$. From the horotopy extension property of a polyhedron there exists a mapping $F^{\prime \prime}, z^{n} \rightarrow Y_{z^{\prime}}=F \mid z^{\prime}$ such that $F^{\prime} \approx F^{\prime \prime}$ and $F^{\prime \prime}\left|z^{\prime}=F\right| z^{\prime}$. Then we have $C\left(F^{\prime}\right)=C\left(F^{\prime \prime}\right)$. Moreover, Doth the same property of a polyhedron and the assumptions
$\pi_{2}(Y)=\cdots=\pi_{n-1}(Y)=0$, assure the existence of a mapping $F^{\prime \prime \prime}$: $Z^{n} \rightarrow Y$ such that $F^{\prime \prime} \approx F^{\prime \prime \prime}$ and
$F^{\prime \prime}\left|z^{n-1}=F\right| z^{n-1} \quad$. It is clear that we have $C\left(F^{* *}\right)=C\left(F^{\prime \prime}\right)$
$=C\left(F^{\prime}\right)$. Then we shall show that $C(F)$ is cohomologous to
$C\left(F^{n}\right)$. As from $F\left|z^{n-1}=F^{\prime \prime \prime}\right| z^{n-1}$ we have $F\left|{ }_{n-1}^{\dot{0}}\left(\sigma_{j}^{n-1} \times I\right)=F^{\prime \prime \prime}\right| \partial\left(\sigma_{j}^{\bar{n}-1} \times I\right)$ for any $\sigma_{j}^{n-1} \in X^{n-1}$, following Eilenberg (Annals of Math., 41, 1940), $d\left(F, F^{\prime \prime}, \sigma_{j}^{n-1}\right) \in \pi_{n}\left(Y, y_{0}=\right.$ $f\left(f_{j}\right)$) can be defined and also we have an ($n-1$) -cochain
$d^{n-1}\left(F, F^{\prime \prime}\right)=\sum d\left(F, F^{\prime \prime \prime}, \sigma_{i}^{n-1}\right) \sigma_{i}^{n-1}$. Now, with Steenrod's cohomology theory with local coefficients (Annals of Math. 1942), we have

$$
\delta d^{n-1}\left(F, F^{\prime \prime}\right)\left(\sigma_{i}^{n}\right)
$$

$$
\begin{aligned}
& =\sum_{\sigma_{i}^{n}>\sigma_{j}^{n-1}}\left[\sigma_{j}^{n-1}: \sigma_{i}^{n}\right] h_{\sigma_{i}^{n} \sigma_{i}^{n-1}} d\left(F, F, F_{j}^{n-1}\right) \\
& =c\left(F, \sigma_{i}^{n}\right)-c\left(F^{n \prime}, \sigma_{i}^{n}\right)
\end{aligned}
$$

so that $\delta d^{n-1}\left(F, F^{\prime \prime}\right)=c(F)-c\left(F^{\prime \prime}\right)$
This proves that $C(F)$ is cohomologous to $\left(F^{\prime}\right)$ -

It should be noticed that ior any element C of the cohomology class $C_{3}(f)=[C(F)]$ we can construct a mapping $F^{\prime}: Z^{n} \rightarrow Y$ such that $c\left(F^{\prime}\right)=C \quad$; namely all the elements of $\tau_{3}(f)$ can be obtained through the procedure referred to above from f and 3 Since c(F) is cohomologous to C; there exists an $(n-1)$-cochain $d^{n-1}\left(\sigma_{i}^{n-1}\right)=\alpha_{1} \quad \alpha_{i} \in \pi_{n}\left(Y, y_{0}\right)$, such that $\delta d^{n-1}=c(F)-C$
As is easily seen, there exists a mapping $F^{\prime}: Z^{n} \rightarrow Y$ such that $F^{\prime}\left|z^{n-1}=F\right| z^{n-1}$ and $d^{n-1}=d^{n-1}\left(F, F^{\prime}\right)$.
As $\delta d^{n-1}\left(F, F^{\prime}\right)=C(F)-C\left(F^{\prime}\right)=C(F)-C$
we have $C=c\left(F^{\prime}\right)$. This remark
is employed essentially in discussions appeared later.

Now we show a formula concerning $\tau_{3}(f) \quad$ 。
(2.1.1)

$$
L_{3}(f)-L_{\eta}(f)=L_{\eta^{-1} 3}(f)^{\eta^{-1}}
$$

where $3, \eta \in \mathcal{Z}^{\lambda}$ and $\Sigma_{\eta^{-13}}(f)^{\eta^{-1}}$ is represented by a cocycle $\sum_{i} \alpha_{i}{ }^{\eta-1} \sigma_{i}^{n}$, putting $\Gamma_{\eta^{-1} ;}(f)=\left[\sum_{i} \alpha_{i} \sigma_{i}{ }^{n}\right]$.

tatives of $L_{3}(f) \quad, \quad \Sigma_{\eta}(f)$
respectively, where $\quad \beta_{i}=c\left(F, \sigma_{i}{ }^{n}\right)$
and $\gamma_{i}=c\left(G, \sigma_{i}{ }^{n}\right)$ A mapping
$\Phi \cdot Z^{n} \rightarrow Y \quad$ is defined such that

$$
\Phi(x, t) \equiv \begin{cases}G(x, 1-2 t), & \frac{1}{2} \geq t \geq 0 \\ F(x, 2 t-1), & 1 \geq t \geq \frac{1}{2}\end{cases}
$$

Since we have $\Phi(x, 0)=\Phi(x, 1)=f(x)$, and $\Phi\left(x_{i}, t\right)(f o t 12 t \geq 0)$
represents on element $\eta^{-1} \xi \in \hat{j}^{\lambda}$ for any vertex $x_{i}, C(\Phi)=\sum_{i} \alpha_{i} \sigma_{i}^{n}$ represents $\mathrm{L}_{\eta^{-1}}(f) \quad 0$ Then it is easily seen in consideration of reference points that we have
$\beta_{i}-\gamma_{i}=\alpha_{i}^{\eta^{-1}}$. This proves
that $\Gamma_{3}(f)^{i}-C_{\eta}(f)=C_{\eta_{3}^{-1}}(f)^{\eta^{-1}}$.
2.2 Definition of $\theta(f, y)$ and some theorems concerning $D(f, g)$.

We intend to introduce a concept
n 3 -homotopy". If for two mappings
f, g belonging to U^{λ}, f is n homotopic to g, where $f(B)=$ $g(B)=y_{0}$ is assumed, there exists a homotopy h_{t} (for $1 \geq t \geq 0$) such that $h_{0}=f$ and $h_{1}=g$. It is easily verified that for any vertex x_{i} of x, $h_{t}\left(x_{i}\right)$ (for

Lemma 2.2. 1 For a mapping $f \in U^{\lambda}$ which maps B into y_{0}, and for an element $z \in \mathcal{z}^{\lambda}$ there exists $=g \mid X^{n-1}$ and ${ }^{g} f^{3} g{ }^{3} g$ that $f \mid X^{n-1}$

Proof. Let $r(t)$ (for $1 \geq t \geq 0$) be a representative of 3 A mapping $F:(X \times 0)^{V}\left(X^{n-1} \times 1\right)$ ${ }^{\cup}\left(X^{0} \times \dot{I}\right) \rightarrow Y$ can be defined as folIows:

$$
\begin{cases}F(x, 0)=f(x), & x \in X, \\ F(x, 1)=f(x), & x \in X^{n-1}, \\ F\left(x_{i}, t\right)=\tau(t), & x_{i} \in X^{0}, t \in I .\end{cases}
$$

As $\left[f\left(\sigma_{i j}^{\prime}\right)\right] \cong\left[f\left(v_{i j}\right)\right]$ commutes 3 , $F \mid \partial\left(\sigma_{i j}^{\prime} \times I\right)$ is inessential. Therefore F can be extended to a mapping $F:(X \times 0)^{\Delta}$ $\left(X^{n-1} \times 1\right)^{v}\left(X^{\prime} \times I\right) \longrightarrow Y$. By the aid of the assumptions that $\pi_{i}(Y)=0$ for $1<i<n \quad$ We have a mapping $F:(X \times 0)^{v}\left(X^{n-1} \times I\right) \rightarrow Y^{a}$ Then from the homotopy extension property of a polyhedron a desired mapping $F: Z \rightarrow Y$ is obtained, for $F P(X \times 1)=g$ and $g\left|X^{n-1}=f\right| X^{3}$-homotopic

For two mappings $f, g \in U^{\lambda}$ which coincide on X^{n-1} and map B into y_{0} we construct an n-cocycle $d^{n}(f, g)\left(\sigma_{i}{ }^{n}\right)=d\left(f, g, \sigma_{i}{ }^{n}\right)$ where $d\left(f, g, \sigma_{i}{ }^{n}\right) \in \pi_{n}\left(Y, y_{0}\right)$ following Eilenberg. We designate by $\mathcal{L}(f, g)$
of $H_{n}\left(X, \pi_{n}(Y)\right)$ to which
$d^{n}(f, g)$ belongs. Then we have

Existence Theorem 2.2.2. For

 any element \mathscr{F} of $H_{n}\left(X, \pi_{n}(Y)\right)$ and for a mapping $f \in U^{\lambda}$ there exists a mapping $g \in U^{\lambda}$such that $\alpha(f, g)=\{$

Proof. Let α be represented by a cocycle $\sum_{i} \alpha_{i} \sigma_{i}^{n}$, where $\alpha_{i} \in \pi_{n}\left(Y, y_{i}\right)^{i}$ then it is proved with Eilenberg that there exists a mapping g such that $d\left(f, g, \sigma_{i}^{n}\right)=\alpha_{i} \quad$ for any σ_{i}^{n}

Homotopy Theorem 2.2.3. For, two mappings f, f^{\prime} we have $f \cdot{ }_{\sim}^{m} f^{\prime}$ if and only if $\mathscr{G}\left(f \cdot f^{\prime}\right)=E_{3^{-1}}^{n}(f)$

This theorem corresponds to the Eilenberg's Homotopy Theorem. Since in his case $\pi_{1}(Y)=0$ is also assumed, we have $\mathrm{E}_{3}(f)=0$ so that $d\left(f, f^{\prime}\right)=0$, Thererore two mappings f, f^{\prime} are homotopic each other if and only if
$d^{n}\left(f, f^{\prime}\right) 山 0$ - This theorem will be again discussed in $\oint 4$ in a slightly generalized form.

Proof. Since $f \underset{n}{\frac{3}{n}} f^{\prime}$, there exists a homotopy h_{t} $(1 \geq t \geqq 0)$ such that $h_{0}=f$ and $h_{1}=f^{\prime} \quad ;$ Then $h_{t}\left(x_{i}\right)$ (for $1 \geq t \geq 0 \quad$ for any $x_{2} \in X_{\lambda}^{0}$ represents an element $\} \in z^{\lambda}$. Let $\tau(t)$ be a representative
of 3 , then we define a mapping F as follows:

$$
\begin{aligned}
& \mathcal{F}(x, 0,0)=f(x), x \in X ; \mathcal{F}(x, 1,0)=f^{\prime}(x), \\
& x \in X ; \mathcal{F}^{\prime}(x, s, 0)=f(x), x \in X^{n-1}, s \in I, \\
& \mathcal{F}(x, 1, t)=h_{1-t}(x), x \in X, t \in I, \\
& \mathcal{F}(x, 0, t)=f(x), \quad x \in X, \quad t \in I, \\
& \mathcal{F}\left(x_{i}, s, 1\right)=\tau(1-s), x_{i} \in X^{0}, s \in I .
\end{aligned}
$$

Then it is easily seen that $\mathcal{F} / \partial\left(x_{i}\right.$ $\times I \times I)$ is homotopic to zero, so that \mathcal{F} can be also defined on $x_{i} \times I \times I \quad$ for any $x_{i} \in X^{0} \quad$. As $\mathcal{F} \mid Z^{n}$ has a partial homoto
on the subcomplex $\left(X^{\prime} 0\right)^{U}(X \times I)^{\wedge}\left(X^{0} \times I\right)$ $=Z^{\prime}$ of Z^{n}, in virtue of the homotopy extension property of a polyhedron we have $\mathcal{F}: Z^{n} \times I \rightarrow Y$. Since $\mathcal{F} \mid \partial\left(\sigma_{i}^{n} \times I_{n} \times 0\right) \quad$ represents $d\left(f, f^{\prime}, \sigma_{i}{ }^{n}\right)$ and $\mathcal{F} \mid{ }_{n} \partial\left(\sigma_{i}{ }^{n}\right.$ $\times I \times 1)$ represents $C_{3^{-1}}\left(F, \sigma_{i}{ }^{n}\right)$, in consideration of the homotopy we have $d\left(f, f^{\prime}, \sigma_{i}{ }^{n}\right)=C_{3^{-1}}\left(F, \sigma_{i}{ }^{n}\right)$. This proves that $\mathcal{O}\left(f, f^{\prime \prime}\right)=C_{3^{-1}}(f)$.

Conversely, a mapping $D: Z^{n} \rightarrow Y$ is defined as follows:

$$
\begin{array}{ll}
D(x, 0)=f(x), & x \in X, \\
D(x, 1)=f^{\prime}(x), & x \in X, \\
D(x, t)=f(x), & x \in X^{n-1}, t \in I .
\end{array}
$$

Then $d\left(f, f^{\prime}, \sigma_{i}{ }^{n}\right) \quad$ is represented by a mapping $D \mid \partial\left(\sigma_{i}{ }^{n} \times I\right)$ If we choose suitably a representative $C(F)=\sum_{i} c\left(F, \sigma_{i}^{n}\right) \sigma_{i}^{n}$ of $E_{s^{-1}}(f)$, by the remark given in the last part
of 2.1 we have $d\left(f, f^{\prime}\right)=c(F)$
Now we define a mapping $\Phi: Z^{n} \rightarrow Y$ such that

$$
\Phi(x, t)= \begin{cases}F(x, 1-2 t), & \frac{1}{2} \geq t \geq 0 . \\ D(x, 2 t-1), & 1 \geq t \geq \frac{1}{2} .\end{cases}
$$

Then $\Phi\left(x_{i}, t\right)($ for $1 \geq t \geq 0)$
ror any $x_{i} \in X^{0}$,
ξ, and we have $\dot{\Phi}(x, 0)=f(x)$,
$\Phi(x, 1)=f^{\prime}(x) \quad$. Now,
$\Phi \mid \partial\left(\sigma_{i}^{n} \times I\right)^{3-1}$ represents $\left(d\left(f, f^{\prime}, \sigma_{i}^{n}\right)\right.$
$\left.-c\left(F, \sigma_{i}^{n}\right)\right)^{3^{-1}}$, regarding $\Phi\left(a_{i} \times 0\right)$
$=y_{0}$ as a base point. As
$d\left(f, f^{\prime}, \sigma_{i}{ }^{n}\right)=C\left(F, \sigma_{i}{ }^{n}\right)$, it follows
that $\Phi \mid \quad \partial\left(\sigma_{i}{ }^{n} \times I\right)$ is inessential for any σ_{0}^{n}. Therefore Φ is extended to a mapping $f^{Z^{n+1}} \rightarrow Y$, proof has been established.

We can mention in more generalized forms another formulaes corresponding to those shown by Eilenberg, but only several 1 ormulaes, which will be used in § 4, are given here without proof.
(2.2.4)

$$
\theta(f, h)-\infty(f, g)=\theta(g, h)
$$

(2.2.5)

$$
\theta(f, g)-\theta(f, g)^{3}=C_{3}(f)-C_{3}(g)
$$

(2.2.6)

$$
\begin{aligned}
& \text { If } f \frac{3}{n} f^{\prime} \text {, we have } \\
& C_{\eta}\left(f^{\prime}\right)^{3}=E_{3 \eta 3^{-1}}(f) \text { for any } \eta \in \mathcal{g}^{\lambda}
\end{aligned}
$$

3. Computation of the cocycles

 $C_{3}(f)$.In this section we give some meaning to the cocycles $C_{3}(f)$ There was found an invariant cohomology class $\tilde{\hbar}^{n+1}$ in the cohomology group of $H_{n+1}\left(\pi_{1}(\gamma), \pi_{n}(Y)\right)$ by Eilenberg. Here is shown that the class is reducible from $\tilde{\hbar}^{n+1}$.

$$
\text { 3.1. Let } \Pi \text { be a discrete }
$$ group, $K(\pi)$ an abstract closure finite complex defined as follows. An ordered $(n+1)$-ple $\left[w_{0}, w_{1}, \cdots, w_{n}\right]$ of elements of π is an $n-c e l l$ of the complex $K(T)$. The boundary of an $n-c e l l$ is an $(n-1)$ chain defined by

$$
\partial\left[w_{0}, w_{1}, \cdots, w_{n}\right]=\sum_{0}^{n}(-1)^{i}\left[w_{0}, \cdots, \hat{w}_{i}, \cdots, w_{n}\right] .
$$

By putting $w \cdot\left[w_{0}, w_{1},, w_{n}\right]=$
[wwow $\left.w w_{1}, \cdots, w w_{n}\right]$, II is considered as a group of automorphisms of $K(\Pi)$ without fixed cells. Let $C^{n}\left(\pi^{-}\right)$be the n th chain group of $K(\pi)$ with integer coeificients. Let J be an abelian group which admits Π as a group of operators, An equivariant n-cochain f^{n} is a homomor-
phism of $C^{n}(\pi)$ into J such that

$$
f^{n}\left(w \cdot\left[w_{0}, w_{1}, \cdots, w_{n}\right]\right)=w \cdot f\left(\left[w_{0}, \cdots, w_{n}\right]\right)
$$

The coboundary of f^{n} is defined by

$$
\delta f^{n}\left(\left[w_{0},:, w_{n+1}\right]\right)=f^{n}\left(\partial\left[w_{0}, \cdot, w_{n+1}\right]\right)
$$

By usual procedure, we can define the n-th equivariant cohomology group $H_{n}(\pi, J)$
3.2. From now on we regard
$\pi_{1}\left(Y, y_{0}\right)$
$\pi_{n}\left(Y, y_{0}\right)$ as J as $\prod_{\text {and }}$ and $S_{1}(x)$ be a closure iinite complex derined by singular simplexes in Y such that all the vertices of the coun-ter-image simplex are mapped into a fixed point y_{0} in Y. Let of $K(\pi)_{n}$. We consider mappings F of $K^{n}(\Pi)$ into $S_{1}(Y)$ as follows. All 0 -cells $[w]$ are mapped into the point y_{0}. A 1 -cell $\left[w_{0} w_{1}\right]$ is mapped into a closed path representing the element $w_{0}^{-1} w_{1}$ of $\pi_{1}\left(Y, y_{0}\right)$. For a 2 -cell $\left[w_{0}, w_{1}, w_{2}\right]$,

$$
F\left[w_{0}, w_{1}, w_{2}\right] \text { is a singular }
$$ simplex defined as follows. Define a mapping T of a Euclidean 2simplex $\quad \sigma^{2}=\left\langle P_{0}, P_{1}, P_{2}\right\rangle \quad$ into Y first on its boundary, such that

$$
\begin{aligned}
& T\left(P_{i}\right)=y_{0}, T\left(P_{0} P_{1}\right)=F\left[w_{0}, w_{1}\right], \\
& T\left(P_{0} P_{2}\right)=F\left[w_{0}, w_{1}\right], T\left(P_{1} P_{2}\right)=F\left[w_{1}, w_{2}\right] .
\end{aligned}
$$

As easily seen, the mapping T can be extended to the interior of σ^{2}.

If we notice the assumption that $\pi_{i}(Y)=0 \quad$ for $1<i<n \quad$, we can always extend the mapping given by F on the boundary of a Euclidean $(i+1)$-simplex into its interior such that $F\left[w w_{0}, w w_{1}, \cdots, w w_{i+1}\right]$ $\equiv F\left[w_{0}, w_{i+1}\right] \quad$ for any $v \in \Pi$, and $F\left(\pi\left[w_{0}, \cdots, w_{i+1}\right]\right) \equiv \varepsilon_{\pi} F\left[w_{0}, \cdots, w_{i+1}\right]$ where π denotes a permutation of w_{0}, \cdots, w_{i+1} and ε_{π} equals ± 1 according as π is even or odd permutation. Thus the mapping F of $K^{n}(\pi)$ into $S_{1}(Y)$ is defined.
3.3. We consider the set M of all such mappings F of $K^{n}(\pi)$ into $S_{1}(Y)$. For each F and an $(n+1)-\operatorname{cell}\left[w_{0}, \cdots, w_{n+1}\right]$, let

$$
F\left(\partial\left[w_{0}, \cdots, w_{n+1}\right]\right)=T\left(\partial \sigma^{n+1}\right)
$$

represent an element $\alpha \in \pi_{n}\left(Y, y_{0}\right)$ ． To every $(n+1)$－cell［ $\left.w_{0}, \cdots, w_{n+1}\right]$ we attach the element $\alpha^{w_{0}}$ ，then we obtain an equivariant（ $n_{T} 1$ ）－ cochain γ_{F}^{n+1} ．It is easily seen that $\psi_{k^{n+1}}^{n+1}$ is a cocycle and that for any two mappings $F, G \in M$ ． Thus we get the invariant cohomolo－ gy class $\mathbb{R}^{n+1} \in H_{n+1}\left(\pi_{1}(Y), \pi_{n}(Y)\right)$ ．

3．4．Suppose all the vertices of X^{n} are innearly ordered．A mapping f of X^{n} into Y ，which maps X° into y_{0} ，defines a singular simplex in Y on each simplex of X^{n} ．Thus $\left(X^{n}, f\right)$ is considered as a subcomplex of
$S_{1}(Y) \quad$ 。
Let R be the group ring of $\Pi=\pi_{1}(Y)$ with integer coeffi－ cients．We construct a chain－trans－ formation K of the chain group $C\left(X^{n}, R\right)$ of X^{n} with coefificient group R into the chain group $C(\pi)$ of $K(\pi)$ as follows：

$$
\begin{aligned}
& \text { Let } \sigma^{m}=\left\langle p_{0}, \quad, p_{m}\right\rangle \\
& \text { simplex oi } X \quad \text { be a } \\
& \text { and } f\left(p_{0} p_{i}\right) \text { represents an ele- } \\
& \text { ment } w_{2} \text { of } \Pi \text { © Put } \\
& K\left(1 \cdot \sigma^{m}\right)=\left[1, w_{1}, \cdots, w_{m}\right]
\end{aligned}
$$

and $k\left(\tau, \sigma^{m}\right)=\gamma \cdot k\left(1 \sigma^{m}\right)$ for $\gamma \in R$ ， where 1 denotes the unit element of R 。

$$
\begin{aligned}
& \text { If we define } \\
& \\
& \partial\left(1 \cdot\left\langle p_{0}, \cdots, p_{m}\right\rangle\right) \\
& =w_{1}\left\langle p_{1} \cdots p_{m}\right\rangle+\sum_{1}^{m}(-1)^{i}\left\langle p_{1}, \cdots, \hat{p}_{i}, \cdots, p_{m}\right\rangle
\end{aligned}
$$

（5．1）$k_{3, F}^{n}\left[w_{0}, \cdots, w_{n}\right]=\sum_{0}^{n}(-1)^{i} k_{F}^{n+1}\left[w_{0}, \cdots, w_{i}\right.$ ， $\left.3 w_{i}, \cdots, 3 w_{n}\right]$ 。

Now let $F \in M$ be an exten－ sion of f such that $F K\left(1 \cdot \sigma^{n}\right) \equiv f\left(\sigma^{n}\right)$ for any $\sigma^{n} \in X$ ．Denote by $M(f)$ the set of all the mappings F which are extensions of f

We show that

$$
\begin{equation*}
k^{*} k_{3, F}^{n} \in L_{3}(f) \tag{5.2}
\end{equation*}
$$

3．6．To prove（5．2）we make use of certain subdivision Z of the product space $X^{n} \times I$－The ver－ tices of Z are those of $X^{n} \times 0$ and $X^{n} \times 1$ ．The order of the vertices are definite on $X^{n} \times 0$ and $X^{n} \times 1$ respectively，we set that the vertex p_{1} of $x^{n} \times 0$ is antecedent to the corresponding \bar{p}_{i} of $X^{n} \times 1$ ．Thus the vertices of Z are partially ordered．Now define a subdivision of $\sigma^{n} \times I$ as fol－ lows：
（6．1） $\begin{aligned} d & \left(1 \cdot \sigma^{n} \times I\right)=d\left(1 \cdot\left\langle p_{0} \cdots p_{n}\right\rangle \times I\right) \\ & =\sum_{0}^{n}(-1)^{i} 1 \cdot\left\langle p_{0} \cdots p_{i} \bar{p}_{i} \cdots \bar{p}_{n}\right\rangle,\end{aligned}$
where d denote subdivision opera－ tion and $(n+1)-\operatorname{cells}\left\langle p_{0} \cdots p_{i} \overline{p_{i}} \cdots \overline{p_{n}}>\right.$ admit P_{0} as their first vertices．

Denote by \bar{Z}^{n} the n－skeleton of Z 。

Consider a mapping $F_{g}: \vec{Z}^{n} \rightarrow Y$ such that $F_{3}=f$ on $X^{n} \times 0$ and $F_{3}^{n_{x}}\left(p_{i} \frac{1}{p_{i}}\right)$ represent and the paths $\underset{\xi \in Z_{H}}{ }$

Let the path $f\left(p_{0} p_{i}\right)$
re－ present the element w_{i} of $H^{\text {，}}$ putting
（6，2）$\quad K^{\prime}\left(1 .\left\langle p_{0} \ldots p_{i}, \bar{p}_{i} \ldots \bar{p}_{n}\right\rangle\right)$

$$
=\left[1, w_{1}, \cdots, w_{i}, \xi w_{i}, \cdots \xi w_{n}\right],
$$

we obtain a chain－transiormation k^{\prime} of $C(Z, R)$ into $C(\pi)$ Let $F \in M(f)$ be an extension of F_{3} such that
（6．3）$F K^{\prime}=F_{3}$ on \bar{Z}^{n} ，
then by（6．1），（6．2）and（6．3）and No． 3 ，No． 5

$$
\begin{aligned}
& C\left(F_{3}\right)\left(1 \cdot\left\langle p_{0}, \cdots, p_{n}\right\rangle\right)=\left\{F_{3} \partial\left(1 \cdot\left\langle p_{0} \cdots p_{n}\right\rangle x I\right)\right\} \\
& \quad=\left\{F \partial k^{\prime} d\left(1 \cdot\left\langle p_{0} \cdots p_{n}\right\rangle \times I\right)\right\}
\end{aligned}
$$

$(6,4)$

$$
\begin{aligned}
& =\sum_{0}^{n}(-1)^{\wedge} k_{F}^{n+1}\left[1, w_{i}, \cdots, w_{i}, 3 w_{i}, \cdots, 3 w_{n}\right] \\
& =k_{3, F}^{n}\left[1, w_{1}, \cdots w_{n}\right] \\
& \left.=k^{*} k_{3, F}^{n}\left(1 \cdot<p_{0} \cdots p_{n}\right\rangle\right)
\end{aligned}
$$

where $\}$ denotes the element of $\pi \pi_{n}(Y)$
This proves (5.2).
4. The classification of an ($n-1$)-homotopy class.
Select a mapping f_{0} of an $(n-1)$-homotopy class U^{λ} which maps the topological tree B into y_{0}, then there exists at least one mapping, g in any n-homotopy class in U^{λ}, such that $f_{0} \mid X^{n}$ n
$\mathrm{g} \mid X^{n-1}$-homotopy class involved in in each 0^{λ} all the mappings, which satisfy the condition, and construct $\infty\left(f_{0}, g\right)$, it is easily seen from Existence Theorem 2.3.2 that every element of $H_{n}\left(X, \pi_{n}(Y)\right)$ is obtained. Also, the analysis of the relation between $\mathcal{O}\left(f_{0}, g\right)$ and $\mathcal{O}\left(f_{0}, g^{\prime}\right)$ for two homotopic mappings g, g^{\prime} belonging to U^{λ} gives, in some sense, a classification of an ($n-1$)homotopy class U^{\wedge}.

Main Theorem 4.1.

$$
\begin{aligned}
& \text { For two maps } g, g^{\prime} \text { belonging } \\
& \text { to } \Pi^{\lambda} \text { such that } g=g^{\prime}=f_{0} \text { on } x^{n-1}, g^{\prime} \\
& \text { is } 3 \text {-homotopic to } g \text { if and oniy } \\
& \text { if } \\
& \&\left(f_{0}, g^{\prime}\right)-\alpha\left(f_{0}, g\right)^{3^{-1}}=C_{3^{-1}}\left(f_{0}\right) .
\end{aligned}
$$

if

Proofe The necessity of Theorem can be proved directly, but we intend to prove it here utilizing some formulaes mentioned in § 2. From

$$
\begin{aligned}
& \text { (2.2.4) we have } \alpha\left(f_{0}, g^{\prime}\right)=\alpha\left(f_{0}, g\right) \\
& +\mathscr{D}\left(g, g^{\prime}\right) \text { and from }(2,2,3) \\
& \alpha\left(g, g^{\prime}\right)=E_{g^{-1}}(g) \quad \text { holds. Thus } \\
& \alpha\left(f_{0}, g^{\prime}\right)=\mathscr{\theta}\left(f_{0}, g\right)+E_{z-1}(g) \quad \text { and } \\
& \text { thereiore we have } \\
& D\left(f_{0}, g^{\prime}\right)-D\left(f_{0}, g\right)^{g^{-1}}=D\left(f_{0}, g\right)-D\left(f_{0}, g\right)^{3^{-1}} \\
& +C_{\mathcal{Z}^{-1}}(g) \text {. }
\end{aligned}
$$

Lastly, from (2.2.5) it is concluded that $\mathscr{A}\left(f_{0}, g^{\prime}\right)-\mathcal{O}\left(f_{0}, g\right)^{\xi^{-1}}=C_{z^{-1}}\left(f_{0}\right)$ Sufificiency: Let $d\left(f_{0}, g\right)$ and $d\left(f_{0}, g^{\prime}\right)$ be representatives of $Q\left(f_{0}, g\right)$ and $\delta\left(f_{0}, g^{\prime}\right)$ respectively, then $d\left(f_{0}, g\right)$ and $d\left(f_{0}, g^{\prime}\right)$ are represented by mappings D, D^{\prime} : $Z^{n} \longrightarrow Y \quad$ respectively. Choosing
suitably a representative $C(F)$ of $C_{3^{-1}}\left(f_{0}\right)$, we have $d\left(f_{0}, g^{\prime}\right)-d\left(f_{0}, g\right)^{-3}=\dot{C}(F)$ in virtue of the remark given in $\$ 2$. Defining a mapping $\Phi: Z^{n} \rightarrow Y$ such that

$$
\Phi(x, t)=\left\{\begin{array}{l}
D(x, 1-3 t), \frac{1}{3} \geq t \geq 0, \\
D(x, 2-3 t), \frac{2}{3} \geq t \geq \frac{1}{3}, \\
D^{\prime}(x, 3 t-2), \quad 1 \geq t \geq \frac{2}{3}
\end{array}\right.
$$

we have $\Phi(x, 0)=D(x, 1)=g(x) \quad$ and
$\Phi(x, 1)=D^{\prime}(x, 1)=g^{\prime}(x)$ $\Phi(x, 1)=D^{\prime}(x, 1)=g^{\prime}(x) \quad$ represents
$\Phi\left(x_{\lambda}, t\right)$ (for $\left.1 \geq t \leq 0\right)$ because F($x_{j}, 2-3 t$) (for $\frac{2}{3}$ $\geq t \geq \frac{p}{3}$) recause $F\left(x_{i}, 2-3 t\right.$) (for $\frac{2}{3}$ $\Phi\left(a_{i} \times \frac{2}{3}\right) \quad$ as a base poirt, I䧚 $\left.\sigma_{n}^{n} \times I\right) \quad$ represents $d\left(f_{0}, g^{\prime}, \sigma_{i}^{n}\right)-d\left(f_{0}, g, \sigma_{i}^{n}\right)^{3^{-1}}-c\left(F, \sigma_{i}^{n}\right)$
so that from $\alpha\left(f_{0}, g^{\prime}, \sigma_{i}^{n}\right)-d\left(f_{0}, g, \sigma_{i}^{n}\right)^{3^{-1}}$
$-C\left(F, \sigma_{2}{ }^{n}\right)=0$, Φ can be extended into
the interior of $\sigma_{i}^{n} \times I$ for any
$\sigma_{i}^{n} \in X \quad$ - Tris proves that
$g \underbrace{}_{n} g^{\prime}$
Now, assuming that Y is n simple in the sense of Eilenberg, we can classify an ($n-1$) -homotopy class \square^{\star} by a rather simple method. Since in (2.11) $\mathrm{C}_{\eta^{-3}}\left(f_{0}\right)^{\eta}=\mathrm{C}_{\eta^{-1} 3}\left(f_{0}\right)$
in virtue of $n-s i m p l i c i t y ~ o f ~ Y$, we have $E_{3}\left(f_{0}\right)-E_{\eta}\left(f_{0}\right)=C_{\eta^{-1}}\left(f_{0}\right)$
so that the totality $A_{n}\left(X, \pi_{n}(Y)\right)$, of all the elements $E_{3}\left(f_{0}\right)$ for any $\} \in z^{\lambda} \quad$, constitutes
a subgroup of $H_{n}\left(X, \pi_{n}(Y)\right.$
Because from (2.2.5) we have
$\bar{C}_{3}\left(f_{0}\right)=C_{3}(g)$ for any $\left.g \in U^{\lambda}, \pi_{n}(y)\right)$ does not depend
on f, but depends only on an $(n-1)$-homotopy class \bar{U}^{\star}. This group may alsc be regarded as the image of the group z^{\wedge} by the homomorphism of z^{λ} into $H_{n}\left(X, \pi_{n}(Y)\right)$. Choosing from each n-homotcpy class involved in U^{λ} all such mappings that coincide with f_{0} on X^{n-1} and constructing $\infty\left(f_{0}, g\right)$ for any g of them, it is seen from Existence Theorem 2.2 .2 that every element of

$$
H_{n}\left(X, \pi_{n}(Y)\right) \text { is obtained }
$$

through this construction. From
the two considerations that for two
mappings g, g^{\prime} belonging to
$\bar{\sigma}^{\lambda}, g^{\prime}$ is n-homotcpic to g
if and only if $\theta\left(f_{0}, g^{\prime}\right) \equiv d\left(f_{0}, g\right)$
$\bmod A_{n}\left(X, \pi_{n}(Y)\right) \quad$ because of
the main theorem 4.1 and that from
Lemma 2.2 .1 and from Homotopy Theorem 2.2.3 the totality of $\alpha^{2}\left(f, f_{0}\right)$, for any $f \approx f_{0}$, coincicies with
$A_{n}\left(X, \pi_{n}(Y)\right)$ all the n-homotopy classes involved in σ^{λ} is in one-to-one correspondence with the
factor group of $H_{n}\left(X, \pi_{n}(Y)\right)$
by $A_{n}\left(X, \pi_{n}(\dot{Y})\right)$

In case where the fundamental group of Y vanishes, Y is, of course, n-simple in the sense of Eilenberg. In this case there is just one n-homotopy class and also $A_{n}\left(X, \pi_{n}(Y)\right)=0 \quad$ by definition, so that all the n-homotopy classes are in one-to-one correspondence with $H_{n}\left(X, \pi_{n}(Y)\right)$ which is so-called Eilenberg's generalized Hopl Theorem.
(*) Received Dec. 30,1950 .
Mathematical Institute, Nagoya University.

