By Yoshibumi ABE, Tomio KUBOTA and Hajimu YONEGUCHI

(Communicated by Y. Komatu)

Let R^n be the n-dimensional Euclidean space. Each point of R^n is determined by its n Cartesian coordinates. We denote by a + b the point $(a^{i+}+b^i)$ for $a = (a^i)$ and $b = (b^i)$ of R^n and by α a the point (αa^i) for $a = (a^i)$ and a real number α .

Let us consider the set of points $K_r(E)$, in association with a set of points E of R^* , which is defined by induction as follows:

1)
$$K_i(E) = \{\lambda a + \mu b; \lambda + \mu = 1; \lambda, \mu \ge 0, a, b \in E \}$$

2)
$$K_{r}(E) = K_{r}(K_{r-1}(E))$$
.

A set of points E is called convex if K (E)=E. It is clear that if K (E) is convex for some set of points E and an integer r, it coincides with the minimal convex set including E; in this case we say that the set E belongs to K^{*}-class. In the present note we shall establish the following theorems.

Theorem 1. Let $\pi(n)$ be the number of figures in dyadic expansion of n. Then every set of points E of \mathbb{R}^{n} belongs to $K^{\pi(m)}$ -class. Moreover, if s be an integer such that $s < \pi(n)$, there exists a set of points E' in \mathbb{R}^{n} which does not belong to K^{s} -class.

Theorem 2. A set of points E of R⁴ which can be decomposed in less than n + 1 connected components belongs to $K^{\pi(n-1)}$ -class.

First we deal only with a finite set of points $F = \{a_0, \ldots, a_T\}$ of R^{*}. We denote by $\Delta(a_0, \ldots, a_T)$ or simply by $\Delta(F)$ the set of all the points which can be written in the form

 $\mathbf{d}_{\mathbf{a}}\mathbf{a}_{\mathbf{a}} + \dots + \mathbf{d}_{\mathbf{r}}\mathbf{a}_{\mathbf{r}}, \sum_{\alpha} \alpha_{i} = 1, \quad \alpha_{i} \geq 0.$

If the points a_0, \ldots, a_{τ} are linearly independent Δ (F) is a so-called rsimplex whose vertices are a_0, \ldots, a_{τ} .

Proposition 1. For each point a $\in \Delta$ (a,..., a₁) and a given integer k < r, there exist $a' \in \Delta$ (a,..., a₁) and $a'' \in \Delta$ (a_{K+1},..., a₁) such that

$$\mathbf{a}=\boldsymbol{\lambda}\mathbf{a}'+\boldsymbol{\mu}\mathbf{a}^{*},\ \boldsymbol{\lambda}+\boldsymbol{\mu}=\mathbf{1},\quad \dot{\boldsymbol{\lambda}},\boldsymbol{\mu}\geqq\mathbf{0}.$$

<u>Proposition</u> 2. $\Delta(a_0, \ldots, a_r)$ is the minimal convex set containing the points a_0, \ldots, a_r . These two propositions are the immediate consequences of the preceding definition.

<u>Proposition</u> 3. $\Delta(a_{j},...,a_{r})$ coincides with the sum of all simplexes of which vertices form a linearly independent subset of $\{a_{j},...,a_{r}\}$.

It follows from Proposition 2 that the sum of such simplexes is included in Δ (a₀,..., a_x). So we need only to prove the next proposition.

<u>Proposition</u> 3'. Any point $a \in \Delta$ (a_0, \ldots, a_r) is contained in a certain simplex which satisfies the above condition.

The proof is by induction. For r = 0 the statement is obvious as in this case $\Delta^{2}(a_{*})$ is composed of a single point a_{o} . Assume that the proposition is proved for r = p-1, we shall then prove it for r=p. Let a be a point of $\Delta(a_{o},\ldots,a_{p})$. From Proposition 1 and our hypothesis we get

$$a = \lambda a_0 + \mu(\alpha_i a_i' + \dots + \alpha_{\kappa} a_{\kappa}'),$$

$$\sum \alpha_i = 1, \quad \alpha_i \geq 0,$$

where a'_{1} ..., a'_{k} form a linearly independent subset of $\{a_{1}, \ldots, a_{p}\}$. We may suppose that $\alpha'_{i} \neq 0$ for $i = 1, \ldots, k$.

The proposition holds naturally if either a_0, a_1', \ldots, a_K' are linearly independent or the point a is contained in $\Delta(a_1', \ldots, a_K')$. Now consider the other case. Then we can find k real numbers d_1', \ldots, d_K' such that

$$\mathbf{a}_{0} = \mathbf{a}_{1}^{\prime} \mathbf{a}_{1}^{\prime} + \dots + \mathbf{a}_{K}^{\prime} \mathbf{a}_{K}^{\prime}, \qquad \sum_{i} \mathbf{a}_{i}^{\prime} = \mathbf{1}_{0}$$

Hence we have

(1)
$$\tilde{a}_{o} = \frac{\lambda - \eta}{\xi} \tilde{a} + \frac{\kappa}{\xi} \sum_{i} (\xi \alpha_{i} + \eta \alpha_{i}') \tilde{a}_{i}'$$

for every pair of positive numbers i, 1 satisfying the relation i + 1 = 1. Let 1; be the solution of the equation

$$(1 - \eta_1)\alpha_1 + \eta_1\alpha_1 = 0.$$

Since d'_1 must be negative for some index 1, some of T_1, \ldots, T_N are certainly positive. So we can assume that T_1 is the minimal one among

- 117 -

those positive solutions. Of course 1, < 1. By setting $1 - 1_i = \frac{5}{2}$ and $\frac{5}{2} |\alpha_i + \eta_i | \alpha_i = \frac{1}{2} | \alpha_i - \frac{1}{2} | \alpha_i = \frac{1}{2} | \alpha_i + \frac{1}{2} | \alpha_i = \frac{1}{2} | \alpha_i - \frac{1}{2} | \alpha_i -$

$$\mathbf{a} = \frac{\mathbf{\lambda} - \mathbf{\eta}_1}{\frac{\mathbf{\xi}_1}{\mathbf{\xi}_1}} \mathbf{a}_{\mathbf{x}} + \frac{\mu}{\frac{\mathbf{\xi}_1}{\mathbf{\xi}_1}} \left(\mathbf{d}_{\mathbf{x}} \mathbf{a}_{\mathbf{x}} + \dots + \mathbf{d}_{\mathbf{K}}^{\mathbf{x}} \mathbf{a}_{\mathbf{K}}^{\mathbf{x}} \right),$$

where $\frac{\lambda - \eta_1}{\eta_1} + \frac{\mu}{\eta_1} \left(\alpha_1'' + \cdots + \alpha_n' \right) = 1$. Here $\lambda - \eta_1'$ should be positive. Because if the contrary were true, $\lambda \alpha_1' + \mu \alpha_2 = (\lambda - \eta_1) \alpha_1' + 1$

$$\begin{aligned} +\mu\alpha_{i} &= (\lambda - \eta_{i})\alpha_{i}' + (i - \lambda - i_{i})\alpha_{i}' \\ &= (\alpha_{i} - \alpha_{i}')(\eta_{i} - \lambda) \\ &= \frac{\alpha_{i}'}{\eta_{i}}(\eta_{i} - \lambda) = \alpha_{i}'(1 - \frac{\lambda}{\eta_{i}}) \geq 0 \end{aligned}$$

for $\alpha'_i \neq \alpha_i$. This contradicts the supposition that $a \notin \Delta(\alpha'_1, \ldots, \alpha'_n)$. Moreover we obtain for $\alpha'_i \neq \alpha_i$

$$\begin{aligned} \alpha_{i}^{"} &= (\xi_{i} - \xi_{i}) \alpha_{i} + (\eta_{i} - \eta_{i}) \alpha_{i}^{\prime} \\ &= (\eta_{i} - \eta_{i}) (\alpha_{i} - \alpha_{i}^{\prime}) = \alpha_{i} (1 - \frac{\eta_{i}}{\eta_{i}}) \geq 0. \end{aligned}$$

It is clear that $\alpha_i^{\mu} > 0$ for $\alpha_i = \alpha_i'$. Therefore we get $a \in \Delta(a_i, a_i'), \ldots, a_k'$. The linear independence of the points a_i, a_i', \ldots, a_k' follows readily from our assumption that $\alpha_i \neq 0$ for $i=1,\ldots,k$. Thus the proposition is completely proved. completely proved.

<u>Proposition 4.</u> Every finite set of r+1 points belongs to $K^{\pi(r)}$ -class.

Let F be a set of points a_0, \ldots, a_T . To prove the proposition it is sufficient to show that

(2)
$$K_{\pi(\tau)}(F) = \Delta(a_{\rho}, \ldots, a_{\tau})$$

The proof is by induction. The relation holds apparently in case $\pi(x) = 0$ or $\pi(\mathbf{r}) = 1$. Suppose that the equality is established for $\pi(x) = p-1$, p-2, we shall then prove it for $\pi(x) = p$. In this case it can readily be seen that

 $T = 2^{p-1} + q$, $0 \neq q < 2^{p-1}$

Let k be the integer such that $2k + 1 \ge r \ge 2k$ and F' be the set of points a_1, \ldots, a_K . Then, from above relations, we have

$$\pi(k) = p - 1, \quad p - 1 \ge \pi(r - k)$$

$$\ge p - 2.$$

Therefore both F' and F - F' belong to K^{P-1} -class. From this we obtain (2).

Proof of Theorem 1.

Let M(E) be the minimal convex set including a set of points E. Then it follows from the preceding propositions that the set M(E) is equal to the sum of all simplexes of which ver-tices are the points of E. Since there exist at most n + 1 linearly

independent points in \mathbb{R}^{m} , the set of vertices of every such simplex belongs to $\mathbb{K}^{\pi(m)}$ -class. This implies $K_{\pi(m)}$ (E)=M(E), and the first part of the theorem is verified.

To prove the latter part we shall show that the set F of n + 1 li-nearly independent points does not be-long to K⁵ -class. We obtain by 1) the inequality

dim $K_{e}(F) + 1 \leq 2$ (dim $K_{e-1}(F) + 1$).

Therefore, in view of the relation dim F=0, we have dim $K_{\xi}(F) \leq z^{\xi}$ -1. On the other hand

 $\dim \Delta(F) = n \ge 2^{\pi(n)-1}$

where $\pi(n) - 1 \geq s$. Hence we get

dim $\Delta(F) > \dim K_{\epsilon}(F)$.

This proves our assertion.

First we construct the set of points $E^* = \bigcup M(E \cap H)$ for every hyperplane H of E^* . Since the set $E \cap H$ belongs to $K^{\pi(n-j)}$ -class, we have $E^* \cong K_{\pi(n-j)}$ (E). Let us prove that the set E^* includes every simplex $\Delta(a_1, \ldots, a_{n-j})$ a_{τ}) whose vertices are the points of E. This assertion is obvious for r < n. So we shall consider the case r=n alone.

Let a be an inner point of $\Delta(a_o, \ldots, a_n)$. Then we have

(3)
$$a = \alpha_0 a_0 + \dots + \alpha_m a_n$$
,
 $\sum \alpha_i = 1, \quad \alpha_i \geq 0.$

Here we may assume that the points ao and a_1 are contained in the same connected component of E. We denote by $\Lambda(a, a_1, \ldots, a_N)$ the set of all the points x's satisfying the relation

$$\mathbf{x} = \lambda \mathbf{a} - (\lambda_1 \mathbf{a}_1 + \cdots + \lambda_m \mathbf{a}_m),$$

where $\lambda_i \geq 0$, $\lambda - (\lambda_1 + \cdots + \lambda_n) = 1$. It follows from (3) that $a \in \Lambda(a, a_1, \ldots, a_n)$ and $a_i \notin \Lambda(a, a_1, \ldots, a_n)$. Therefore the boundary B of $\Lambda(a, a_1, \dots, a_n)$ contains at least one point a' of E. Since the coef-ficients λ , λ_1 , ..., λ_n are the continuous functions of x, some of them must be zero for xeB. For instance let a' be a point in $\Lambda(a, a_1, \ldots, a_{n-1})$. Then we have $a \in \Delta(a', a_1, \ldots, a_{n-1})$. This implies $a \in E^*$ and the proof is completed.

Corollary. For $n = 2^{r}$, r = 0, l,..., a set of points E of \mathbb{R}^{n} which satisfies the preceding condition belongs to \mathbb{K}^{r} -class.

Appendix. Having finished our preparations we found that our Theorem 1 had been proved several years ago by Mr. Seiji Nabeya, a member of the Institute of Statistical Mathematics at present.

(*) Received Dec. 1, 1950.Nagoya University.