By Yoshibumi abe, Tomio KUBOTA and Hajimu YoNEGUCHI

(Communicated by Y. Komatu)

Let $\mathrm{R}^{\boldsymbol{n}}$ be the n -dimensional Eucildear space. Each point of R^{n} is determined by 1 ts n Cartesian coordinates. We denote by $a+b$ the point $\left(a^{i+}+b^{i}\right)$ for $a=\left(a^{i}\right)$ and $b=\left(b^{i}\right)$ of A^{n} and by α_{a} the point $\left(\alpha^{2}\right)$ for $a=\left(a^{2}\right)$ and a real number α.

Let us consider the set of points $K_{r}(E)$, in association with a sat of points E of R^{n}, which is defined by induction as follows:

1) $\begin{aligned} K_{1}(E)=\{\lambda a+\mu b ; \lambda+\mu=1 ; \lambda, \mu \geq 0, ~ \\ a, b \in E\}\end{aligned}$
2) $K_{r}(E)=K_{1}\left(K_{r-1}(E)\right)$.

A set of points E is called convex
if $K_{1}(E)=E$. It is clear that if
$K_{y}(E)$ is convex for some set of points E and an integer r, it coincides with the minimal convex set including $E ;$ In this case we say that the set E belongs to K^{T}-class. In the present note we shall estabilsh the following theorems.

Theorem 1. Let $\pi(n)$ be the number of figures in dyadic expansion of n. Phen every set of points E of R^{x} belongs to $K^{\pi(n)}$-class. Moreover, if s bo an Integer such that $s<\pi(n)$, there exists a set of points E in K^{n} which does not belong to $K^{s}-c l a s s$.

Theorem 2. A set of points . \mathbf{E} of R^{n} which can be decomposed in less than $n+1 \pi(n-1)$ connected components belongs to $K^{\pi(n-1)}$-class.

First we deal only with a finite set of points $F=\left\{a_{a}, \ldots, a_{r}\right\}$ of R^{n}. We denote by $\Delta\left(\mathrm{a}_{0}, \ldots, a_{r}\right)$ or simply by $\Delta(F)$ the set of all the points which can be written in the form

$$
\alpha_{0} a_{0}+\ldots+\alpha_{r} a_{x}, \sum \alpha_{i}=1, \quad \alpha_{i} \geqslant 0 .
$$

If the points $a_{0}, \ldots . a_{2}$ are. linearly independent $\Delta(F)$ is a so-called r simplex whose vertices are a_{0}, \ldots, a_{a}.

Proposition 1. For each point a $\in \frac{\Delta\left(a_{0}, \ldots, a_{r}\right)}{}$ and a giyon integer $k<r$, there exist $a^{\prime} \in \Delta\left(a_{1}, \ldots, a_{x}\right)$ and $a^{\prime \prime} \in \Delta\left(a_{k+1}, \ldots, a_{y}\right)$ such that

$$
a=\lambda a^{\prime}+\mu a^{4}, \lambda+\mu=1, \quad \dot{\lambda}, \mu \geqslant 0
$$

Proposition 2. $\Delta\left(a_{a}, \ldots, a_{x}\right)$ is the minimal convex set containing the points $a_{0}, \ldots . a_{r}$.

These two propositions are the 1mmediate consequences of the precering derinition.

Proposition 3. $\Delta\left(a_{0} \ldots\right.$. coincides with the sum of ali simplexes of which vertices form a innearly independent subset of $\left\{a_{0}, \ldots, a_{x}\right\}$.

It follows from Proposition 2 that the sum of such simplexes is included in $\Delta\left(a_{0}, \ldots, a_{r}\right)$. So we need only to prove the next proposition.

Proposition ${ }^{\prime}$. Any point $a \in \Delta$ (a_{0}, \ldots, a_{r}) is contained in a certain simplex which satisfies the above condition.

The proof is by induction. For $r=0$ the statement is obvious as in this case $4\left(a_{a}\right)$ is composed of a single point a. Assume that the prom position is proved for $r=p-1$, we shall then prove it for rap. Let a be a pointi of $\Delta\left(a_{0}, \ldots, a_{p}\right)$. From Proposition 1 and our hypothesis we get

$$
\begin{gathered}
a=\lambda a_{0}+\mu\left(\alpha_{1} a_{1}^{\prime}+\ldots+\alpha_{k} a_{k}^{\prime}\right), \\
\sum \alpha_{i}=1, \quad \alpha_{i} \geq 0,
\end{gathered}
$$

where $a_{i}^{\prime} \ldots a_{k}^{\prime}$ form a innearly independent subset of $\left\{a_{1}, \ldots ;\right.$ ap $\}$. We may suppose that $\alpha_{i} \neq 0$ for $1=$ $1, \ldots, k$.

The proposition holds naturally if either $a_{0}, a_{1}^{\prime}, \ldots . a_{k}^{\prime}$ are innearly independent or the point a is containod in $\Delta\left(a_{i}^{\prime}, \ldots, a_{k}^{\prime}\right.$). Now consider the other case. Then we can find k palal numbers $\alpha_{1}^{\prime}, \ldots, \alpha_{k}^{\prime}$ such that

$$
a_{0}=\alpha_{1}^{\prime} a_{1}^{\prime}+\ldots+\alpha_{k}^{\prime} a_{k}^{\prime}, \sum \alpha_{i}^{\prime}=1_{0}
$$

Hence we have

$$
\begin{equation*}
\vec{a}_{0}=\frac{\lambda-\eta}{\xi} \hat{a}+\frac{\mu}{\xi} \sum\left(\xi \alpha_{i}+\eta \alpha_{i}^{\prime}\right) a_{i}^{\prime} \tag{1}
\end{equation*}
$$

for overy pair of positive numbers $\}$, η satisfying the ralation $\xi+\eta=1$. Let η_{i} ba the solution of the equation

$$
\left(1-\eta_{i}\right) \alpha_{i}+\eta_{i} \alpha_{i}^{\prime}=0
$$

Since α_{i}^{\prime} must be negative for some index 1 , some of $\eta_{1}, \ldots . \eta_{r}$ are certainly positive. so we can assume that l_{1} is the minimal one amones
those positive solutions. of course
 (1) that

$$
a=\frac{\lambda-\eta_{1}}{\xi_{1}} a_{1}+\frac{\mu}{\xi_{1}}\left(d_{2}^{\prime} a_{2}+\ldots+\alpha_{k}^{\prime \prime} a_{k}^{\prime}\right),
$$

where $\frac{\lambda-\eta_{1}}{h_{1}}+\frac{\mu}{T_{1}}\left(\alpha_{2}^{\prime \prime}+\cdots+\alpha_{\alpha}^{\prime}\right)=1$.
Here $\lambda-\eta_{1}^{\prime}$ shoulda be positive. Because
if the contrary were true,

$$
\begin{aligned}
\lambda \alpha_{i}^{\prime}+\mu \alpha_{i} & =\left(\lambda-\eta_{i}\right) \alpha_{i}^{\prime}+\left(1-\lambda-\eta_{i}\right) \alpha_{i} \\
& =\left(\alpha_{i}-\alpha_{i}^{\prime}\right)\left(\eta_{i}-\lambda\right) \\
& =\frac{\alpha_{i}}{\eta_{i}}\left(\eta_{i}-\lambda\right)=\alpha_{i}\left(1-\frac{\lambda}{\eta_{i}}\right) \geq 0
\end{aligned}
$$

for $\alpha_{i}^{\prime} \neq x_{i}$. This contradicts the supposition that $a \notin \Delta\left(a_{1}^{\prime}, \ldots, a_{k}\right)$ 。 Moreover we obtain for $\alpha_{i}^{\prime} t \alpha_{i}$

$$
\begin{aligned}
\alpha_{i}^{\prime \prime} & =\left(\xi_{1}-\xi_{i}\right) \alpha_{i}+\left(\eta_{1}-\eta_{i}\right) \alpha_{i}^{\prime} \\
& =\left(\eta_{i}-\eta_{1}\right)\left(\alpha_{i}-\alpha_{i}^{\prime}\right)=\alpha_{i}\left(1-\frac{\eta_{1}}{\eta_{i}}\right) \geq 0
\end{aligned}
$$

It is clear that $\alpha_{i}^{\prime \prime}>0$ for $\alpha_{i}=\alpha_{i}^{\prime}$. Therefore we get $a \in \Delta$ (a, a, a_{z}, \ldots, a_{k}^{\prime}). The innear independence of the points $a_{0,} a_{i}^{r}, \ldots, a_{k}^{\prime}$ follows readily from our assumption that $\alpha_{i} \neq 0$ for $1=1, \ldots, k_{\text {. Thus the proposition is }}$ completely proved.

Proposition 4. Every finite set of $r+1$ points belongs to $K(x)$-class.

Let F^{\prime} be a set of points a....., a_{x}. To prove the proposition it is sufficient to show that
(2) $K_{\pi(t)}(F)=\Delta\left(a_{p}, \ldots, a_{\tau}\right)$ 。 The proof is by induction. The reletion holds apparently in case $\pi(x)=0$ or $\pi(x)=1$. Suppose that the equality is establishea for $\pi(x)=p-1, p-2$, we shall then prove it for $\pi(x)=p$. In this case it can readily be seen that

$$
x=2^{p-1}+q, \quad 0 \leqslant q<2^{p-1}
$$

Let k be the integer such that $2 k+$ $1 \geq r \geq 2 k$ and $F^{\prime \prime}$ be the set of points a.,.... a_{k}. Then, from above relations, we have

$$
\begin{aligned}
\pi(k)=p-1, p-1 & \geq \pi(r-k) \\
& \geq p-2
\end{aligned}
$$

Therefore both F^{\prime} and $F^{\prime}-F^{\prime}$ belong to $K^{p-i}-c l a s s . ~ F r o m ~ t h i s ~ w e ~ o b t a i n ~$ (2).

Proof of Theorem 1.

Let $M(E)$ be the minimal convex set incluaing a set of points E. Then it follows from the preceding propositions that the set $M(E)$ is equal to the sum of all simplexes of which vertices are the points of E. since there exist at most $n+1$ Innearly

Independent points in K^{n}, the set of vertices of every such simplex belongs to $K \pi(n)-c l a s s$. This implies $K T(n)$ $(E)=M(E)$, and the first part of the theorem is verified.

To prove the latter part we shall show that the set F of $n+1$ 11nearly independent points does not be~
 the inequality

$$
\operatorname{dim} K_{s}(F)+1 \leq 2\left(\operatorname{dim} K_{s-1}(F)+1\right)
$$

Therefore, in view of the relation dim $F=0$, we have dim $K_{s}(F) \leq i^{s}-1$. On the other hand

$$
\operatorname{dim} \Delta(F)=n \geq 2^{\pi(n)-1}
$$

Where $\pi(n)-1 \geqq$ s. Hence we get

$$
\operatorname{dim} \Delta(F)>\operatorname{dim} K_{s}(F)
$$

This proves our assertion.

Proof of Theorem 2.

First we construct the set of points $E^{*}=U_{M}(E \cap H)$ for every hyperplane H of P^{x}. Since the set $\mathrm{E} \cap H$ belonfs to $K^{\pi(n-1)}-c l a s s$, we have $E^{*} \equiv K_{K}(n-1)$
(E). Jet us prove that the set E^{*} includes every'simplex Δ (a, \ldots, \ldots ar) whose vertices are the points of E. This assertion is obvious for $r<n$. So we ahall consider the case $r=n$ alone.

Let a be an inner point of $\Delta\left(a_{0}\right.$, \ldots, a_{n}. Then we have
(3) $a=\alpha_{0} a_{0}+\ldots+\alpha_{n} a_{n}$,

$$
\sum \alpha_{i}=1, \quad \alpha_{i} \geq 0
$$

Here we may assume that the points a and a, are contained in the same connected component of E. We denote by $\Lambda\left(a, a_{1}, \ldots, a_{n}\right)$ the set of all the points x 's satisfying the relation

$$
x=\lambda a-\left(\lambda_{1} a_{1}+\cdots+\lambda_{n} a_{n}\right)
$$

where $\lambda_{i} \underset{z}{ } \quad 0, \lambda-\left(\lambda_{1}+\cdots+\lambda_{n}\right)=1$. It follows from (3) that $a_{0} \in \Lambda(a$, $\left.a_{1}, \ldots, a_{n}\right)$ and $a_{1} \notin \Lambda\left(a_{n} a_{1}, \ldots\right.$, a_{n}). Therefore the bounclery B of $\Lambda\left(a, a, \ldots, a_{n}\right)$ contains at least one point a of E. Since the coef. ficients $\lambda, \lambda,, \ldots, \lambda n$ are the continuous functions of x, some of them must be zero for $x \in B$. For instance let a^{\prime} be a point in $A(a$, $\left.a_{1}, \ldots, a_{n-1}\right)$. Then we have a $\in \Delta\left(a^{\prime}\right.$, $\left.a_{1}, \ldots, a_{n-1}\right)$. This implies a $\in E^{*}$ and the proof is completed.

Corollary, for $n=2^{r}, r=0$, $1, \ldots$ a set of points E of R^{n} which satisfies the preceding condition belongs to $K^{2}-c l a s s$.

Appendix. Having finished our preparations wo found that our Theorem 1 had been proved soveral years ago by Mr. Seiji Nabeya, a member of the Inatitute of Statistical liathematics at present.
(*) Received Dec. 1, 1950.
Nagoya University.

