ON THE RELATIVE STABILITY OF 3UMS OP POSITIVE RANDOM VARIABLES

By Tatsuo KAWATA

1. Let X;, X2, «sey be & sequence
of random variables mutually indepen-
dent. If for a suitsble number sequ-

ence {A.Y ,
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tends in probability to 1, we say that
the sequence
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'Fe)latively stable with reapect to {Ax}
and 1f a3 n-so0 , Xu/An tends in
probability to zero uniformly 1s4k £n
{X«} 18 called relatively small. Mr.
Bobroff has proved the followling
theorem, !}

Theorem 1. Let (X«} be a sequence
of non-negative, ubuall% Independent
random varisbles. If with respect to
a pumber §8que “3._:"10:0. 1 An} . Mars, 1KLY, 18
relative].% stable, then it is relative-

1y small for {A.i and there exists a
sequence of positive numbers jc.j such

that
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where Fu(x) Q’enotes the distribution
function of Ax . Conversely if
there exists a seguence Jcn} satis-

fying (1.5) and (1.4} then jX.f 1s
relatively stable and relatively smell.

Recently K. Kunisawa has glven an
another simple proof of Theorem 1, with
conditions

oo o
-5 Zjv(F,‘{x)—?o
k=i %, »

g xc
”n ;
-6 2 o “Fie ) -,
K=t o,

ingtead of (1.3) .and {(1.4).

The object of the present peper
is to give the condltions for relati-
ve stability of (X} different from
the above and to deduce Bobroff’s
theorem from it. The method is slso
different from Bobroff’s or Kunisawa’' s
and seems to be uazsful for positive
random variables,

2. Lemma 1. Let F(X) be the dlst-
pibution function of a, random variable
X which is non-negative. Then
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1s anslvtic ip >0 -f(é),)%_g_ the

characteristic function of

This 1a evident. We say #(%) the
analytic characteristic funetion of
X .

Lemma 2., In order that the non~
negative random varlsblé X« gonverges
in distribution to =& variable X , 1t
1s Heceasary end sufficlent the
analytic characteristic functlon #.iz)
of X« converges to that of X uni-
Lormly in every finite closed rectan=-
gular domein inberior 5o upper halfs
plane ¢=RZ>0 -« P

The proof of necessity is qulte
similar as_the ordinary Lévy continulty
theorem. We thus prove the sufflclien-
cy. Let F(z) «be the anaglytic chara-
cteristic function.of X (26) and
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By the compactness of {Fafx)} , there
oxists a sequence. {7} such that
Fn,t) = 9x) at continulty points,
where @) 13 a non-decreasing func-~
tion, Then
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since T, can be arbitrarily small, we
can let >0 1in (2.3). Thus
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points of Fx) . Convergence of Fn(x) o oo
follows from this fact as usual. Z: f Py A E N
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ke for e For. s.rbitre.ry sequences tendlng
- zero,  {&vy {7+ , we can take
424 Z, (- f‘ ”‘F'((“’)“’ e (Anre), the ;aquencs‘of positive integers
such ‘that
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This holds for every «w>o  and thus

(2.5), (2.6) follows.

3,  We-prove the following theorem.
Theorem. 2.: Let {X«! be a sequence

of non-negatlive

random vaeriables and the distribution

function of Xx be FE.x) « XIf (X}
Is relatively smell and relatively sta-

ble with pespect to a sequence of
positive pumbers {A=}', then (2.4
holds. Conversely 1f (2 .4) holds, then
”Q'i is relstively small .and relative-
1y stable with respect to ;aAx} .

Proof. We first prove the converse.
By Lerma 3, we may prove 1t under the
conditions (2.4), {2.5) and (2.6).
(2.4) and (2.5) shows that
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Then (3.1) end (3.2) follows that therse

exlsts a sequence [c.}j such that
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¥ow for every £>6¢ , and large »n
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Thus the relative smallness 1s proved.

By Lemma 2 ]
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By (2.0), (2.6) and.{(3.8), for every
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but et? is tre analytic characteris-
tic function of 1. Thus by Lemma 2
!Xk} 13 relatively stabls.

Next we shall prove the first part
of the theorem. If !Xk} 1is rela-
tively small and relatively stable
with respect to {An} , then (5 &)
and {3.11) hold for every jtf ¢
U>T2To » 1f we take <=0 , t‘.hen

£ (itidn} >0 o Thus if 5 %) <o
then by (3.8), bgﬂ
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which 1s (2.4).

4. In this section, we shall
prove Theorem 1 of Bobroff from
Theorem 2. First we deduce {1.3) and
(1.4) from (2.4). (1.3) is already
?roved in the proof of Theorem 2

(3.3)). Thus 1t suffices to prove

(1.4}, By Lemma 3 we can make use of
(3.5).

Since we have

which tends to zero by (1.3}, (7)
glves
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which indreases Iindefinitely by (3.4).
Thus (1.4) 1s provéd.

Next we shall prove from {(1.3) and
(1.4) that there exists s sequence ida}
such that (2.4) l;xolds. Putting
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T, if x<<Ca , then for given arbi-
trarily amall ¢, there exists a wen,

guch that
.99
xT T,
An>1—-e ~£) n,fm— NI N,
Thus

T=~£)=(¢- E)Z.,_/ Tdﬁx(g)

"

£ 6n
KZ}J, (i—e 7:)4Fk(x)

”t C.\
ZJ/ dF (X.)e'z'

K=y

anp

n o ﬂzgs
2. | (i~e T)RFD
Ky s oo

% /dF Cu——)a

K=I .

From which it yasalts

- xc
f/(z ~e An)ahx) s T,

n<)"°
K=y,

{ *) Recelved Nov. 1, 18560.
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In the sufficiency of Lemma 2,

it is presupposed that f(2z) 1is

an analytic characteristic func-

tion of certain non-negative

random variasble.

(4) It is remarked that the uniform





