NOTES ON WIENER INTEGRALS "

By Gisiro MARUYAMA
(Communicated by T,Kawata)

1. Let C be the space of all continuous functions $x(t), 0 \leq t \leq f$, $\boldsymbol{X}(0)=0 \quad$ N. Wiener introduced into C a probability measure, and recently R.H. Cameron and W.T. Martin have developed its various aspects on point transformations, averages of certain fundtionals, unitary transformations, and orthogonal developments of arbitrary functionals. In this note we shall emphasize the fact that the Wiener measure can be equivalently transformed into a probability measure on a product space. ${ }^{2}$ In the following we shall prove three theorems, of which the first two are known, showing how this measure can be used to simplify considerations based on the function space C. This point or view is really contained in Wiener's expression of the random function, and even more explicitly, in considerations by Cameron and Martin. In the following we use basic concepts and notations by these authors.
2. We will begin by proving a thorem by Cameron and Martin in a slightly generalized form, which proves to be essential for our later use.

Theorem 1. (Cameron and Martin) ${ }^{3 \prime}$ Given an element $\operatorname{Kon}_{0}(f) \in C$ for Which $x^{\prime}(t) \leqslant \alpha^{2}$, We consider a transformation γ :

$$
T(x(t))=X(t)-X_{0}(t), \quad x(t) \leq C
$$

Let $\int_{\text {Fe a measurable subset of }}^{C} \frac{\text { and }}{}$ 3 then
(1) Rheas m $\left(T^{\prime \prime \prime} \Gamma\right)=\exp \left(\cdots \int_{0}^{1} x_{0}^{\prime 2}(t) d t\right)$
$x \int_{\Gamma}^{20} \exp \left(-2 \int_{0}^{1} x_{0}^{\prime}(t) d x(t)\right) d x$,

$x \int_{c}^{w} F(x) \exp \left(-2 \int_{0}^{1} x_{\theta}^{\prime}(t) d x(t)\right) d x x_{0}$.
Proof Obviously (I) can be obtain ed from (2) by a special choice of the functional F. However (2) can be also deduced from (1) by making use of the usual approximation of a summable function by step functions. Hence we shall give here only a proof of (1). In the proof, since any measurable set can be approximated by "quasi-interpals", we have only to prove (I) with a specified Γ :
$i=1.2, \cdots \cdots$, are real numbers.
Consider the functions $\Phi_{i}(u)$ sunn tia:

$$
\begin{aligned}
\Phi_{i}(u) & =1 & & \text { for } \quad a_{i}<u<\hbar_{i} \\
& =0 & & \text { otherwise, }
\end{aligned}
$$

then the characteristic functions $0 f^{\prime}$ the set Γ can be expressed by $\prod_{i=1} \Phi_{i}\left(x\left(t_{i}\right)\right)$. Define a function $f_{i}(t)$

$$
f_{i}(t)=I \text { for } 0<t<t_{i}
$$

$$
=0 \text { otherwise, }
$$

and consider its Fourier series with
respect to the complete orthogonal se* of functions*) $\alpha_{j}(t)=\sqrt{2} \cos (\pi ; \cdots, \pi / \pi$ $0 \leq 1 t \leq 1$,
ord

$$
\begin{aligned}
\bar{X}\left(u_{1}, u_{i} \cdots\right) & \equiv \prod_{i=1}^{n} \Phi_{i}\left(z\left(t_{i}\right)\right) \\
& =\prod_{i=1}^{n} \Phi_{i}\left(\sum_{j=1}^{\infty} \frac{2}{(2 j-1) \pi} \beta_{j}\left(t_{i}\right) u_{j}\right)
\end{aligned}
$$

Let $U_{i}, i=1, z, \cdots$ be real lines, each with measures determined by the common density $\pi^{-1 / 2} e^{-u_{i}^{2}}$, and
 product spaces With measures determined, from those of V_{i}, by the usual multiplicative definition. In computations of averages, it is convenient to consider the functionils
$u_{j},\left(u_{1} u_{2}, \cdots\right),\left(u_{1} \cdots, u_{k}\right)$,
(UAD, Card, at the same time as points on the product spaces just de.. fined. With respect to these spaces the right-hand member of (1) wii be transformed into
(4)

$$
\exp \left(-\sum_{i}^{\infty} \xi_{j}^{2}\right) \int_{V} \Phi\left(u_{1}, u_{3} \cdot\right) \exp \left(-x_{i} \sum_{i} u_{j} \xi_{j}\right) d v^{n}
$$

$$
=\exp \left(-\sum_{k=1}^{\infty} \xi_{j}^{2}\right) \int_{V(k)} d V^{(k)} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \pi T^{-k / 2}
$$

$\times \exp \left(-2 \sum_{k_{i}^{j}=1}^{\infty} u_{j} \xi_{j}-\sum_{i}^{*} u_{j}^{2}\right)$
$\times \Phi\left(u_{1}-\xi_{1}, \quad, u_{R}-\xi_{k}, u_{k=1}, \cdots\right) d_{1} \cdots d w_{i}$

$$
\begin{aligned}
& f_{j}(t) \sim \sum_{j} \frac{z}{(2 i-1)^{n 7}} F_{i} \dot{c}_{s i j} \alpha_{j}(t) \\
& \begin{array}{l}
\text { Where } \beta_{j}(t)=\sqrt{Z} \operatorname{Ain}(2 j-1 / \pi \%, 4, \text { Then, } \\
\text { for almost every }
\end{array} \\
& \text { for almost every } x(t) C E \text {, re have } \\
& \text { (3) }
\end{aligned}
$$

 respect to their measures, and ${ }^{\prime \prime}{ }^{\prime}$ is defined by

$$
\xi_{j}=\int_{0}^{1} x_{j}(t) a x_{d}(t)
$$

Convergence of the series

$$
\left.X_{0}\left(\psi_{k}\right)=\sum_{j=1}^{\infty} \frac{z}{\left(y_{j} \cdots 1\right) \pi} \beta_{j}\left(t_{m}\right)\right\}_{j}
$$

yields

$$
\lim _{k \rightarrow \infty} \Phi\left(u_{1},-\xi_{1}, \cdots, u_{k}-\xi_{k}, u_{k+1}, \cdots\right)
$$

(5)

$$
\begin{aligned}
& =\Phi_{(}\left(u_{1}-\xi_{1}, u_{2}-y_{n}\right) \\
& =\prod_{i=1}^{n} \Psi_{i}^{\prime}\left(x\left(t_{i}\right)-x_{0}\left(t_{i}\right)\right)
\end{aligned}
$$

almost everywhere on U, and easy calculations show that

$$
\begin{aligned}
& \quad \int_{v}\left[\operatorname{sip}\left(-2 \sum_{k+1}^{\infty} u_{j} \xi_{j}\right)-1\right]^{2} d v \\
& (6) \quad=\operatorname{adp}\left(\operatorname{sic}_{k+1}^{\infty} \xi_{j}^{2}\right)+1-2 \operatorname{sip}\left(\sum_{k+1}^{\infty} \xi_{j}^{x}\right) \\
& \quad \rightarrow 0 \text {, an } \rightarrow \infty .
\end{aligned}
$$

Writing (4) in the form
(7) $\exp \left(-\sum_{k+1}^{\infty} \xi_{j}^{*}\right)\left(\int_{V} H_{k} G_{k} d v\right)$
where

$$
\begin{aligned}
& G_{k}=\Phi\left(u_{1}-\xi_{1}, \cdots, u_{k}-\xi_{k}, U_{k+1} \cdots\right) \\
& H_{n}=\operatorname{sxp}\left(-2 \sum_{k+1}^{\infty} v_{i} \xi_{i}\right)
\end{aligned}
$$

and substituting (5) and (6) into (7) we finally obtain

This proves the theorem.
3. We now pass on to proofs of two theorems on orthogonal developments of Wiener functions ls, of which tiv first has been obtained by Cameron and Hatfield. 5)

Thereby. (Cameron and Matifeid)
Let $\boldsymbol{\psi}^{2}, \cdots$ (x (be the Fourier:Hermite function? s constructed from the hermite nolynomials, nad the or tho rona j Syseon $+200(2,-1) \pi t / z$

$$
\begin{aligned}
& \exp \left(-\int_{0}^{1} x_{0}^{\prime 4}(t)-v t\right) \int_{f_{0}}^{\operatorname{axp}\left(-2 \int_{0}^{1} x_{0}^{\prime}(t) d x(t)\right) d x} \\
& =\int_{V} \Phi\left(u_{1}-\xi_{1}, u_{x_{1}}-\xi_{2} \cdots\right) d v \\
& =\int_{T / T}^{w} d X=\text { nueasw }\left(T^{-1} T\right)
\end{aligned}
$$

$\frac{\text { measurable over }}{\text { the }} \subset$ the
where

$$
A_{n=1, \cdots m}=\int_{C}^{w} F(x) \Psi_{m_{1} \cdots w_{N}}(x) d x
$$

proof. Define W_{j} and F as be-
fore, and put

$$
\begin{aligned}
x_{0, N} & =\sum_{j=1}^{N} \beta_{j}(t) \int_{0}^{1} \beta_{j}(t) x_{0}(t) d t \\
A\left(x_{0}, \lambda N\right) & =\sum_{m_{1} \cdots m_{N}=0}^{\infty} A_{m m_{1} \cdots m_{N} \lambda^{m, \alpha+\cdots m_{N}}} \times \Psi_{m_{1} \cdots m_{N}\left(x_{0}\right),}
\end{aligned}
$$

then

$$
\begin{aligned}
\int_{0}^{N} x_{j}(t) d\left(x(t)+L_{0, r}(t)\right) & =u_{j}+x \xi_{j}, 1 \leq j \leq N \\
& =U_{j}^{\prime}, j>N
\end{aligned}
$$

$$
\sum_{(j)}^{N} \xi_{j=1}^{2}=\sum_{j=j}^{N}\left(\int_{0}^{1} \alpha_{j}(t) \chi_{a N}^{\prime}(t) d t\right)^{2}=\int_{0}^{1}\left(x_{a N}(t)\right)^{2} d t
$$

$$
\sum_{j=1}^{N} u_{j} \xi_{j}=\sum_{j=1}^{N}\left(\int_{0}^{1} a_{j}(t) d((t))\left(\frac{z_{j}-1}{2}-\int_{0}^{1} \beta_{j}(t) x_{0,4}(t) d t\right)\right.
$$

$$
=\int_{0}^{1}\left(\frac{d}{d t} \sum_{j=1}^{N} \beta_{j}(t) \int_{0}^{1} \beta_{j}(\theta) Z_{0, N}(\theta) d \theta\right) d x(t)
$$

$$
=\int_{0}^{1} x_{0, N}(t) d x(t)
$$

Hence by a formula by Cameron and Hat-
which, on arraying (9), reduces to
(vo) $C_{A} \int_{c}^{\infty}\left[f\left(x+\lambda x_{0},+1\right)-F(x)\right] \exp \left[-\lambda^{2} \sum_{1}^{N} u_{i}^{*}\left(1-\lambda^{2}\right)\right] d w_{0} x$
Consider now the function $g(t)$:

$$
\begin{gathered}
g(f)=8 \text { for } 4 / \pi / / \pi^{3}>\delta^{2} \\
\\
>0 \text { whose, }
\end{gathered}
$$

there, since

$$
\begin{aligned}
& \text { field 6) and Theorem } 1 \\
& A\left(x_{0}, \lambda_{1} N\right)-F\left(x_{0}\right)=C_{\lambda} \int_{G}^{N+}\left[F(x)-F\left(x_{0}\right)\right] \\
& x \exp \left(\sum_{1}^{N} \frac{z \lambda U j_{j} y_{j} \cdots \lambda^{2}\left(U_{j}^{3}+F_{i}^{2}\right)}{1-\lambda^{2}}\right) d_{n o x} \\
& =c_{\lambda} \int_{c}^{w}\left[F\left(x+\lambda x_{0, N}\right)-F\left(x_{0}\right)\right] \\
& x \operatorname{axp}\left[-\lambda^{2} \int_{0}^{1}\left(x_{0, N}^{\prime}(t)\right)^{2} d t-2 \lambda \int_{0}^{1} x_{0, N}^{\prime}(t) d z(t)\right] \\
& x \operatorname{sod}\left[\sum_{j=1}^{N}\left(2 \lambda u_{j} \xi_{j}+2 \lambda^{2} \xi^{2}-\lambda^{2} u_{j}^{2}-2 \lambda^{3} u_{j} \xi_{j}-\lambda^{4} \xi_{j}^{2}-\lambda^{2} \xi_{j}^{2}\right)\right. \\
& C_{\lambda}=\left(1-\lambda^{2}\right)^{-\lambda / 2} \text {, }
\end{aligned}
$$

$$
\begin{align*}
& f\left(x_{0}\right)=\lim _{N \rightarrow \infty, \lambda-1-0} \sum_{m_{n} \cdots N_{N}=0, \operatorname{maN}_{N} \lambda^{\infty} A_{N+\cdots}+x_{N}} \tag{8}
\end{align*}
$$

$$
\|x\|^{2}=\int_{0}^{1}(x(t))^{2} d t=\frac{4}{\pi^{2}} \sum_{1}^{2} \frac{u_{j}^{2}}{\left(x_{j}-1\right)^{2}}
$$

we have, by means of (10), the in-equa-

The first term in the right-hand side of (11) is not greater than

$$
\operatorname{Max}_{1, x / \delta_{\delta}}\left|F\left(x+\lambda x_{\rho, v}\right)-F\left(x_{0}\right)\right|,
$$

which, by the continuity of $F(x)$, can be made as small as we please, if only we let δ and $1-\lambda$ be small and N large. on the other hand the second integral of (ii) can be written

$$
=\int_{V} f\left(\left(1-\lambda^{2}\right) \sum_{i}^{N} \frac{u_{i}^{2}}{(2 j-1)^{2}}+\sum_{i+1}^{\infty} \frac{u_{j}^{2}}{(2 j-1)^{2}}\right) d V
$$

In the last integral, if we let $\lambda \rightarrow 1-0$, dy converges to the integrand boundon U, and hence the integral also tends to zero. Thus we have completely proved the theorem.

In the above theorem we cuald not see whether our Fourder-Hermite series is summable almost everywhere by the Abel method, even when the functional is bounded, whereas almost everywhere summobility is true for ordinary Fourier series. In this connection tine following theorem may be of interest.

Theorem 3. If $F(x)$ is any bounded measuraus functional defined ores f we have

$$
\lim _{N \rightarrow \infty} \lim _{\lambda \rightarrow 1-0} A\left(x_{0}, \lambda, N\right)=F\left(x_{0}\right)
$$ alagez everywhere in C.

no prove the theorem we require the following lemma.

$$
\begin{aligned}
& \times \operatorname{eap}\left[-\sum_{1}^{p} a_{j}^{2} j_{-\lambda^{2}}^{2}-\sum_{n+1}^{s} u_{j}^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=1}^{\infty} \frac{u_{i}^{2}}{\left.(2,-1,)^{2}\right)} d y_{(k)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { city } \\
& \left|A\left(x_{0}, \lambda, N\right)-F\left(x_{0}\right)\right| \\
& \leq C_{\lambda} \int_{\text {lexnc }}^{w}\left(F\left(x+\lambda x_{0,-x)}\right)-F\left(x_{0}\right) 1\right. \\
& \times \exp \left[-\lambda^{2} \frac{5}{4} u_{i}^{j} /\left(1-\lambda^{2}\right] d_{n z}\right.
\end{aligned}
$$

Lemma, If $G\left(U_{1} \cdots U_{N}\right)$ is a
bounded measurable function of the
variables U_{1}, \cdots, U_{N}, then
$\pi^{-N / / 2} C_{n} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} G\left(u_{1}+\xi_{1}, \cdots u_{N}+\xi_{N}\right)$
$x \exp \left[-\sum_{1}^{N} u_{j}^{2}\left[\left(\frac{1}{1}-\lambda^{2}\right)\right] a^{i} u_{1} \cdots d u_{v}\right.$
$\rightarrow G\left(\xi_{1}, \cdots F_{N}\right)$, as $\lambda \rightarrow 1-0$,
for almost every $f=\left(\xi, \cdots, \xi_{N}\right)$.
Proof. Let αS be the surface element of the spherical surface $\frac{K}{}$, defined by $u_{1}^{2}+\cdots+u_{x}^{2}=1$
C. ((S). ... Ends ${ }^{\text {b }}$ be the coordinates of points on \mathbb{K}, then the coosdinates of points on the surface
$u_{1}^{2}+\cdots+u_{n}^{2}=\gamma^{2}$ are given by
reif)...venfe and except for a con-
stank depending only on N, the vo-
fume element of the N-dimensional
U-space can be put in the form
$\gamma^{N-1} d \delta d \gamma$. The Lebesgue theory gives
(12)

$$
\begin{aligned}
& h^{-v} \int_{0 \leq r \leq h} \int_{E}\left|\Phi_{y}\left(r e_{1}(s), \cdots, r e_{x}(s)\right)\right| \\
& \alpha r^{N-1} \alpha d \alpha \gamma \rightarrow 0 a 0 h+0 .
\end{aligned}
$$

for almost every value of ξ, where

$$
\xi_{\xi}=G\left(u_{1}+\xi_{1}, \cdots, u_{n}+\xi_{N}\right)-G\left(\xi_{1}, \cdots \xi_{n}\right)
$$

In other words, we have

Thus prepared the proof of the
lena is immediate by a standard pro-
cedure of evaluating singular integrals.
Let us put $\pi^{-1 / 2} C_{\lambda} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} G\left(u_{1}+\xi_{1}, \cdots, u_{N}+\xi_{\infty}\right)$ $x \exp \left[-\sum_{1}^{N}\left(u_{i}^{6}\left(-\lambda^{2}\right)\right]-\tilde{U}_{1}\left(\xi_{i} \cdot \xi_{N}\right)\right.$

$$
\left(I(x)=\pi^{-N / 2} C_{\lambda}\left(\int_{B} \int_{0 \leq r \leq\left(1-\lambda^{2}\right)^{1 / 2}}+\int_{T} \int_{\left(1-\lambda_{1}^{2}, \dot{z}^{2} \leq \mu \leq \eta\right.}\right.\right.
$$

$$
\left.+\int_{\pi} \int_{Y<r}\right) \times \Phi_{\xi}\left(r e_{1}(\delta), \cdots\right)
$$

$$
\exp \left[-v^{2} /\left(1-\lambda^{2}\right)\right] r^{N-1} d r d t
$$

$$
=I_{1}(\lambda)+I_{2}(\lambda)+I_{3}(\lambda)
$$

where ℓ is a small positive number. Then by (12) we have immediately

$$
I,(\lambda) \rightarrow 0, \text { at } \lambda \rightarrow 1-0
$$

To evaluate I_{x}, ye observe that

$$
\left[\frac{\gamma^{2}}{\left(1-x^{2}\right)}\right]^{x^{n}+1} \exp \left[-\mu_{1}^{2}\left(6-x^{2}\right)\right] \leq C
$$

C a constant depending only ox N.

$$
\begin{aligned}
& \rho^{-1} \int_{z} J_{\xi}(\rho, \delta) d s \rightarrow 0 \text { ar } \rho \rightarrow 0, \\
& T_{f} \equiv \int\left|\Phi_{\xi}\right| \gamma^{N-1} d \phi^{N} \\
& \text { for almost overs }\} \text {. }
\end{aligned}
$$

Substituting this into the integrand of I_{x}, we get

$$
\begin{aligned}
& \left|I_{2}\right| \leq \pi^{-N / 2} G_{\lambda} \int_{\frac{\pi}{2}} d_{d} \int_{\left(\left(-\lambda^{2}\right)^{2 / 2} \leq \gamma \leq \eta\right.} \gamma^{-(N+1)}\left(1-A^{2}\right)^{(\gamma+1) / 2} \\
& \alpha / \Phi_{F}\left(\gamma e_{1}(\delta), \cdots\right) / r^{N-1} d \gamma^{\prime} \\
& \equiv \pi^{-N / 2}\left(1-\lambda^{2}\right)^{1 / 2} \int_{\pi} d N\left\{T(\eta, N) Y^{-(N+1)}\right. \\
& \left.+(N+1) \int_{\left(i-\lambda^{2}\right)^{1 / 2}}^{\gamma} T(r, s) r^{-(N+2)} d r^{\prime}\right) \\
& =O\left(\left(1-\lambda^{2}\right)^{1 / 2} t^{-1}\right)+0(1), \\
& \lambda \rightarrow 1-0 .
\end{aligned}
$$

Finally it is obvious that $I_{g}(\lambda) \rightarrow 0$ as $\lambda \rightarrow /-0$. Combining these results we get the proof of the lemma.
$\frac{\text { Proof of Theorem } 3_{0}}{\text { re that we can write }}$ First we observe that we can write
$F\left(x+\lambda, x_{O N}\right)$

$$
=G\left(u_{1}+\lambda \xi_{1}, \cdots, u_{N}+\lambda \xi_{N}, u_{8}+1, \cdots\right)
$$

With a suitable function G defined over U. Then, by (10) we get

$$
\begin{aligned}
& A\left(x_{y}, \lambda, N\right)=C_{\lambda} \int_{c}^{\omega} F\left(\lambda+\lambda x_{0, N}\right) \\
& \text { emp }\left[-\lambda^{2} \sum_{i}^{N} u_{i}^{2}\left(\theta-\lambda^{2}\right)\right] d_{m} \lambda \\
& =\pi^{-N / 2} C_{\lambda} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} G\left(u_{1}+\lambda \xi_{1}, \cdots, u_{N}+\lambda \xi_{N}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\pi^{-N / 2} C_{2} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} G_{N}\left(u_{1}+\xi_{N}, \cdots u_{N}+\xi_{N}\right) \\
& \operatorname{sedp}\left[-\sum_{1}^{N} u_{i}^{2} /\left(1-\lambda^{2}\right)\right] d u_{1} \cdots d u_{N} \\
& +0(1), \quad \lambda \rightarrow 1 \rightarrow 0
\end{aligned}
$$

where

$$
G_{1}\left(u_{1}, \cdots, u_{N}\right)=\int_{V(N)} G_{V}\left(u_{1}, u_{2}, \cdot d V^{(N)}\right.
$$

Hence by the lemma

$$
\lim _{\lambda \rightarrow 1-0} A\left(\lambda_{0}, \lambda, N\right)=G\left(\xi_{1}, \cdots \xi_{N}\right)
$$

for almost every $\xi=\left(\xi_{11} \xi_{2}, \cdots\right)$
finally on applying Jessen's theorem we obtain

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \lim _{N \rightarrow 1-0} A\left(x_{0}, A, N\right) & =\lim _{N \rightarrow \infty} G\left(\xi, \cdots \xi_{N^{\prime}}\right. \\
& =G\left(\xi_{1}, \xi_{2}, \cdots\right) \\
& =F\left(x_{0}\right)
\end{aligned}
$$

for almost every x_{0}. This proves Theorem 3.
(*) Received May 11, 1950.
(1) Read before the meeting of the Kyusyu Section of the Mathematical Society of Japan, Februarr 4, 1950.
(2) This point has been stressed also by G.Sunouchi, The Monthly of Real Analysis, Vol.3, No.8, 1950 (Japanese).
(3) R.H. Cameron and W.T. Martin: Transformations of Wiener integrals under translations, Annals of Math., Vol.45, 1944. The same form of generalization has been obtained by G.Sunouchi, op.cit.
(4) Cameron and Hatfield: On the summability of certain orthogonal developments of nonlinear fundtionals, Bull. Amer. Matin. Soc., Vol.55, No .2, 1949.
(5) Cameron and Hatfielu* op.cit.
(6) Cameron and Hatfield: op.cit.

Kyusyu University.

