ON ROBIN'S CONSTANT AED A DISTORTION THEOREM.

By Yiisaku KOMATU.

E. Let /3 be any domain-whose
Green function be denoted by G(z,3%) .
The Robin constant 7(%) of B with
respect to the pole ¢ is defined by
the relation

(1.1) G O+ Telz-ol= 700 + Tz, 8),

the residual term satisfying the limit
equation

T(z,5)=0(z~21) as z-5.

If the pole coincides with the point at
infinity, then (z ~ ¢{ has only to be
replaced by iz(~* . Although, in the
following lines, we shall suppose, for
the sake of brevity, that ¢ is a fi-
nite point, the argument will easily be
modified for the case & = oo

Now, making use of Hadamard's varia-
tional method, Bergman®has recently
shown that the residual term in (1.1)
satisfies the inequality

(1.2) Tz, O+ 1(g,2) 20,

which, by the symmetry property of
Green function, can also be expressed
in the form

(1.3) 2069 +1glz=5) 2 Trz)+ 7(3)

Moreover, he has also noticed that, in
the special case of a simply-connected
domain /3 , this result contains, as
an immediate consequence, & classical
distortion theorem due to Ldwner stat-
ing that
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is valid for any function f(w) sch-
licht in Iwi> ¢ and normalized at
the point at infinity such as

(1.5) FO=w+) ¢, (wist),
V=0

2. Now, if we restrict ourselves to
simply-connected domains, the inequali-
ty (1.3) of question can conversely be
deduced from Lowner'!s distortion formula
(1.4) also by an elementary procedure,
and moreover the extremal domeins for
the estimation (1.3) can be explicitly
be determined. In the present Note,
these facts will be established.

let 2= 9&) be a function mapping
wi>1 onto /3 . Iet w be any
point with {<lwl < oo , and suppose
temporarily !¢ ¢! %= { . Then

@.1) ormgin =1 @ 9CIG)-1
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is a function schlicht in Iw( > |
normalized at w = oo such that
Plo0) == oo and H (o)=L , and
whose derivative is given by the ex-
pression
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Bor)= gale=y ¢ (-
(=) (g (22=by - )

W

(wi>1),

If we now put
ow= 1
W=

~w, @-gQ,

then (W( >1 | |@2[> 1 and the
above expression becomes

@2 &(F) = g g i)

SW)- 90,

Applylng here the Lowner'!s distortion
theorem, we get

24 L QW-1I°
(2'3) 1@/ g {S PPN N
W Jz) = 1»-]}%_‘1( (21w 1)

Hence, from (2.2), we obtain

Vs 1QW— 11" | o)~ 9()
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(2.4) 191R)¢ (W) _(‘JZFI)(IW{L‘[)) P

Remembering the continuity character,
we see that the last inequality holds
good fo®.any 2 and W' with moduli
larger than unity without the restric-
tien 19°(R)) =+ { . We call here, by
the way, attention to the fact that if
is a domain contsining the point at
infinity and possessing the reduced
modulus equal to unity and if the map-
ping fuhction is normalized such as
$(0) = o= and §'(es)= 1. , them
the Lowner!s distortion formula
19/ £ 1WI/(JW1*-1) is reproduced from
(2.4) as'a limiting case .2 — oo .

Denoting now by w = ¥ (z) the in-
verse function of % = ¢(w) , the
Green function of /3 is given by

2
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@.5) Go)=l V)~ (g) |-

Hence, ths Robin constant is, by defi-
nition (1.1), expressed in the form

=l : 1, o=
(2:8) 75)=lim(ats 1)+ fp1a-30) = [g MBL .
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On the other hand, we get from (2.4)
an equivalent inequality

2
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Combining these relations, we conclude
the inequality

(ver= D(wE=1)
7(g) = [ VYT NIV T
Tar16)=lg W V]

V() ¥m-1

< 2 N »
=ISGZ'QI ‘W"WQ )~2(q'(2]§)+1g(z ;f)}
yielding the desired result (1.3).

3. We shall next investigate the
extremal domains for the est tion
(1.3). This has been derived from the
inequality (2.7), which is quite tri-
vial for z = ¢ . Suppose now that

zF G e

The extremal functions for Lowner's
distortion theorem (1.5) are those
which map (w| > | onto circular slit
domains about the origin. More preci-
sely, the only fumetions for which the
equality sien in (1.5) heolds at a given
point w, (1<.|<o) are rational func-
tions of the form

Be2) f0) = f oy 4 T2 0= )

wow— |
its image domain being the whaole plane
cut along a circular arc about the
point £ (w;) with radius v, .
Hence, the extremal funetions for (2.3)
are given by

3.2 =@ Wo W (W )
(3.2) @ @) qfo(wa)wtqew_x ,

for which we have, in fact,

(3.3) Oy~ —I
Ve =

Therefore, the relation (2.1) shows

that the extremal functions for (2.4)
must be of the form

(5.4) ¢ (w)=129pB@) . Dw-1

p~a@w)’  Ww-27
4 and [ being constants given bty
L lg@i=1 _
(3-5) a(z(f—;-(—'a’)l&;‘;__l ) p= 2(0)
(®=48),

and the point corresponding to w=w,
is just

widd — L
(3.8) W= W, = o]

The function & (W) 4in (3.4) maps
{w ! =~ 1 also onto a circular slit
domain,

We shall now show that, for any
given w, (1< iw,|<o0) and L2 ( (] > 1)
the function ¢, (w) of (3.4), with
arbitrary constants « and p , is

the one for which the equality sign in
§2.4; is really attained at the point

Since the point (3.6) corresponds to
w = W, and the relation 3.3; holds
at this point, we get, from (3.4),
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At the point W —=.() corresponding to
w=— 0o , we obtain
1 —
L~ 1P
On the other hand, we have successively
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Substitut these values in each
side of (2.4), we see that the equality
sign is realized for ¢ (W) at w=-w, .

The inequality (1.3) is equivalent
to the relation (2.7) which is itself
equivalent to the distortion inequality
(2.4 : Hence, we obtain the following
results

In our estimation (1.3), the equality
sign holds for z+3% —— the excluded
ease z — ¢ is trivial — if and only
if /2 is a circular slit domain which
1s obtained as the image of |Wi>1 by
a function of the form

7= [},‘,(W)E L—D(EQ(W)'

— o)’
w= QwW- ¢ P)
e o) C1821> 1),

S = D (w) + Few (w—w)

ww — 1

Moreover, for amy given point { € /3
wé have ¢ =9{,(J2.)==£1 and hence the
equality sign is realized only for the
point z, € SO given y

=9 (W)= L4 &)

0 —<d )
1488
[ d)o ‘w,)

4. The inequality (1.3) of the
question is also written in the form

(4.2) 2(66,0* lgla-5)- (F)+76) 2 0.

We notice here that the expression
standing in the left hand side of this



inequality remains invariant under any
linear transformations

az*e b 2z
(4.2) =L 6= ToF 4

s~l+

(ad - &c % 0),

In fact, denoting the quantities
vwhich rerer to z* -plane by asterisking
the corresponding quantities which re-
fer to 2z ~plane, we have successively

_ az*+ 4
V)= veo= v (),
“ = ® 0(_1 ad—4c {c
v * ¥ (l) 2 ’\k*(z) C}* 0
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These relations yield indeed the inva-
iiance of the referring expression that
s
2 (670 ¢+ L 231 = (7 )+ 17 (87)

<2 (6 )+ Igle-e) = (¥ + 7).
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