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I. The following theorem of Zygmund
on lacunary trigonometric series is
well known,')
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We shall prove that a theorem of

same type is valid, even if the inte-
gral character of the numbers 1s

not assumed.
Theorem 1. If Awn/Ag2AD1L
this is not on essential
restriction, so for our convention we
suppose this in the following
theorems), and if the series glck]
converges, then

= P4
2) g c, e*

=1
a () ere_convergel
ction (X) belo to eve!

(=20, [K means the

o0 )
c;ngs of gunctiong whose Y _th power
g absolute values are integrable with

c o a monotone function (x

o= F “;;’" &t ana

N VT
{J ool aLc*m} < Ar)»{%;—; | Chl }
~%

nolds, vhere _A. epends o] I
L and AP,

Theorsm 2, Ihnder the conditions of
Theorem 1,

P /2 ©0 Uit
4) 81;; {é‘ lCh)z} < {_ilf(n!t(@m}’:}‘

7/
where B, 1is a positive constant
Vhich depends only on Y and A .

Theorem 3, der the conditions of
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We shall prove more stronmg results
than Theorem 1, that is;
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Proof of Theorem 1., The almost
everywhere convergence are already pro-

ved by M.Kac,® and so we shall prove
the inequality (3)
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From Theorem 1, (12) and (13), we
completes the proof of Theorem 4.
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