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I. The following theorem of Σty-gmund
on lacunary trigonometric series is
well known .
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Ve shall prove that a theorem of
same type is valid, even if the inte-
gral character of the numbers is
not assumed.
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2. Proof of Theorem 1. The almost
everywhere convergence are already pro-
ved by M Kac,** and so we shall prove
the inequality (3).
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where PΊλ, is constant which depends
only on Λ, Ve have

Using the well known maximal theorem
of Hardy and Littlewood
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The proof of Theorem 5 can be done
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of Theorem 4 by using Theorem 3.
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which proves the lemma.

Ve shall now prove the theorem. From
the above lemma, using Stirling formula,
we have
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