By Masatomo UDAGAWA
(Communicated by T. Kawata)
I. The following theorem of zygmund on lacunary trig onometric series is well known.)
A. If $n_{\mu+1} / n_{\mu}>\lambda>1 \quad, n_{k}^{\prime} \Delta$ $\frac{\text { being }}{\text { integers }}$, and the series ${ }^{\prime} \sum_{k}\left(a_{k}^{2}+b_{k}^{2}\right)$ converges, then
(1) $\sum_{k=1}^{\infty}\left(a_{k} \cos n_{k} x+b_{k} \sin n_{k} x\right)$
is the Fourier series of a function
$f(x)$ belonging to the class L^{γ},
r being any positive number and

$$
\left\{\frac{1}{\pi} \int_{0}^{2 \pi}|f(x)|^{r} d x\right\}^{i / r} \leqq A_{r, \lambda}\left\{\sum_{k=1}^{\infty}\left(a_{k}^{2}+b_{k}^{2}\right)\right\}^{1 / 2}
$$

where Arp depends only on r and - λ

Be Under the conditions of A, we have

$$
B_{r, \lambda}\left\{\sum_{k=1}^{\infty}\left(a_{k}^{2}+b_{k}^{2}\right)\right\}^{1 / 2} \leq\left\{\frac{1}{\pi} \int_{0}^{2 \pi}|f(x)| d x\right\}^{1 / r}
$$

where $B_{\gamma \lambda}$ is positive and depends only on r, and λ.

We shall prove that a theorem of same type is valid, even if the integral character of the numbers is not assumed.

Theorem 1_{0} If $\lambda_{19+1} / \lambda_{4} \geq \lambda>1$, $\frac{\lambda_{4}}{} \frac{1}{\text { restriction, so for our convention we }}$ suppose this in the following all theorems), and if the series $\sum_{k=1}^{2}\left|C_{k}\right|^{2}$ converges, then
(2) $\quad \sum_{k=1}^{\infty} c_{k} e^{i \lambda_{k} x}$
is almost eyerywhere convergent to a function $f(x)$ belonging to every class of functions Hhose $\frac{L^{r, s}}{\gamma}$ theans the in ebsolute values are integrable rith Iespect to a monotone function $\sigma^{\sim}(x)$,
$\sigma(x)=\frac{1}{\pi} \int_{-\infty}^{x-\cos t} \frac{t^{2}}{f}$, and
(3)

$$
\left\{\int_{-\infty}^{\infty}|f(x)|^{r} \alpha \sigma(x)\right\}^{1 / r} \leqq A_{r, \lambda}^{\prime}\left\{\sum_{k=1}^{\infty}\left|c_{k}\right|^{2}\right\}^{1 / 2}
$$

holds. Where $A_{\text {nid }}^{\prime}$ depends only on
r^{2} and λ^{45}
Theorem 2. Inder the conditions of Theorem 1 .
(4)

$$
B_{r, \lambda}^{\prime}\left\{\sum_{k=1}^{\infty}\left|c_{h}\right|^{2}\right\}^{1 / 2} \leqq\left\{\int_{-\infty}^{\infty} \mid f(x)^{r} \alpha \sigma(x)\right\}_{r \geqslant 1}^{1 / r}
$$

Where $B_{r, \lambda}^{\prime}$ is a positive constant Fhich depends only on r and λ.

Theorem 3. Under the conditions of Theorem 1, the series (2) converges in the mean with exponent r over every finite interval to $f(x)$.

We shall prove more strong results than Theorem 1, that is;

Theorem 4 . If the conditions of Theorem I are satisfied, and

$$
S^{*}(x)=\sup _{n}\left|S_{n}(x)\right|
$$

Where

$$
S_{n}(x)=\sum_{k=1}^{n} C_{k} e^{i \lambda_{k} x}
$$

then
where $D_{r, \lambda}$ depends only on r and $r \gg$
λ.
Theorem 5. Under the conditions of Theorem 4, Fe have

$$
\int_{a}^{b}\left|S^{*}(x)\right|^{r} d x \leq D \int_{a}^{b}|f(x)|^{r} d x, \gamma>L
$$

where D depends on r, a, a and b -

Theorem 6. There exists a constani
$\mu(>0) \quad$ Which depends only $\sum\left|c_{k}\right|^{2} f f(x) \mid$ and λ such that the function $e^{\mu b(x)}$ belonging to the class $\left[\begin{array}{l}1, \infty, \infty) \text {. } \\ \text {. }\end{array}\right.$

Romark. All the above theorems still hold even if we take $\sigma_{n}^{(x)}$ $(0<h \leqq 1)$ for $\sigma(x)$, where

$$
\sigma_{h}(x)=\frac{1}{\pi} \int_{-\infty}^{x} \frac{\sin ^{2} h t}{h t^{2}} d t
$$

2. Proof of Theorem $l_{\text {e }}$ The almost everywhere convergence are already proved by M.Kac, ${ }^{2)}$ and so we shall prove the inequality (3).

By Holder's inequality, if $\gamma<\gamma^{\prime}$, we have
$\left\{\int_{-\infty}^{\infty}|f(x)|^{r} d \sigma(x)\right\}^{1 / r^{r}} \leqq\left\{\int_{-\infty}^{\infty}|f(x)|^{r^{\prime}} d \sigma(x)\right\}^{1 / r^{\prime}}$.
and hence it is sufficient to consider
$r=2 m, m=1,2, . \quad$.
Moreover it is well known that if we prove the inequality
(3)

$$
\begin{gathered}
\left\{\int_{-\infty}^{\infty}\left|\sum_{k=1}^{n} c_{k} e^{i \lambda_{k} x}\right|^{2 m} d \sigma(x)\right\}^{1 / 2 m} \\
\leqq A_{2 m, \lambda}^{\prime}\left\{\sum_{k=1}^{n}\left|c_{k}\right|^{2}\right\}^{1 / 2}
\end{gathered}
$$

then the inequality (3) will be valid. Hence we shall prove the inequality (3'). Suppose first $\lambda_{k+i} / \lambda_{k} \geqq \lambda>4 m$.

Then

$$
\left(\sum_{k} C_{k} e^{i \mu_{k} x}\right)^{m}=\sum d_{\nu} e^{i \mu_{v} x}
$$

where μ_{ν} is the number of the form

$$
\begin{aligned}
& \alpha_{1} \lambda_{k_{1}}+\alpha_{2} \lambda_{h_{2}}+\cdots, \text { with } \\
& \lambda_{h_{1}}>\lambda_{k_{2}}>\cdots, \alpha_{1} \geq 0 \\
& \quad \alpha_{1}+\alpha_{2}+\cdots=m .
\end{aligned}
$$

had under our assumptions every can be represented uniquely in the form (6). For otherwise we should have an equation

$$
\beta_{1} k_{1}+\beta_{2} k_{2}+\cdots=0
$$

where

$$
\begin{gathered}
\beta_{1}>0, \quad 0 \leqq\left|\beta_{i}\right| \leqq m(i=\lambda, 3, \quad, \text { and } \infty \sigma \\
\lambda_{k_{1}}>\lambda_{k_{2}}> \\
\lambda_{k_{t}} \leqq m\left(\lambda_{k_{2}}+\lambda_{k_{3}+}\right)
\end{gathered}
$$

Thus

$$
1 \leqq m\left(\lambda^{-1}+\lambda^{-2}+\cdots\right) \leqq \frac{m}{\lambda-1}
$$

This is impossible if $\lambda>m+1$. Moreover

$$
\left|\mu_{\nu}-\mu_{\nu}\right| \geq 1 \text { for } \nu \neq \nu^{\prime}
$$

Because if

$$
\left|\mu_{\nu}-\mu_{\nu^{\prime}}\right|<1
$$

then we should have an inequality

$$
\left(\beta_{1} \lambda_{k_{1}}+\beta_{2} \lambda_{k_{2}}+\cdots\right)<L
$$

where

$$
\beta_{1}>0,0 \leqq\left|\beta_{i}\right| \leqq m, \lambda_{k_{t}}>\lambda_{k_{2}}>\cdots,
$$

and so

$$
\lambda_{k_{1}}<1+m\left(\lambda_{k_{2}}+\lambda_{k_{3}}+\cdots\right) .
$$

Thus

$$
1<\frac{1}{\lambda_{k_{1}}}+\frac{m}{\lambda-1}
$$

This is impossible if $\lambda \geqq 3 \mathrm{~m}$
 $\geq 3 m,\left\{e^{(\mu, x}\right\}$ are an orthonormal system in $(-\infty, \infty)$ with respect to $\sigma(x)$. Thus by Parseval's theorem,

$$
\int_{-\infty}^{\infty}\left|\sum c_{k} e^{i \lambda_{x} x}\right|^{2 m} d \sim(x)=\sum|d|^{2}
$$

where d_{ν} is of the form

$$
\begin{aligned}
\alpha_{\nu} & =\frac{m!}{\alpha_{1}!\alpha_{2}!\cdots} c_{R_{1}}^{\alpha_{1}} c_{R_{2}}^{\alpha_{2}} \cdots \\
\left|\alpha_{\nu}\right|^{2} & =\left(\frac{m!}{\alpha_{1}!\alpha_{2}!\cdots \cdot}\right)^{2}\left|c_{R_{1}}\right|^{2 \alpha_{1}}\left|c_{R_{2}}\right|^{2 \alpha_{1}} \cdots \\
& \leqq m!\frac{m!}{\alpha_{1}!\alpha_{2}!\cdots}\left|c_{R_{1}}\right|^{2 \alpha_{1}}\left|c_{R_{2}}\right|^{2 \alpha_{2}} \ldots
\end{aligned}
$$

Hence

$$
\sum\left|d_{y}\right|^{2} \leqq m!\left(\sum\left|C_{R}\right|^{2}\right)^{m}
$$

Thus we have

$$
\int_{-\infty}^{\infty}\left|\sum C_{R} e^{ \pm \lambda_{k} x}\right|^{2 m} d\left(\sigma_{i}\right) \leqq m!\left(\sum\left|C_{R}\right|^{2}\right)^{m}
$$

that is

$$
\left\{\int_{-\infty}^{\infty}\left|\sum c_{n} e^{i \lambda_{k} x}\right|^{2 m} d \sigma_{(x)}\right\}^{1 / 2 m} \leq(m!)^{1 / 2 m}\left(\sum\left|c_{R}\right|^{2}\right)^{1 / 2}
$$

To prove (3) for general $\lambda>1$ we break up (2) into a finite number 's of series, which the gap λ greater than $3 m$.

Then for each series, we have

$$
\text { (7) } \begin{array}{r}
\left\{\int_{-\infty}^{\infty} \mid \sum_{j} C_{s j+l} e^{i \lambda_{s j+l} x_{j}{ }^{2 m}} d r(x)\right\}^{1 / 2 m} \leqq(m!)^{1 / 2 m}\left(\sum_{l} \mid C_{s j+l}\right)^{1 / 2} \\
(l=1,2, \cdots, s)
\end{array}
$$

Thus by Minkowski's inequality
(8)

$$
\begin{aligned}
& \left\{\int_{-\infty}^{\infty}\left|\sum_{n} C_{k} e^{i \lambda \pi}\right|^{2 m} d \sigma(x)\right\}^{1 / 2 \pi} \\
& \leqq \sum_{l=1}^{3}\left\{\int_{-\infty}^{\infty}\left|\sum_{\delta} C_{3_{j}+l} e^{i \lambda_{2 j}+l x_{j}^{2 m}}\right|^{2 \pi(x)}\right\}^{1 / 2 m} \\
& \leqq S(m!)^{1 / 2 m}\left(\sum_{k}\left|C_{k}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

Thus this completes the proof.
Proof of Theorem 2. Let

$$
f=\sum_{k=i}^{\infty} c_{k} e^{i \lambda_{k} x}
$$

Since

$$
|f|^{2}=|f|^{2 / 3}|f|^{4 / 3}
$$

we have, by Holder's inequality

$$
\left\{\int_{-\infty}^{\infty}|f|^{2} d \sigma(x)\right\}^{1 / 2} \leqq\left\{\int_{-\infty}^{\infty}|f| d \sigma(x)\right\}^{1 / 3}\left\{\int_{-\infty}^{\infty}|f|^{4} d \sigma(x)\right\}^{\frac{1}{4} \cdot \frac{2}{3}}
$$

Thus

- 18 -

$$
\begin{aligned}
& \int_{-\infty}^{\infty}|f| d \sigma(x) \geqq\left\{\int_{-\infty}^{\infty}|f|^{2} d \sigma(x)\right\}^{3 / 2} /\left\{\int_{-\infty}^{\infty}|f|^{4} d \sigma(x\}^{1 / 2}\right. \\
& \geqq\left\{\sum_{k=1}^{\infty}\left|C_{k}\right|^{2}\right\}^{3 / 2} / A_{\lambda}\left\{\sum\left|C_{k}\right|^{2}\right\} \\
& \geqq B_{\lambda}\left\{\sum_{k=1}^{\infty}\left|C_{N}\right|^{2}\right\}^{1 / 2}
\end{aligned}
$$

That is

$$
\int_{-\infty}^{\infty}|f| d \sigma(x) \geqq B_{\lambda}\left\{\sum_{R=1}^{\infty}\left|C_{N}\right|^{2}\right\}^{1 / 2}
$$

Thus by Holder's inequality

$$
\left\{\int_{-\infty}^{\infty}|f|^{r} d \sigma^{2}(x)\right\}^{1 / r} \geq B_{\lambda}\left\{\sum_{k=1}^{\infty}\left|C_{R}\right|^{2 / 2}\right\}^{1 / 2}
$$

Proof of Theorem 3. By Theorem 1

$$
\int_{n c e}^{\infty}\left|\sum_{n=m} C_{k} e^{i \lambda_{k} x}\right| \frac{r \sin x}{\pi x^{2}} d x \leqq C_{r, \lambda}\left\{\sum_{m}^{n}\left|C_{k}\right|^{2}\right\}^{r / 2}
$$

(9)

$$
\begin{aligned}
\int_{-\pi / 2}^{\pi / 2}\left|\sum_{m}^{n} i_{k} e^{i \lambda_{k} x}\right|^{r} d x & \leqq \frac{1}{4 \pi^{2}} \int\left|\sum_{-\infty}^{\infty} C_{k} e^{i \lambda_{k} x^{2}}\right| \frac{\sin ^{2} x}{\pi x^{2}} d x \\
& \leqq C_{r \lambda}\left\{\sum_{k_{=\infty}}^{n}\left|C_{k}\right|^{2 / 2}\right\}^{T / 2}
\end{aligned}
$$

we have, more generally
(10) $\left.\int_{-x / 2+y^{x / 2}}^{x / 2 y_{n}} \sum_{h} e^{i \lambda / h^{x}}\right|^{z} d x \leqq C_{r, \lambda}\left\{\sum_{k=m}^{n}\left|C_{k}\right|^{2}\right\}^{\gamma / 2}$

$$
\begin{aligned}
\left.\int_{-y_{2}+y}^{\pi / 2+y+m} \sum_{n}^{n} C_{k} e^{i \lambda_{k} x}\right|^{r} d x & =\int_{-\pi / 2}^{\pi / 2}\left|\sum_{k=m}^{n} C_{k} e^{i \lambda_{k} y} \cdot e^{i \lambda_{k} x}\right| r^{r} d x \\
& \leqq C_{r, \lambda}\left\{\sum_{k=m}^{n}\left|C_{k}\right|^{2}\right\}^{1 / 2}
\end{aligned}
$$

Thus by (9), we get

$$
\int_{a}^{b}\left|\sum_{m}^{\pi} C_{k} e^{i \lambda_{k} x}\right|_{\infty, \infty}^{r} d x \leqq \frac{b-a}{\pi} \cdot C_{i, \lambda}\left\{\sum_{m}^{m}\left|C_{k}\right|^{2}\right\}^{1 / 2}
$$

Thus, if $\sum_{k=1}^{\infty}\left|C_{k}\right|^{2}<\infty$, then the series (2) converges to $f^{\prime}(x)$ in the mean with exponent r over every finite interval.

We shall state a lemma for the proof of Theorem 4.

Lemma There exist constant C_{1}
which is independent of fe and h such that

$$
\left|\int_{x_{0}}^{x_{0}+h} e^{i \lambda_{k} x} d \sigma(x)\right| \leqq \frac{1}{\lambda_{k}} C_{1}\left\{\frac{\sin ^{2} x_{0}}{x_{0}^{2}}+\frac{\sin ^{2}\left(x_{0}+h\right)}{\left(x_{0}+h\right)^{2}}\right\}
$$

This is proved easily by the second mean value theorem.

We shall prove Theorem 4. From

$$
\int_{-\infty}^{\infty} \mid f(x)-\sum_{k^{*}=1}^{m} C_{k} e^{\left.i \lambda_{k} x\right|^{2}} d \sigma(x) \longrightarrow 0(\text { as } n \rightarrow \infty)
$$

we have

$$
\int_{x_{0}}^{x_{0}+h} f(x) d \sigma(x)=\sum_{k=1}^{\infty} C_{k} \int_{x_{t}}^{x_{0}+h} e^{i \lambda k} d \sigma(x)
$$

Using this fact and lemma, we have

$$
\begin{aligned}
& \left|\int_{x_{0}}^{x_{0}+n_{n}} f(x) d \sigma(x)-\sum_{i}^{r} C_{k} \int_{x_{0}}^{x_{0}+h} e^{i \lambda_{k} x} d \sigma(x)\right| \\
& \leqq\left[\sum_{k=r+1}^{\infty}\left|C_{k}\right|^{2}\right]^{1 / 2}\left[\sum_{r+1}^{\infty} \frac{1}{x_{j}^{2}}\right]^{1 / 2} C\left\{\frac{a m^{2} x_{n}}{x_{0}^{2}}+\frac{\sin ^{2}\left(x_{0}+h\right)}{\left(x_{0}+h^{2}\right.}\right\}
\end{aligned}
$$

(1)

$$
\begin{aligned}
& \mid \sum_{k=1}^{r} C_{k} \int_{x_{0}}^{x_{0}+h}\left[e^{i \lambda_{k} x}-e^{i \lambda_{h} x_{0}}\right] d \sigma(x) \\
& \quad \leqq M|h|\left(\sum_{i}^{r}\left|C_{k}\right| \lambda_{k}\right)\left|\sigma\left(x_{0}+h\right)-\sigma\left(x_{0}\right)\right|
\end{aligned}
$$

Thus by (10) and (11)

$$
\begin{aligned}
& \left|\frac{1}{\left[\sigma\left(x_{0}+h\right)-\sigma\left(x_{0}\right)\right]} \int_{x_{0}}^{x_{0}+h} f(x) d \sigma(x)-\sum_{k=1}^{r} C_{k} e^{i \lambda_{k} x_{0}}\right| \\
& \left.\leqq \left\lvert\, \frac{1}{\sigma\left(x_{0}+h\right)-\sigma\left(x_{0}\right)} \int_{x_{0}}^{x_{0}+h} f(x) d \sigma(x)-\frac{1}{\sigma\left(x_{0}+h\right\}-\sigma\left(x_{0}\right)}\right.\right)_{1}^{r} C_{k} \int_{x_{0}}^{x_{0}+h} e^{i x_{k} \epsilon_{\sigma}(\sigma x t) \mid} \\
& +\left|\frac{1}{\sigma\left(x_{0}+h\right)-\sigma\left(x_{0}\right)} \sum_{k=1}^{r} c_{k} \int_{x_{0}}^{x_{0}+/ k}\left(e^{i \lambda_{k} x}-e^{i \lambda_{k} y_{0}}\right) d \sigma(x)\right| \\
& \leqq \frac{1}{\mid \sigma\left(x_{0}+h\right)-\sigma\left(x_{0}\right)}\left[\sum_{p+1}^{\infty}\left|C_{k}\right|^{2}\right]^{\frac{1}{2}} \frac{1}{\lambda_{y}} C_{1}^{4}\left\{\frac{\left.\sin ^{2} x_{0} x_{0} \frac{\cos ^{2}\left(x_{0}+h\right)}{x_{0}^{2}+\left(x_{0}+h\right)^{2}}\right\}}{\}}\right. \\
& +M|h|\left(\sum_{k=1}^{r}\left|C_{k}\right| \lambda_{k}\right) \\
& \leqq M_{1}\left(\sum_{k=r=1}^{\infty}\left|C_{k}\right|^{2}\right)^{1 / 2} \frac{1}{h \lambda_{r}}+M|n|\left(\sum_{k=1}^{\gamma}\left|C_{k}\right| \lambda_{k}\right)
\end{aligned}
$$

Where M_{1} and M_{2} are independent of x_{0}, h and r^{\prime}. Hence we have

$$
\begin{aligned}
& \left|\sum_{k=1}^{r} C_{k} e^{i \lambda_{k} x_{0}}\right| \\
& \quad \leqq\left|\frac{1}{\sigma\left(x_{0}+h\right)-\sigma\left(x_{0}\right)} \int_{x_{0}}^{x_{0}+h} f(x) d \sigma(x)\right| \\
& \quad+M r\left(\sum_{r+1}^{\infty}\left|C_{k}\right|^{2}\right)^{1 / x} \frac{1}{h \lambda_{r}}+M|h|\left(\sum_{k=1}^{r}\left|l_{k}\right| \lambda_{k}\right)
\end{aligned}
$$

From this inequality, if we take $r=r\left(x_{0}\right)$ such that

$$
S^{*}\left(x_{0}\right)=\sup _{n}\left|S_{n}\left(x_{0}\right)\right|=\left|\sum_{1}^{r\left(x_{0}\right)} C_{k} e^{i \lambda_{k} x}\right|
$$

then

$$
\begin{aligned}
& S^{*}\left(x_{0}\right) \leqq\left|\frac{1}{\sigma\left(x_{0}+h\right)-\sigma\left(x_{0}\right)} \int_{x_{0}}^{x_{0}+h} f(x) d \sigma(x)\right| \\
& +M_{1}\left(\sum_{k=\pi\left(x_{0}\right)+1}^{\infty}\left|C_{k}\right|^{2}\right)^{1 / 2} \frac{1}{h \lambda_{r\left(x_{0}\right)}}+M|h|\left(\sum_{k=1}^{r\left(x_{0}\right)}\left|C_{k}\right| \lambda_{k}\right)
\end{aligned}
$$

Now, let $h=\lambda_{y\left(x_{0}\right)}^{-1}$, then we have

$$
\begin{aligned}
& \left.S^{*}\left(x_{0}\right)=\left\lvert\, \frac{1}{\sigma\left(x_{0}+\lambda_{r}^{-t}\left(x_{0}\right)-\sigma\left(x_{0}\right)\right.} \int_{x_{0}}^{x_{0}+\lambda_{r}^{-t}\left(x_{0}\right)} f(x) d \sigma_{0}\right.\right) \mid \\
& +M_{1}\left(\sum_{i}^{\infty}\left|C_{k}\right|^{2}\right)^{1 / 2}+M \frac{1}{\lambda_{r}}\left(\sum_{k=1}^{y_{H}}\left|C_{k}\right| \lambda_{k}\right)
\end{aligned}
$$

Now since

$$
\begin{aligned}
& \frac{1}{\lambda r}\left(\sum_{k=1}^{Y}\left|C_{k}\right| \lambda_{k}\right) \leqq \frac{1}{\lambda^{r}} \sum_{k=1}^{r}\left|C_{k}\right| \lambda^{k} \\
& \leqq \frac{1}{\lambda^{r}}\left(\sum_{k=1}^{r}\left|C_{k}\right|^{2}\right)^{1 / 2}\left(\sum_{k=1}^{r} \lambda^{2 k}\right)^{1 / 2} \\
& \leq M M_{\lambda}\left(\sum_{k=1}^{\infty}\left|C_{k}\right|^{r}\right)^{1 / 2}
\end{aligned}
$$

where $M \lambda$ is constant which depends
only on λ. We have
(i2) $S^{*}\left(x_{0}\right) \leqq\left|\frac{1}{\sigma\left(x_{0}+\lambda_{r\left(x_{0}\right)}^{-}\right)-\sigma\left(x_{0}\right)} \int_{x_{0}}^{x_{0}+\lambda_{r}^{-}\left(x_{0}\right)} f(x) d \sigma(x)\right|$

$$
+M_{\lambda}\left(\sum_{k=1}^{\infty}\left|C_{k}\right|^{2}\right)^{1 / 2}
$$

Using the well known maximal theorem of Hardy and Littlewood
(13) $\int_{-\infty}^{\infty}\left[\sup \left|\frac{1}{\sigma\left(x_{0}+h\right)-\sigma(x)} \int_{x}^{x_{0}+h} f(x) d \sigma(x)\right|\right]^{r} d \sigma(x)$

$$
\leqq C_{r} \int_{-\infty}^{\infty}|f(x)|^{r} \alpha \sigma(x) \quad, r>1
$$

where C_{r} is an ahsolute constant which depends only on γ.

From Theorem 1, (12) and (13), we completes the proof of Theorem 4 .

The proof of Theoren 5 can be done in quitely similar way as in the proof of Theorem 4 by using Theorem 3 .

Proof of Theorem 6.
Lemma. Under the same conditions of Theorem 2,

$$
\left\{\int_{-\infty}^{\infty}|f|^{2 x} d \sigma(x)\right\}^{1 / 2 n} \leqq C_{1}[n!]^{1 / 2 n}\left[\frac{3 x}{\lambda}\right]^{1 / 2}\left[\sum_{k=1}^{\infty}\left|C_{k}\right|^{x}\right]^{1 / 2}
$$

$$
\begin{aligned}
& \text { By (6) } \\
& \left\{\int_{-\infty}^{\infty}\left|\sum_{\delta} C_{s_{j}+e} e^{i \lambda_{s_{j}+e}}\right|^{2 n} d \sigma(x)\right\}^{1^{\prime}+1} \leqq(n!)^{1_{2 n}}\left(\sum_{j}\left|C_{s_{j}+1}\right|^{1^{1 / 2}}\right)^{2}
\end{aligned}
$$

$$
(l=1,2, \cdots, s), S=\left[\frac{3 n}{\lambda}\right]+1
$$

So by Minkowski's inequality we have

$$
\begin{aligned}
&\left\{\int_{-\infty}^{\infty}|f|^{2 n} d \sigma(x)\right\}^{1 / 2 n} \leqq \sum_{\ell=1}^{\infty}\left\{\int_{-\infty}^{\infty}\left|\sum_{j} c_{s_{j}+\ell} e^{i \lambda_{s j}+c x}\right|^{2 n} d \sigma(x)\right)^{1 / 2 n} \\
& \leqq(n \cdot)^{1 / 2 n} \sum_{l=1}^{5}\left(\sum_{j}\left|C_{s j+l}\right|^{2}\right)^{1 / 2} \\
& \leqq(n!)^{1 / 2 n} S\left[\frac{1}{S} \sum_{k=1}^{\infty}\left|C_{k}\right|^{2}\right]^{1 / 2} \\
& \leqq(n /)^{1 / 2 n} S^{1 / 2}\left[\sum_{k=1}^{\infty}\left|C_{k}\right|^{2}\right]^{1 / 2} \\
& \leqq C_{1}[n!]^{1 / 2 n}\left[\frac{3 n}{\lambda}\right]^{1 / 2}\left[\sum_{k=1}^{\infty}\left|C_{k}\right|^{2}\right]^{1 / 2}
\end{aligned}
$$

which proves the lemma.

$$
\begin{aligned}
& \text { We shall now prove the theorem. From } \\
& \text { the above lemma, using Stirling formula, } \\
& \text { we have } \\
& \qquad \int_{-\infty}^{\infty} \frac{\mu^{2 n}}{(2 n)!} \left\lvert\, f\left(\left.x\right|^{2 n} d \sigma(x) \leq C \frac{\mu^{2 n}}{i(2 n)} \cdot n!\left[\frac{3 n}{\lambda}\right]^{n}\left[\sum_{k=1}^{\infty}\left|C_{k}\right|^{n}\right]^{n}\right.\right. \\
& \qquad \leq C_{1}\left(\frac{e^{2}}{4}\right)^{n}\left(\frac{3}{\lambda}\right)^{n} \mu^{2 n}\left(\sum_{k=1}^{\infty}\left|C_{k}\right|^{2}\right)^{n} \\
& \text { Thus, if } \frac{e^{2}}{4} \frac{3}{\lambda} \mu^{2}\left(\sum_{k=1}^{\infty}\left|C_{k}\right|^{2}\right)^{n}<1, \\
& \text { that is } \\
& \quad(14) \quad \mu^{2}<\frac{4 \lambda}{e^{2} 3\left(\sum\left|C_{k}\right|^{2}\right)}
\end{aligned}
$$

