ON GENERALIZED TRANSFINITE DIAMETER
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{Communicated by Y. Komatu)

1. Introduction.

In the three dimensional Euclidean
space _Q.3 s let ™M be a bounded,
closed sét which contains infinitely
many points, and let T, Dbe the
distance between the points p and % .
G, Pélya and G.Szegd () defined the fol
lowing quantities: |
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A, being an arbitrary real number.
p™  is called the transfinite dia-
meter of M , and R 13 the quan-
tity wrich corrasponds to the quantity

,&’1‘» { fex | Ta (mu defined in two
dimensional buclidean space {1, whnere
the Ta‘2} mean Tchebychef‘f s polyno=-
mials with respect to the set ™M .
in 2, , and £, , M.Fekete? , G,
Pblya %nd 6. Szegd ™M, and O,rrostmant¥
have alrésdy proved that 1)"”‘ = R
for A=-—dc& with 1 & g3

In this paper, replacing the func-
tions rA Dby a more general one,®( 1),
as in the case of the generalized po-
tential () | we shall inv%sbigate
the case where p'¥ ‘and R colnclde,
and further relations betweén these
quantitlies and the generslized poten-
tial,

2. Definitions,. .

We consider a function (7)) with
following properties:

= 4 o0 for T=0;

@ff) > 0. and continuous, monotone
decreasing in the strict
sense, for ryo ;

<0 for F— 400,

Let M be a bounded and closed set
in an Euclidean spasce (2 , which

contains ‘%nfinitely gxany points. We
define RY  ana as- follaws:
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The class of functions &) contalns

some kind of the convex functions, for
instance 2(r)= .}.e—)\r x> ot

3. Existence of fim R(P
ny+oo
The following proof of the existence
of ,{?A-;‘w ®  ang JZw;_,D.\ is due to the
method of G.Pdlys and G.Szegd () , let
14 be an arbitrary point of the
space Qo > and peft , and let d
denote the dlameter of P . We descri-
be the sphere S  with radius 24
about & point. § of 1 , If one of
£ , say £ , lies outside §
then we denote the intersecting point
of the segment f|P and the boundary
of $ by F . Then we have &(J; F)‘c
é(';,;:) and hence
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Therefore, we may replace the polnts
whieh lle outside S Dby those of the
spherical surface s » obtaining a
relation analogous to (1), Now, we
confine ourselves to the case where all
the points £ belong to the closed
aphere T . Then we clearly have
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Thls minimum 1s the continuous
function of the points f, ,-«-- y? o
Let B,eveuby 3 B, % be ‘arbi-
trary points of 5 ’s then
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By taking the maximum with respect to
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Since @(Ra) Z 0 , by the lemma
below, there oxists the limit
(3) Lm REY = A z O
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1) If +~ >A> O  we get, by the con-

tinuity of 2 , g;_).:mgm‘f’):ygg«waﬁ'):,q;
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in every case, we write "Qﬁ;;w?f:) =r¥®

Lemmas®  Let 1%} be & sequence of
real numbers which satisfles. the eondi-
tion
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Then the seguence f‘n‘f is elther con-

vergent or divergent to — «© ,

4. Existence of fim D .
n=prod

We consider the identity

ks
where 2. indicates the sum with
respect to £  except the case when
s=% o+ Since
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By taking here the minimum of the
first term, we obtain,
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5. Relations between ¥ ana Rm .

We consider the points & .f €11
which satisfies the equalities:
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By the monotony of (V) , we obtain
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Letting n -+ s we have
(@) @)
(2) D > R

6. The prelimin)ry_remm‘ks on
tte generalized potential.(*)

"

Let | <& be the Borel’s Mengen-
koerper , and I denote a completely
additive set function defined for the
gsets measurable in the Borel sense
which we ¢all the mass-distribution.

We say that /M is a positive masse-
distribution, if mee) 20 , ecd .
The closed set F is called the
kernel of the mass with respect to ~
when F consists of points which bear
the mass actually. In the following
section, the integrals are considered
in the sense of Stielt jes-lebesge-Radon.
We now introduce the generalized poten-
tial by the integral of the form

() up = f‘“’?z’ e
[
/' denoting a positive muss-distribu-
tion, Then the well-known properties
of the potential are as follows:

(1) uP) is lower semi-continuous,
(11) If 2N

of r s anéd F
of the mass, then

1s a convex function
is the kernel

(2) apm =0 - —i—@’m zo  fea r>o,

and hence, in (L ~F R



(3) AUp 20

That is, wuep) is subharmonic 1in
a-~-F . Consequently, by the maxlmum
principle, if 4™ is continuous on
N~F , the maximum of w(¥! is taken
at & boundary point of o-F% , hamely
on the kernel F

j"a}  converges tc the dise
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where utp) | Raip) are the poten-
tials due to m , #n respectively,
and lx) |, 1iMa) the energy integrals
corresponding to  « , M, .

7. Lemmas.

we consi-

(1)
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For the function (N
der the several condltions {«)

is convex function of 1 , (.f)

=4>c and {7T) ;_‘Zim ALY SN

is an arbitrary positive
constant, and £, { are constants de-
pending on g(r* only. We shall prove
a lemme analogous to that of O.lrost-
man (4} .

where C

Lemma 1. The necessary and suffi-
clent cenditions trat the potential wp
is continuous on the bounded and closed

set T are as follows: for any posi-
tive ¢ there corresponds a positive
number § such thet the value of the

at P due to the mass
whose centre is
and 1ts radius

potential vg
within the sphere S5
at & point P of F
$§ 1s less than ¢ o

Jecessity. We denote by 4, W' the
potentials due to the mass interior and
exterior to the sphere S , then u” iga
continuous and evidently satisfies the
conditions of the lermma. Hence, it suf-
fice to show the lewms only for the po-
tential is W' . We consider ttre
sphere S; with radius a about P€F
and denote by u(» the potential

wp = [@ppdue) = bim 2 0 8w

“a

where 2, denotes the function such

that 3= @ » If 2 <« 4 and
Sy =N , 1 02N
As uip) is continuous on the

closed and boundea set S F , uw
is bounded there. Hence, for any posi-

tive ¢ . , we can take a constant 4,
depending only on ¢ and not on p
such that
W wepy — J‘Q (%) dptd) { < % ,
SaF
for  N2f, , peSF,

Let &8 =N, , If we take M. N,
such that, m>wn > n, s by (1),

we get
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Now 1ot 2wy =i, <li<- <Ai=N
and let €e; be the set of poinits
satisfying the inequalities /4. &n<i;

(=, 9, ., ) and put  ap =

riel 5, then, for sufficiently lergse

1 s We have
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where /£, &f  have the mesniog
analogous to [,  amn  respectively.

Put 2=/, gun= M, 1O T,

Denoting the ring domaln R whose

sentre iz at ¥ and whose radii are
L PR A s we have
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from which, by (2), (3), snd (4), we
finally get
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This inequality holds for any . ¥ 2N,
which Implies that the valus of the po-
tential at P due to the mass within
the sphere about T with radiue ¢
1s less than ¢ s Qe.d,

Sufficlency. That the condition is
sufficient is clsar,

Corollary. Let 207 satisiy the
condition (f§ )}, and let T denote the
kernel of the mass. If & 1 cone
tinuous on F , then it is continucus
throughout the space .

Proof.
on F , for a glven ¢
§ >0 such that the wvalue of the
potential at p » due to the mass with-
in Sy, 5 is less than L, Tp the
case when dist (*.%, > > 2, lat the
point ? 4is the one of the nearsst
points of K fyom p , and we describe

By the continuity of wup
3 s WO can take

the sphere S about ¢ . Then as
PmZS sy meF o We have uip)g [Rlsidpon

s Thersfore uim !
uontizuous at p e

in the case where dlst ( ', F g3 ,
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remembering the condition ( 2 ), we have
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where £ i3 the same constant as the

(8.

As € 1is arbitrary,
tinuous at p
whole space,

one appearing 1ln

wep) is con-
» and hence also in the

Lemma 2, If &)
condition (¥ ), then

mp) < Awp

satisfles the

where M} denotes the mean value
of uegs with respect to the sphere

S about p , and A 1is a positive
constent depending on the function 2
only.

Proof.
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where v is the volume of Sa
is the volume element at m .
(5
I,= [# 705 *n 1s the func-
Sa 4]

and 4t
3

integral

tion of s
the integral region

sphere and put Te™ ¥
continuous for r> o

only, and if we change
Sa to the unit
, then I, 1is
and tends to o

with v . low from the inequalities
(%) & Tgm) (T +ay
3¢ r,,) 2 (1q) & (Tpy;
@(Gm)
we obtain, by (T ), —tn — L for
Bitpq)
% —» o o Therefore I, takes the

positive maximum A for a2 value of r
in g<r £+ , and hence (1) becomes

2 map 2 A.[mrﬁww = Aup)
E¢N

By the methods used in the above
proofs, the conditions (B8 ), (7 ) are
necessary., In the case where &, is
assumed merely to be convex, I cannot
ensure that corollary to Lemma 1, and
Lemma 2 are holds or not,

lemms 3, Let &) satisfy the
conditions {#), {(B), (T ) and let M
be a bounded, closed set whose bound-
ary satisfles the condition of Poincarée,

By # we denote an arbltrary positive
unit mass-distribution on /1 and put
L0 = [ B0ng) dpep ducyy If thers
!

4«.:;
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exists a positive mass-distribution A
which minimizes 1¢x) , that is if,
for all admissible x »

IRy & Iy,
then F is an equilibrium-distribution,

Proof, Now we put 1(K) =7 , and
follow the method of O.Frostman ‘¥, We
procede according to the next four steps.
Iet F denote the kernel of the mass
with respect to *

= fQ(l;y)d}-"(p =
[x]

all points of M except the points of
the set whose spatisal measurse I1s zero.

1) wp v for

Now
IR =)(‘7~‘P)“‘F‘P’ =7,
and it cannot always be U EV-E -,
by the semi-continuity of  w¢p, , for

any g> o + Assume thet Wy g v-28
on the set E whose spatlal measure is

positive., We transport the mass m of

owy on E , Oflp being a neigh-
bourhood of ¢ where we have d () >
V-

In such a transportation of the mass,
we can make the potential due to the
mass=distribution to be bounded. For
exsmple, we may take a new distribution

o such as:
Toma—-rom ) s
T > 0 on E and o(g=mop)m;
¢ =0  outside ORI+E |

I(r) = ”Q(),‘,%wadw%) L +=0
M

For all positive number R < I , the
distrivution X + ke is non-negative
and represent the positive unit mass-
distribution on ™M . By the hypothesis

51 = I(F+he) — I(R) >0,

But on the other hand, we have

51 = 24 [umdwppf- 2210y
r

< —A[2me- fI@]

If we take % 8o small that Siso,
this is sbsurd., Therefore letting s-o
and we obtained the results mentioned
above’

11) Ww Z ¥V for all the
points of M without exception.

Let P be the point of M (inner
or boundary point). By the hypothe-
sis we can take the cone ¢ with
vertex p and lies within 7 . TLet
the volume ratio between sphere sbout

P and the cone ¢ be o <p<t
Let S , » denote the sphere about
p with radius R , r respectively.

Now we can proceed under 1°, 2°,



10 ul
mass K’

is the potential due to the
within S , and take the

radius R so small that W m< T
holds.

2° «” denotes the potential due
to the mass outside S5 , and
take 4  such that %€ , Wigi< iy
+% . In fact, tnis is true, for by

the continuity of w 1in » , R
being fixed and we have must only to
take r small enough. let m, denote
the mean of ¥ on cs .« Then as,
oxcept the point set of measure zero
in ¢4 , we have W 2V ,

W Tam, =m, em] <n3:i,+2”(r)*—§- .

Clearly, it holds

7
2) m %

. ‘
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1
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By lemma 2 and the hypothesis 2°,

a ’
! 3§t
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e < E
therefore

v & G”(P, +I e A@zWE>P-E

hAs € 1is arbitrary, letting ¢— o
we have without exception

“ ap 2T, pett

111) ap >V
every point of + .

is never hold at

In fact, if d@) >V s BEFR
holds, then there exists & neighbour~
hood o) of 4 such that peO®}
and ap >V and hence 1(x; »7
But this is absurd. Therefore we nmust
have @A) =7  pe€F .

fy) @@ =V for all points
of It without exception.

Since &(T) is convex, the maxi-
mum principle of subharmonic functions
holds good. A8 up is continuous
on F » by the corollary to the Lemma
1, it is continuous throughout the
space + By the maximum principle,
the meximum of & () is attained on

F + Therefore we have A< V R

pe L . Remembering the results
of (11) we have Wty = V for all
points of M without exception.

Remark. I cannot yet determine
whether the equilibrium-distribution
is always unique or not under our as-
sumptlons,

8. Relations between R'¥
and the potential,

Let the function ¢  gaatisfy the
conditions (), (8 ), and (7)), and
let the set M satisfy the condition
of Poincaré, It is clear that ¢,

18 measurable in the sense of Lebesgus
for o< r<+e , Under =~ W6 moan
an arbitrary positive msss-distribution

of unit mass on the set M . Then we
have
(Sppd+ *---F oo e LY
Min _._.._Q i k___.—?(%"’ < Q("’L) W.:i."&zbﬂzrz
pért n "

A

£ Lul (e b
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By taking the minimum of the first
member, we get

2x®) = Lot j 2050 P,
r

Letting n—+~ 4 we have

W 2(R¥) = %.:hﬁ fQ(r”;&,mr).
A

Under the condition (% ), we can appiy
the meximum principle to the last mem-
ber, and hence we get

(2 B(R®) £ Luab [Ehgaep
et ]

9. Relations between D% and
energy-integral.
Suppose that (1) and p  are.

as in No.8.
At first, it is clear that for any

(R

et )
Uy PO = Min ,&T_”»L
feert (%)
R
< g & [ osrnee
2 M
= [[ @0yq) drpincy)
fat

Considering the lower 1limit of the imet
member, we have

() ¢

9 Lb [agw]
M
whene
10 = ” @(’},Z)A/«l;ﬂé/‘*(%—}
™
Letting » 1t follows

(0% ¢ g,/g b [ 1g9]

n-—+o0

Q)
on

D(@ = é"i[g}:b 1(/;«)]

Now by O.Frostman’s method we proceed

as follows: take the points ¢ ....,p
in such & manner that "
——
(1,
@(Df”) = M ,fz:; '»"F,)_
z
foent (%)



And put the mass on each point £ .
Sueh & distribution on M 1is clearly a
positive unit mass distribution, which
we denote by x, . Then we have;

( ' 4,.5.-;”\?(,' ) f: { E. acr 1} 1
. = )
3 " A (A2 PRy (A
non
=1 3 3 dmpday)
A=t AR
:’—‘.’Enﬁ('}p)#"“f;‘ld/“‘hx
pEy 0T

2

x,---_-,n
2 & p,»)d/*,.‘m‘}‘..(r)
KRBV
=) i>(r ’d/%r;é;«,,(m — .’1.
'l
Since the sequence {/n} 1s bounded,
we can select, 1f necessary, s conver-
gent subsequence, which we denote also

by iM{ and we denote 1ts limiting
distribution b§ H* o Flrst by n—s+e ,

we get from {1
z [[30,
M

Then by N -— +eo s We g8t the relation

2(p®) ) 4 duig) |

4} o D@)) 2 /[Q( bg) ¥ps du¥( )
G
@) »® = 27[ 14}

From (2) and (3), we see that is
the one thet minimizes the energy-inte=
gral, so that by Lemma 3 of No.7, «%*

becomes one of the equilibrium-distrl-

el
/

bution & of the unit mass. There~
fore we can write
5y P(p®)y z Ik =1(K)
In (1) by substituting # by X ,
we got
2(2?) 2 1)
and hence
© %) =TR=V on @ B¥=d[v]
Therefore, we obtain
Theorem l. If the set M satisfies

the conditions of Polncaré, and if &
satisfies the conditions («.), (B),
and (T ), then

Py =I(R) =V,

1¢. Theorem 2, LIf the set M and 3
satisfy the conditions of the Theorem
1, then it holds

:Du?) - R;gp,

Proof. By the definition

BlRgiteet BLE e
—~—————————14n £

N [vp:s

i B0 e,
i 2

for any unit mass-distribution « ,
Considering the maximum of the first
member we get

L
[y

B(RY) 2 L oub fé(r.,wup:
BEMN

and, by n-— +c

" SR 'é l'uhb‘ [ er 4
€

By the condition (&), we can apply
the maximum principle to the second
member, and (1) becomes

Q(R@) Z.b. jé( 3} Auep)
\ Bent

Lou bowiy
gem

P

(2)

[t}

By (2) of No,5 and (5) of No.®, we.
have, for any Mo

3 o

£, u. b Lugp} 2 (R
Q(D ) P}

Using here A  in the place of
and remembering the relation

(Y

Lowb [ BRI dRp =7 = T(R;

M
wo get

@) 2RY} = 0P = TR,
l.0.,

) Rw» - D@;. - Q"CVJ,

11 ., . Now we consider a closed and
bounded set M , and-denote by T the
component of the complementary domain
of M which containg the poinks at
infinity. ‘We approximate T Dby such
regular reglions T, that Q~T, = F,
satiafy the condition of Polncars.
in the case of No.9, there exists s unit
masg~distribution Fn on E  such

that ®LR%(R)] = (% (F)] =T, =W

-

Then it is, evident that M (R)= 1 s (& Ri=0
The sequsnce {px.] converges to s (if
necessary we apply the selection theo-
rem), .and x. becomes the unlt mess- _
distribution on M .. in the following
sense, i.e.,, for n large enough, ths,
polints outside F, alsoc lie outside

M « Therefore we have 4 (M)=1 and
A(f1=#)= 0. We denote Z2gblup)
and 13 by v, and W, respsctively,
As
RO E D) E DM

bl

we have by the property of the squili~
briume-potential
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() E‘Wrzé =wﬁ= "
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with V,;‘ WFn
Then according to the relations

® -7 4 1#’.& [uen < ﬁ.‘l_ou,,cp

and

Gt w, & I £ lim Itea)
“ n-3ytoo

we get :

(4 i =7 : ; = w
“) Him o=V and Bm w u,

Rorer R, hore E

Therefore we bhave

)
* "

On one hand, by the properties of
¥ gnd W s we have

@ @
®) ﬂx<wézt'§p (r] £w, .
Jn the other, considering the rela-
tion (3), we obtain

@ Vo = dim < Jim a[r®(5,1] < B[R]
7

and

oo 4 — @) B e
Ty W *,\H;‘,’;W; —;‘Q:SMQ[D (F)] = 9[0Tn]

By (6), (7) and (7'), we have

8 @[] =7, (P () = W

By (5) and (8),

) '
S[R0] =2[p¥m] we 22w =1 oy

Therefore, we obtain the

Theorem 3, If & satisfies
the conditions (%), (B8), and (7 ),
and M 1is a bounded and closed set,
then we have

W)

R¥r = 2%y

Remark. V.. and Wi  are inde-
pendent on the manner of approximation
of the closed domain by E . 4and
the distribution s in Theorem 3 is
the one which minimizes the energy-
integral among all the positive distri-
butions of the un’t mass,

12, Relations between p? g®
and the capacity.

Q‘Joncerning the relation between 1)"’)
R® and the capacity ®  of the ',
bounded, closed set M , (1) M.Fekete

and G.Szegd ) proved that »® =gP=®
in the case where 2 =log -L H
{(14) G.Pblya and G.Szegd ¢ showed the
same relations in the case where "
2 = 4+ s (111) O.Frostman®
proved the relation »% =z  in the
case where &= =23 , i<z <3 .
O.Frostman defined the capaclity of rt ,
when &(r} is a more general one, as
follows: let & and @) be the
equilibrium~distribution of unit maess
on M and its potentisl respectivsly,
and put 7, = Lgb-Be , W= 3hb Igu= 150
then the capacity of n 1is defined by

W c® = 27 (v,

in the case (1i1) we have also D* =3

= % . Now we have demonstrated that

7@ =R® in the case where 2() sa-
tisfies the conditiong (« ), (B8 ), and
()., Therefore, O.Frostman’s dsfini-
tion of the capacity in the case (331!
is natural in the sense mentioned
above, But in this case, it ja in.-
convenisnt that the distribution which
gives equilibriumepotential doss not
uniquely determined. From this point
of view, the Vallée Poussin's aefinie
tion of capacity has also the szame In-
convenience.

Now, we conslder the Theorem 3 again.
First, we have clearly up = Viy o
Secondly, we have 1) = [umdup =7,

If there exists a mass-poift » of 1
such that wuw@) < 7, s then by the
lower semi-continuﬁ:y of  wepy s WO
can take some neighbourhood 0@ of

p  where up is less than vy .
Then we have I() <V s this is
absurcd, Hence, except a subset E of

M where m=0 o, 1t must be wup
= Vy « Lf the capacity of E is
positive, we can distribute the posi-
tive mass on E whose energy integral
is finite. And by the ssasme method
used in (1), Lemma 3, No.7, we can con~
struct a unit mass-distribution v
such as 1tvy < I(») . This con~
tradicts clearly with the definition
of 1(x) + Therefore, the capacity of

E wmust be zero., Thus we have:

Theorem 4, If the capacity of =
bounded and closed set /1 1s positive
and if & satisfles the condi-
tions (%), (B) and (7T ), then we have

wupy =V, pem

b

except vhe point-set E whose capacity
is o .

Remark. The potential 4  of the
Theorem 4 1s the equilibriume~potential
on M .« In gll cases we have thse
fundamental relations;

@)

) = r® = C(N
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