ON INTEGRAL FORMULAS OF ANALYTIC FUNCTIONS

OF SEVERAL COMPLEX VARIABLES AND SOME RELATED PROBLEMS.
By Sin HITOTUMATU.
(Communicated by Y. Komatu.)

1. Introduction.

It is well known that an analytic function of one complex variable can be represented by Cauchy's integral formula. The generalization of this formula to the case of several complex variables have been treated by S.Bergman, A.Weil, K.Oka, S.Bochner and many other authors. These expressions can be classified into two types: its integration manifolds are, in the one case, the "distinguished boundary surfaces", and in the other case, the whole boundary hypersurface. In this Note, we shall consider some relations between both types, and some related problems.
2. Integral Formula of We1l and Oka.

The integral formula of Weil [1] and 0 ka [1] belongs to the first type.

Let $m(\geqq n)$ functions $X_{j}\left(z_{1}, \ldots, z_{n}\right)$ $(j=1, m$) be regular in a bounded domain \mathscr{A} in the space of n complex variables and satisfy the following conditions:
(i) There exist functions $R\left(\zeta_{1}, \ldots\right.$, $\left.\zeta_{n} ; z_{1}, \ldots, z_{n}\right)$ and $P_{j \nu}\left(\zeta_{1},, \zeta_{n}\right.$; z_{1}, \ldots, z_{n}) regular for $2 n$ variables $z_{1}, \ldots, z_{n}, \zeta_{n} ; z_{1} \cdots, z_{n}$ in $\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{A}$ $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{d}$

$$
\begin{aligned}
& {\left[X_{j}\left(\zeta_{1}, \ldots, \zeta_{n}\right)-X_{j}\left(z_{1}, \ldots, z_{n}\right)\right] .} \\
& \quad \times R\left(\zeta_{1}, \ldots, \zeta_{n} ; z_{1}, \ldots, z_{n}\right) \\
& \equiv \sum_{\nu=1}^{n}\left(\zeta_{\nu}-z_{v}\right) \cdot P_{j v}\left(\zeta_{1}, \ldots, \zeta_{n} ; z_{1}, \ldots, z_{n}\right) .
\end{aligned}
$$

and

$$
R\left(\zeta_{1}, \ldots, \zeta_{n} ; \zeta_{1}, \ldots, \zeta_{n}\right) \equiv 1
$$

(ii) For each j, there exists a region D_{j} bounded by finite number of analytic curves C_{j} in the range-plane of $X_{j}\left(z_{1}, \ldots, z_{n}\right)$ - Put

$$
\Delta \bar{F}\left\{\left(z_{1}, \cdots, z_{n}\right) ; X_{y}\left(z_{1}, \ldots, z_{n}\right)\right.
$$

$$
\begin{aligned}
& \left.\in D_{j}+C_{j}, \quad(j=1, \cdots, m)\right\}, \\
& S_{j \equiv} \equiv\left\{\left(z_{1}, \ldots, z_{n}\right) ; x_{j}\left(z_{1}, \cdots, z_{n}\right) \in C_{j}\right\} \cap \Delta, \\
& \sigma_{h_{1}, \cdots, h_{k}}^{\left(k_{1}\right.} S_{h_{1} \cap \cdots} \cap S_{h_{k}}
\end{aligned}
$$

Suppose that Δ is a closed domain completely contained in \mathcal{A}, and that
all the $\sigma_{h_{1}}^{\left(f_{k}\right)} \cdots, h_{f_{e}} \quad$ are at most $\left(2 n_{l}-\ell\right)$
dimensional manifolds.
Then a function $f\left(z_{1}, \ldots, z_{n}\right)$ regular on Δ can be represented in Δ by the following expression due to Weil and Oka:

$$
\begin{align*}
& f\left(z_{1}, \cdots, z_{n}\right) \tag{1}\\
= & \frac{1}{(2 \pi i)^{n}} \sum_{(n)} \int_{\sigma_{j_{1}}^{(n)}, \cdots, \partial n} f\left(\zeta_{1}, \ldots, \zeta_{n}\right) . \\
\times & \frac{[R((\zeta) ;(z))]^{-n} \cdot \operatorname{det}\left[P_{j_{\mu}, \nu}((\zeta) ;(z))\right]}{\pi_{\lambda, v=1, \cdots, n}^{n}\left[X_{j_{\lambda}}((\zeta))-X_{j_{\lambda}}((z))\right]} \\
\times & d \zeta_{1} \cdots d \zeta_{n} .
\end{align*}
$$

where the summation $\sum_{(n)} \int_{\sigma_{j_{1}, \ldots, \gamma_{n}}^{(n)}}$ means that we take an \boldsymbol{n}-combination $\left(j_{1}, .\right.$. \cdots, j_{n}) from ($1, \ldots, m$), integrate over n-dimensional manifold
$\sigma_{j_{1}, \ldots, j_{n}}^{(n)}$ and then sum up on all the
possible n-combinations from ($1, \ldots$, m) - Since $R((\zeta) ;(\zeta)) \equiv 1$, the
factor $[R((\zeta) ;(z))]^{-n}$ can be replaced by 1.
3. Integral Formula of S.Bochner
and S.Bergman.

These expressions belong to the second type.

Let us change the variables from $x_{v}, y_{v}\left(z_{v}=x_{\nu}+i y_{\nu}\right)$ to z_{v}, \bar{z}_{ν} by the transformations $z_{\nu}=x_{\nu}+i y_{\nu}$ and $\bar{x}_{\nu}=x_{\nu}-i y_{\nu}$ (cf. for ex.S.Bochner
[1]). Then from the Green's formula, it is easy to see that if a function
$f\left(z, \ldots, z_{n}\right)$ is regular on a closed domain D, whose boundary B consists of a finite number of smooth hypersurfaces, then $f\left(z_{1}, \ldots, z_{n}\right)$ can be represented by the following integral formula due to S.Bochner [1]:

$$
\begin{aligned}
& \text { (2) } f\left(z_{1}, \ldots, z_{n}\right) \\
& =\frac{(n-1)!}{2 \pi i ;} \int_{B} \sum_{\nu=1}^{n} \frac{f\left(\xi_{i}, \ldots, \zeta_{n}\right) \cdot\left(\bar{\xi}_{\nu}-\bar{z}_{\nu}\right)}{\left[\sum_{\mu=1}^{n}\left(\zeta_{\mu}-z_{\mu}\right)\left(\bar{\zeta}_{\mu}-\bar{z}_{\mu}\right)\right]^{n}} \\
& \quad x d \bar{\zeta}_{1} d \xi_{1} \cdots d \bar{\zeta}_{\nu} d \zeta_{\nu} \cdot d \bar{\xi}_{n} d \xi_{n} .
\end{aligned}
$$

The symbol \wedge over a letter indicates that this letter is to be omitted.

When the domain D is cylindrical, i.e. D has the structure of a direct product of D_{j} (D_{j} is a domain on the z_{j}-plane), this formula (2) can be reduced to the iterated Cauchy's formula.

An analogous formula have been shown by S.Bergman [1] He considered only the case of two variables, and his expression is:

$$
\begin{gather*}
f\left(z_{1}, z_{2}\right)=\frac{1}{4 \pi} \iiint_{B} f\left(\zeta_{1}, \zeta_{2}\right) . \tag{3}\\
\times\left\{\frac{\partial\left(1 / r^{2}\right)}{\partial \bar{\zeta}_{1}} d \eta_{1} d \xi_{2} d \eta_{2}-i \frac{\partial\left(1 / r^{2}\right)}{\partial \zeta_{1}} d \xi_{1} d \xi_{2} d \eta_{2}+\right. \\
\left.+\frac{\partial\left(1 / r^{2}\right)}{\partial \bar{\zeta}_{2}} d \xi_{1} d \eta_{1} d \eta_{2}-i \frac{\partial\left(1 / r^{2}\right)}{\partial \zeta_{2}} d \xi_{1} d \eta_{1} d \xi_{2}\right\} .
\end{gather*}
$$

where B means the three dimensional boundary hypersurface of D, and

$$
\begin{aligned}
& \xi_{x} \equiv \xi_{x}+i \eta_{x}, \bar{\xi}_{x} \equiv \xi_{x}-i \eta_{x} \\
& \\
& (x=1,2) \\
& r^{2}=\left(\zeta_{1}-z_{1}\right)\left(\bar{\zeta}_{1}-\bar{z}_{1}\right)+\left(\zeta_{2}-z_{2}\right)\left(\bar{\zeta}_{2}-\bar{z}_{2}\right) .
\end{aligned}
$$

This is quite the same one to (2) where $n=2$, but it seems that the coefficients $1 / 4 \pi$ should be replaced by $1 / 2 \pi^{2}$.
S.Bergman and his disciples have shown many other integral formulas most of which concerned to "distinguished boundary surfaces" (cf. for ex.S.Bergman [2] and its bibliography.) All these formulas can be reduced to (1) or (2), but here we omit the detail.

4. Relation between (1) and (2).

Now we show that when the domain D has the same structure as Δ described in §2, the expression (I) can be reduced to (2). Using hypothesis (i) and expanding the "det" in the numerator, the integrand of (1) is equal to

$$
\frac{[R((\zeta) ;(z))]^{-n+1} \cdot f((\zeta))}{K((\zeta-z) ;(\bar{\zeta}-\bar{z}))}
$$

$\underset{\text { where }}{\times \sum_{\rho=1}^{n} \sum_{\lambda=1}^{n}(-1)^{\rho+\lambda} \frac{\operatorname{det}\left[P_{j_{\mu}, \nu}((\xi) ;(z))\right]^{\mu \neq \rho, \nu \neq \lambda}}{\prod_{\mu=1, \mu \neq \rho}^{n}\left[X_{j_{\mu}}((\zeta))-X_{j_{\mu}}((z))\right]} .}$.

$$
K((\zeta-z),(\bar{\zeta}-\bar{z})) \equiv \sum_{\mu=1}^{n}\left(\zeta_{\mu}-z_{\mu}\right)\left(\bar{\zeta}_{\mu}-\bar{z}_{\mu}\right)
$$

Arrange this for $(n-1)$-combinations, and use the Stokes, theorem, (1) is equal to

By induction, it is easily seen that (1) is equal to

$$
\begin{aligned}
& \text { (4) } \frac{k^{\prime}}{(2 \pi i)^{n}} \sum_{(n-k)} \int_{\sigma_{h_{1}, \cdots, h_{n-k}}^{(n-k)}} f\left(\zeta_{1}, \ldots, \zeta_{n}\right) \\
& \times \frac{[R((\zeta) ;(z))]^{-(n-k)}}{[K((\zeta-z),(\bar{\zeta}-\bar{z}))]^{\xi+1}} \cdot \frac{2}{\mathbb{I}_{\nu=1}^{n-k}\left[X_{h_{\nu}}^{((\zeta))} \cdot X_{h_{v}}(\overline{z)})!\right.}
\end{aligned}
$$

$$
\times \sum_{\lambda=1}^{n} \sum_{p_{1} \ll p_{k}}(-1)^{\lambda+p_{1}+\cdots+p_{k}}
$$

$$
+\sum_{i=1}^{k}(-1)^{\rho_{i}+2} \operatorname{det}\left[P_{h_{\mu}, v}((\xi),(2))\right]_{\nu \neq f_{1}, \cdots, \hat{p}_{i}: h_{k, \lambda}}^{\substack{n=1, \cdots n-k_{2}}}
$$

$$
\left.x\left(\zeta_{p_{i}}-z_{p_{z}}\right)\right]
$$

$$
x\left(\bar{\zeta}_{\lambda}-\bar{z}_{\lambda}\right) d \bar{\zeta}_{p_{1}} \cdots d \bar{\zeta}_{p_{p_{k}}} d \zeta_{1} \cdots \cdots d \zeta_{n}
$$

Now putting $k=n-1$, (4) becomes

$$
\begin{aligned}
& \quad \frac{(n-1)!}{(2 \pi \iota)^{n}} \sum_{j=1}^{m} \int_{S_{j}} f\left(\zeta_{1}, \ldots, \zeta_{n}\right) \cdot \\
& \times \frac{[R((\zeta),(z))]^{-1}}{[K((\zeta-z),(\xi-\bar{z}))]^{n}} \cdot \frac{1}{\left[X_{j}((\zeta))-X_{j}((z))\right]} \cdot \\
& \times \sum_{\lambda=1}^{n} \sum_{\rho=1}^{n}(-1)^{n(n+1) / 2} \cdot P_{j \rho}((\zeta) ;(z)) \cdot\left(\zeta_{p}-z_{p}\right) \\
& x\left(\bar{\zeta}_{\lambda}-\bar{z}_{\lambda}\right) d \bar{\zeta}_{1} \cdot d \bar{\zeta}_{p} \cdots d \bar{\zeta}_{n} \cdot d \zeta_{1} \cdot \cdots d \zeta_{n} \cdot
\end{aligned}
$$

Remember that $B=\sum_{j=i}^{m} S_{\gamma}$, and the hypothesis (i), then this expression, after changing the orders of d亏's and d乡's, is nothing else the expression (2).

$$
\begin{aligned}
& \frac{1}{(2 \pi i)^{n}} \sum_{(n-1)} \int_{\sigma_{l_{1}, \cdots, l_{n-1}}^{(n-1)}} f\left(\zeta_{1}, \ldots, \zeta_{n}\right) \\
& \times \frac{[R((\zeta),(z))]^{-(n-1)}}{[K((\zeta-z),(\bar{\zeta}-\bar{z}))]^{2}} \cdot \frac{1}{\left.\pi_{\nu=1}^{n-1}\left[X_{\ell_{\nu}}(\zeta)\right)-X_{\ell_{\nu}}((z))\right]} \\
& \lambda \sum_{\lambda=1}^{n} \sum_{p=1}^{n}\left[(-1)^{\lambda} \operatorname{det}\left[P_{\ell \mu, \nu}((\xi) ;(z))\right]_{\nu \neq \lambda}^{\mu=1, \cdot, n-1} \cdot\left(\zeta_{p}-z_{p}\right)-\right. \\
& \left.-(-1)^{\rho} \operatorname{det} P_{\left.\left.{l_{\mu}, \nu}^{((\zeta)}\right) ;(z)\right)}^{v \neq \rho}{ }^{\mu=1, \cdot, n-1} \cdot\left(\zeta_{\lambda}-z_{\lambda}\right)\right] \text {. } \\
& x\left(\bar{\zeta}_{\lambda}-\bar{z}_{\lambda}\right) d \bar{\zeta}_{p} \quad d \zeta_{1} \cdots d \zeta_{n} .
\end{aligned}
$$

5. Application to "Continuation

Mr. K. Oka proved the following "continuation theorem" (Oka [2]):

Theorem 1. 'In the space of two complex variables, there exist a finite, univalent domain D and two parallel hyperplanes α and β - Let $S(\alpha ; \beta)$ denote the half-space separated by α and including β. If $D_{1} \equiv D_{n} S(\beta ; \alpha)$ and $D_{2} \mp D \cap S(\alpha ; \beta)$ are both domains of regularity, i.e. existence domains of some analytic functions, then D itself is also a domain of regularity.'

This contains that every pseudoconvex domain is a domain of regularity (Oka [2]).

We shall now try to generalize this theorem to the case of n variables. By a linear transformation, we can choose α and β to be the form $\left\{\left(z_{1}, \ldots, z_{n}\right) ; \mathcal{J} z_{n}=n\right\}$ and $\left\{\left(z_{1}, \ldots, z_{n}\right) ; \mathcal{J} z_{n}=f\right\}$ respectively, where a, b are real constants and $a>0>b$.

To prove theorem 1, the following "principal problem" is essential:

Problem. 'Under suitable conditions (cf. Oka [2], §2), given a function $f\left(z_{1}, \ldots, z_{n}\right)$ regular in a neighbourhood of the common boundary of $\Delta_{1} F \Delta_{n}\left\{\left(z_{1}, \cdots, z_{n}\right) ;\left\{z_{n} \geqq 0\right\}\right.$ and $\Delta_{2} \equiv\left\{\left(z_{1}, ., z_{n}\right)\right.$; $\left.7 \cdot z_{n} \leqq 0\right\}$, where Δ is some closed domain in D, construct such pair of functions $F_{1}\left(z_{1}, \ldots, z_{n}\right)$ and $F_{2}\left(z_{1}, \ldots, z_{n}\right)$ that they are regular in the closed domains Δ_{1} and Δ_{2} respectively, and identically satisfy the relation

$$
\begin{aligned}
& F_{1}\left(z_{1}, \ldots, z_{n}\right)-F_{2}\left(z_{1}, \ldots, z_{n}\right) \\
& \quad \equiv f\left(z_{1}, \cdot, z_{n}\right) ?
\end{aligned}
$$

Have been established this problem, theorem 1 for the case of n variables can be proved quite analogously to the case of two variables (Oka [2] chap. 2 §§ 5-9).

To solve tho above problem for $n=2$, he used the Cauchy's integral formula for one variable. In the case of \dot{n} variables, we may, in fact, use the integral formula of Weil and Oka, and treat it quite analogously; but this process seems too complicated. Because, since the functions $X_{j}\left(z_{1}, \ldots, z_{n}\right)$ are defined only in $D_{3} \equiv D_{1} \cap D_{2}$ in this case, F_{1} and F_{2} can be defined only in D_{3} by this method. In order to define them in Δ_{1} or Δ_{2}, we must approximate the integrand by functions regular in D_{1} or $\bar{\nu}_{2}$, and cancel the differences by some integral equations.

To avoid these difficulties, it is
better to use the integral expression of S.Bochner. First we define a function $I\left(z_{1}, \cdots, z_{n}\right)$ by the integral

$$
\begin{aligned}
& I\left(z_{1}, \ldots, z_{n}\right) \\
F & \frac{(n-2)!}{(2 \pi i)^{n}} \int_{L} \sum_{\nu=1}^{n-1} \frac{f\left(\zeta_{1}, \cdot, \zeta_{n}\right)\left(\bar{\zeta}_{\nu}-\bar{z}_{\nu}\right)}{\left[\Sigma_{\mu=1}^{n-1}\left(\zeta_{\mu}-z_{\mu}\right) \cdot\left(\bar{\zeta}_{\mu}-\bar{z}_{\mu}\right)\right]^{n-1}} \\
\times & \frac{1}{\zeta_{n}-z_{n}} \cdot d \bar{\zeta}_{1} d \zeta_{1} \cdots d \bar{\zeta}_{\nu} d \zeta_{\nu} \cdot d \bar{\zeta}_{n-1} d \zeta_{n-1} \cdot d \zeta_{n}
\end{aligned}
$$

where L is a $(2 n-2)$-dimensional manifold such that

$$
\begin{array}{r}
L \equiv\{\text { boundary of } \Delta\} \cap\left\{\left(\zeta_{1}, \ldots, \zeta_{n}\right) ;\right. \\
\\
\left.\lambda \zeta_{n}=0\right\} \ldots
\end{array}
$$

This function $I\left(z_{1}, \ldots, z_{n}\right)$ is analytic for z_{1}, \ldots, z_{n} except on $\left\{\left(z_{1}, \cdots, z_{n}\right) ; J z_{n}=0\right\}$. Put $F_{1}\left(z_{1}, \ldots, z_{n}\right) \bar{z}\left(z_{1}, \ldots, z_{n}\right)$ in Δ_{1} and consider its continuation which is denoted also, by $F_{1}\left(z_{1}, \ldots, z_{n}\right)$. This function $F_{1}\left(z_{1}, \ldots, z_{n}\right)$ is analytic on Δ_{1} including its boundary. We can also define the function $F_{2}\left(z_{1}, \ldots, z_{n}\right)$ as the continuation of a functional element which is identically equal to $I\left(z_{1}, \ldots, z_{n}\right)$ in Δ_{2}.

It is easy to show that these two functions $F_{1}\left(z_{1}, \ldots, z_{n}\right)$ and $F_{2}\left(z_{1}, \ldots, z_{n}\right)$ satisfy the conditions of the "problem". ${ }_{3}{ }^{0}$ this method, the hypotheses 2° and 3° in §2 of Oka [2] (p.18) and the processes in $\S \oint 3,4(\mathrm{pp.19-27})$ and $\oint 7$ (po.32-34) in that paper are not needed. Consequently, the proof of theorem 1 becomes very simplified.

From this solution of problem, we can easily show the following:

Theorem 2. 'The notations are quite the same as in the theorem 1, but the number of variables may be n. If D_{1} and D_{2} are first Cousin domains, i. θ. domains in which the first Cousin problem (cf. for ex. H.Cartan [1]) has always its solution, then D itself is also a first Cousin domain.' This theorem is also valid, when the word "first" is replaced by the word "second".
(*) Received Dec. 17, 1949.

Stefan Bergman [1]. Ueber uneigentlich Flächenintegrale in der Theorie der analytischen Funktionen von zwei komplexen Veränderilchen. Revista Ciencias, Lima 43 (1941) 675-682, ibid. 44 (1942) 131-140, 377-394; esp. cf. p. 389.
Stefan Bergman [2] On the surface integrals of Functions of two complex variables. Amer. J. Math. 63 (1941) 295-318.
Salomon Bochner [I] Analytic and meromorphic continuation by Green's formula. Annals of Math. 44 (1943) 652-673.

Henri Cartan [1] Les problème de Poincaré et de Cousin pour les fonctions de plusieurs variables complexes. C. K : Paris 199 (1935) 1284-1287.
Kiyoshi Oka [i] L'intégrale de Cauchy. Jap. J. Math. 17 (1941) 523-531.
Kiyoshi Oka [2] vomaines pseudoconvexes. Tôhoku Math. J. 49 (1942) 15-52.

André Weil [1] L'intégrale de Cauchy et les fonctions de plusieurs variables. Math. Ann. 111 (1935) 178182. See also C. R. Paris 194 (1932) 1303-1304.

Math. Inst., Tokyo Univ.

