NOTE ON ARCHIMEDEAN VALUATIONS

By Tsuyoshi HAYASHIDA

Ostrowskil) proved that any archimedean valuation of a field k can be obtained by embedding k in the field K_{1} of complex numbers. Professor Iwasawa remarked in his lecture that this would also be proved easily if the following lemma were proved:

> Lemma. Let K be the field of real numbers and $K(\alpha)$ be a simple extension of it. If $K(\alpha)$ has an archimedean valuation φ, then α is algebraic over K.

In this paper I shall give a proof ${ }^{\text {(}}$ of it and explain briefly Iwasawa s way of reduction.

> Proof of the lemma, When ξ is a complex number, $\left.\alpha^{2}-(\xi)+\bar{\xi}\right) \alpha+\xi \bar{\xi}$ belongs to $K(\alpha)$ We shall define a function $\sigma(\xi)=\varphi\left(\alpha^{2}-(\xi+\bar{\xi}) \alpha+\xi \bar{\xi}\right)$ on
> $K 1$ Then it is readily seen that
> $\sigma(\xi)$ is non-negative and a continuous function of ξ and tends to infinity with I \mid Hence $\sigma(\xi)$ attains its geatest lower bound M. Put rec $=\{\xi \mid$
> $\sigma(\xi)=M\}$ then re is a non-null, closed and bounded set.

Now if $M=0$, then there is a
$\xi_{0} \in K_{1}$ such that $\sigma\left(\xi_{0}\right)=0 \quad$, which means that $\alpha^{2}-\left(\xi_{0}+\bar{\xi}_{0}\right) \alpha+\xi_{0} \xi_{0}=0$, namely α is algebrajc over k. Hence we have only to deduce a contradiction, supposing $M>0$.

From fre we take a number ξ_{1} whose distance from the origin is largest. Since C is negative, at least one root η_{1} of the equation

$$
x^{2}-\left(\xi_{1}+\bar{\xi}_{1}\right) x+\xi_{2} \bar{\xi}_{1}-c=0
$$

has a greater absolute value than $\left|\xi_{,}\right|$, and does not belong to ru. We shall consider an algebraic equation

$$
\left\{x^{2}-\left(\xi_{1}+\bar{\xi}_{1}\right) x+\xi_{1} \bar{\xi}_{1}\right\}^{n}-c^{n}=0
$$

and denote its roots by $\eta_{1}, \eta_{2}, \ldots \eta_{2 n}$.

$$
\begin{aligned}
& \text { Then } \begin{aligned}
\left(M^{n}+|c|^{n \varepsilon}\right)^{2} & \geqq \varphi\left\{\left[\alpha^{2}-\left(\xi_{1}+\bar{\xi}_{1}\right) \alpha+\xi_{1} \bar{\xi}_{1}\right]^{n}-c^{n}\right\}^{2} \\
& =\varphi\left\{\prod_{i=1}^{2 n}\left(\alpha-\eta_{i}\right) \prod_{i=1}^{2 n}\left(\alpha-\bar{\eta}_{i}\right)\right\} \\
& =\varphi\left\{\prod_{i=1}^{2 n}\left(\alpha-\eta_{i}\right)\left(\alpha-\bar{\eta}_{i}\right)\right\} \\
& =\prod_{i=1}^{2 n} \varphi\left\{\left(\alpha-\eta_{i}\right)\left(\alpha-\bar{\eta}_{i}\right)\right\} \\
& =\prod_{i=1}^{2 n} \sigma\left(\eta_{i}\right) \geqq M^{2 n-1} \cdot \sigma\left(\eta_{1}\right)
\end{aligned}
\end{aligned}
$$

Dividing by $M^{2 n}$, we get

$$
\left\{1+\left(\frac{|c|^{\varepsilon}}{M}\right)^{n}\right\}^{2} \geqq \frac{\sigma\left(\eta_{1}\right)}{M}
$$

Since n can be arbitrarily large, it follows from (1) that $\sigma\left(\eta_{1}\right) \leqq M$ But this means $\sigma\left(\eta_{f}\right)=M$, i.e. $\eta_{i} \in \mu_{\text {. That }}$ is a contradiction.

Way of Reduction. Since the lemma is assured, we deduce as follows. Let φ be an archimedean valuation of k. It is evident first of all that the characteristic of k must be zero. If φ_{0} is the projection of φ on the prime field R, then $\Phi_{0}(a)=|a|^{\varepsilon}, 0<\varepsilon \leqq 1$.
$a \in R$, as is well-known. When we complete k to k^{\prime} with respect to φ
R is completed automatically to the field K of real numbers with respect to φ_{0}. φ is extended uniquely to an archimedean valuation φ^{\prime} of k^{\prime}, and φ_{0} to φ_{0}^{\prime} of K.

Take an element arbitrarily from k^{\prime}. Then the subfield $K(\alpha)$ of k^{\prime} has an archimedean valuation $\varphi^{\prime \prime}$ which is the projection of φ^{\prime} on $K(\alpha)$ - By the lemma, \propto is algebraic over K. Since α is an arbitrary element of k^{\prime}, k^{\prime} is algebraic over K. Therefore k^{\prime} and its subfield k_{c} may be looked on as contained in K_{1}. Or more precisely, there is an isomorphism s from k in K_{1} and $\varphi(\alpha)=\left|\alpha^{s}\right|^{\varepsilon}, \alpha \in k, 0<\varepsilon \leqq 1$.

Our final result is: a set of equivalent archimedean valuations of k (which gives the same topology of k) corresponds one-to-one to a pair (s, \bar{s}) of isomorphisms of k in K_{i} (bar indicates the complex conjugate).
(*) Received October 16, 1949.
(1) Ostrowski: Ueber einige Loesungen der Funktionalgleichung $\varphi(x) \varphi(y)$ $=\varphi(x y)$. Acta math. Bd. 41 (1918) S.271-284.
(2) The lemma was also proved by To Asatani, using the theory of normed rings.

Tokyo Institute of Technology

