KŌDAI MATH. SEM. REP.
Nos. 5-6, Dec., 1949.

> FABER'S POLYNOMIALS.

By Shohei Nagura.
(Communicated by Y. Komatu.)

§1. Fundamental Identities.

The following method in $\S 1$ can be proceded verbatin for more general and even for multiply-connected domains, but in this Note we suppose the boundary of domain is the unit circle in order to apply our results for the coefficient problem.

Let $g(z)$ be a meromorphic, schlicht and non-vanishing function in the exterior of the unit circle $|z|>1$, and whose Laurent expansion about the point at infinity is of the form
(1) $\quad g(z)=z+\sum_{\nu=0}^{\infty} \frac{c_{\nu}}{z^{\nu}}$.

Then $f(z) \equiv 1 / g(1 / z)$ is regular and schlicht in the unit circle $|z|<1$ and, about the origin, it can be expanded in the form

$$
\begin{equation*}
f(z)=z+\sum_{\nu=2}^{\infty} a_{\nu} z^{\nu} \tag{2}
\end{equation*}
$$

Let $P_{n}(z)(n=1,2$,) be polynomial of z of degree n, which satisfies the condition

$$
\begin{equation*}
P_{n}(g(z))=z^{n}+\sum_{\nu=1}^{\infty} \frac{\alpha_{\nu}^{(n)}}{z^{\nu}} . \tag{3}
\end{equation*}
$$

Then, $P_{n}(z)$ is called the "Faber's polynomial" of degree n with respect to $g(z)$. ${ }^{(1)}$ By means of the Cauchy's integral formula, we have

$$
\begin{equation*}
P_{n}(w)=\frac{1}{2 \pi i} \int_{|\zeta|=r} \frac{P_{n}(\zeta)}{\zeta-w} d \zeta \tag{4}
\end{equation*}
$$

where w is an arbitrary point in the circle $|\zeta|<I$. Making the change of variable $\zeta=g(z)$, we get, for sufficiently large T 。

$$
\text { (5) } \quad P_{n}(w)=\frac{1}{2 \pi i} \int_{|z|=r} P_{n}(g(z)) d l_{g}(g(z)-w)
$$

On the other hand, we can easily prove

$$
\begin{align*}
0 & =\frac{1}{2 \pi i} \int_{|z|=x} \frac{P_{n}(g(z))}{z} d z \\
& =\frac{1}{2 \pi i} \int_{|z|=r} P_{n}(g(z)) d \lg z, \tag{6}
\end{align*}
$$

by virtue of (3). Hence, substracting (6) from (5), we have
(7) $P_{n}(w)=\frac{1}{2 \pi i} \int_{|z|=r} P_{n}(g(z)) d \lg \frac{g(z)-w}{z}$

Now, putting
(8) $\lg \frac{g(z)-w}{z}=-\sum_{\nu=1}^{\infty} \frac{Q_{\nu}(w)}{\nu} \frac{1}{z^{\nu}}$
and substituting (8) into (7), we obtain

$$
\begin{equation*}
P_{n}(w)=Q_{n}(w) . \tag{9}
\end{equation*}
$$

Since (9) holds for infinitely many values of w if we take a sufficiently large r, also does (9) hold good identically. After all, we have the following fundamental relation: ${ }^{(2)}$

$$
\begin{equation*}
\lg \frac{g(z)-w}{z}=-\sum_{\nu=1}^{\infty} \frac{P_{\nu}(w)}{v} \frac{1}{z^{v}} \tag{10}
\end{equation*}
$$

for an arbitrary w, the logarithm always denoting the branch which vanishes for $w=0$ and $Z=\infty$.

Putting $\zeta=1 / z, \quad g(z)=1 / f(\zeta)$, and comparing the coefficients of botil sides of (10), we have

$$
\begin{gather*}
P_{n}(z)=n \sum_{\mu=1}^{n}\left(\sum_{n_{1}+\cdots+n_{\mu}=n} a_{n_{1}} \cdot \cdots a_{n_{\mu}}\right) \frac{z^{\mu}}{\mu} \tag{11}\\
+P_{n}(0)
\end{gather*}
$$

and in particular $\quad P_{n}(0)=n a_{n}$. Differentiating (10) with respect to z and making use of the same reason as above, we obtain

$$
P_{1}(z)=z-c_{0}
$$

$$
\begin{gathered}
P_{n+1}^{(2)}(z)+\left(c_{0}-z\right) P_{n}(z)+\sum_{\mu=1}^{n-1} c_{\mu} P_{n-\mu}(z)+(n+1) c_{n}=0 \\
(n=2,3,)
\end{gathered}
$$

§2. Some Applications to the Distortion Theorems.

Putting

$$
F(z)= \begin{cases}f(z) / z & (z \neq 0) \tag{13}\\ 1 & (z=0)\end{cases}
$$

we get, from (10),

$$
\begin{equation*}
\operatorname{Ig} F(z)=\sum_{\nu=1}^{\infty} \frac{P_{\nu}(0)}{\nu} z^{\nu} \tag{14}
\end{equation*}
$$

If we consider a family of schlicht
functions $\{f(z)\}$, satisfying $\left|P_{n}(0)\right|$ $\leqq 2(x=1,2$,), we can prove the following distortion theorems

$$
\begin{equation*}
\left|F^{(n)}(z)\right| \leqq \frac{(n+1)!}{(1-|z|)^{n+2}},\left|f^{(n)}(z)\right| \leqq \frac{n!(n+|z|)}{(1-|z|)^{n+2}}, \tag{15}
\end{equation*}
$$

where in each relation the equality sign holds only for the extremum functions of the form $f(z)=z /\left(1-e^{i \alpha} z\right)^{2}$
(α : real). Especially, if we put $z=0$, we obtain

$$
\left|a_{n}\right| \leqq n
$$

for our family, which is the conjecture of Bleberbach.

Now, we consider the function $f(z)$ star-shaped in the unit circle $|z|<1$. Then, $\lg F(z)$ is expressed by the formula of Herglotz:

$$
\lg F(z)=-2 \int_{0}^{2 \pi} \lg \frac{e^{i \theta}}{e^{i \theta}-z} d \mu(\theta)
$$

$$
\begin{equation*}
d \mu(\theta) \geq 0, \quad \int_{0}^{2 \pi} d \mu(\theta)=1 \tag{16}
\end{equation*}
$$

and the inequalities

$$
\text { (17) }\left|P_{n}(0)\right| \leqq 2 \quad(n=1,2, \cdots)
$$

hold good. Hence, for our family we get the distortion inequalities (15). From the last inequalities, we obtain $\left|a_{n}\right| \leq n$ by putting $z=0$.(4)

If $f(z)$ is convex in $|z|<1$, we can represent it as before:

$$
\lg f^{\prime}(z)=-2 \int_{0}^{2 \pi} \lg \frac{e^{i \theta}}{e^{i \theta}-z} d \mu(\theta),
$$

$$
\begin{equation*}
d \mu(\theta) \geqq 0, \quad \int_{0}^{2 \pi} d \mu(\theta)=1 \tag{18}
\end{equation*}
$$

and we get the following relations:

$$
\begin{aligned}
& \left|\lg _{g} f^{\prime}(z)\right| \leqq 2 \lg \frac{1}{1-|z|}, \\
& \left|P_{n}(0)\right| \leqq 2
\end{aligned}
$$

(19)

$$
\begin{aligned}
& \left|F^{(n)}(z)\right| \leqq \frac{n!}{(1-|z|)^{n+1}}, \\
& \left|f^{(n)}(x)\right| \leqq \frac{n!}{(1-|z|)^{n+1}} \quad(n=0,1,2, \cdots) .
\end{aligned}
$$

Each equality sign holds only for functions of the form $f(z)=z /\left(1-e^{i \beta} z\right)$, β : real. Putting $z=0$, we can establish the coefficient theorem $\left|a_{n}\right| \leq 1$ for convex functions already proved by various ways. ${ }^{(5)}$

At the same time, we can, by means of (18), derive the relation, obtained by Marx, ${ }^{(6)}$

$$
R \sqrt{f^{\prime}(z)} \geqq \frac{1}{1+|z|},
$$

which is sharpened than that obtained by himself.
(*) Keceived September 30, 1949.
(1) H.Grunsky: Koeffizientenbedingungen fuer schlicht abbildende meromorphe Funktionen. Math. Zeit. 45(1939), 29-61; especially, §3.
(2) Recentiy I found that M.Schiffer has proved the relation (10), but I had obtained another proof of it. Cf. M.Schiffer: Faber's polynomials in the theory of univalent functions. Bull. Amer. Math. soc. 54(1948), 503517.
(3) L.Bieberbach: Ueber die Koeffizienten diejenigen Potenzreihen, welche eine schilchte abbildung des Einheitskreis vermitteln. Sitzungsb. preuss. Akad. Wiss. Berlin (1916), 940-945.
(4) Cf. R.Nevanlinna: Ueber die konforme Abbildung von Sterngebieten. Oeversikt av Finska Vetenakaps-Soc. Foerh. (A) 63 (1920-1), 1-21.
(5) E.g. K.Loewner: Untersuchungen ueber die Verzerrung bei konformen Abbildungen des Einheitskreises $|z|<1$, die durch Funktionen mit nicht verschwindenden ableitung geliefert werden. Leipziger Berichte. 69 (1917), 89-106.
(6) A.Marx: Untersuchung ueber schlichte Abbildungen. Math. Ann. 107 (1932), 40-67.

Nagoya University.

