KŌDaI MATH. SEM. REP.
Nos. 5-6, Dec., 1949.

EXISTENCE THEOREM OF CONFORMAL MAPPING OF

DOUBLY-CONNECTED DOMAINS.
By Yûsaku KOMATU.

In this Note, we shall give a brief proof of mapping theorem of doublyconnected domains stating that any ring domain, i.e., doubly-connected domain with two continua as its boundary, can be mapped conformally (and schlicht) onto a standard domain, a concentric annular ring. ${ }^{(1)}$

Let B be a given ring domain on z-plane. By means of Riemann's mapping theorem with respect to simplyconnected domains, we may suppose that B is bounded by $|z|=1$ and by a regular analytic Jordan curve lying in the interior of the unit circle and enclosing the origin. Denote by \mathcal{f} the family of functions $F(Z)$ regular analytic and schlicht in $B, \quad|z|=1$ inclusive, which satisfy the following conditions:

$$
0<|F(z)|<1 \quad(z \in B) \text { and }|F(z)|=1 \quad(|z|=1) .
$$

Since the particular function Z belongs to the family, f is surely not empty. Putting

$$
m[F]=\underset{z \in B}{\operatorname{fininf}_{z \in B}|F(z)|}
$$

and

$$
q=\underset{F \in f}{f_{i n} \sup } m[F],
$$

q being evidently a positive quantity, we select a maximizing sequence $\left\{f_{n}(x)\right\}$:

$$
f_{n}(z) \in \mathcal{f}^{\prime}, \quad \lim _{n \rightarrow \infty} m\left[f_{n}\right]=q
$$

As f is a normal family, we can suppose withcut loss of generality that this sequence $\left\{f_{n}(z)\right\}$ itself converges uniformly in the wider sense in B and, by means of analytic continuability, also in its reflected domain with respect to $|z|=1$; the convergence on $|z|=1$ is, of course, uniform. Let the limit function be $f(z)$.

Since every $f_{n}(z)$ does not vanish in B and the origin lies outside B each branch of $\frac{1}{Z} \lg \frac{f_{n}(z)}{Z}$ is regular and one-valued in B. On the other hand, the region $r \leqq|z|<1$ with a positive x near to unity being contained in B, the value of integral

$$
\frac{1}{2 \pi i} \int_{|z|=\rho} \lg \frac{f_{n}(z)}{z} \frac{d z}{z}
$$

is independent of ρ belonging to the interval $x \leqq \rho \leq 1$. Comparing the real parts of the values of this integral for $\rho=r$ and $\rho=1$, we get the relation

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \lg \frac{\left|f_{n}\left(r e^{2 \theta}\right)\right|}{x} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \lg \left|f_{n}\left(e^{i \theta}\right)\right| d \theta=0
$$

which leads us to the inequality

$$
\lg _{g} \lambda_{r}\left[f_{n}\right] \equiv \lg \operatorname{Min}_{|z|=r}\left|f_{n}(z)\right| \leqq \lg _{g} r
$$

But, since $\left\{f_{n}(z)\right\}$ converges to $f(z)$ uniformly on $|z|=r$ and $\lambda_{x}[F]$ is a continuous functional, we get

$$
\lambda_{1}[f]=\lim _{n \rightarrow \infty} \lambda_{r}\left[f_{n}\right] \leqq r<1=|f(1)|
$$

Thus, the limit function $f(z)$ does not reduce to a constant and is hence regular and schlicht in B . Evidently it holds moreover

$$
0<q=m[f] \leqq r<1
$$

The image-domain $\Delta=f(B)$ of B by the mapping $w=f(z)$ is contained in the annular ring $q<|w|<1$ and possesses the circumference $|w|=1$ as its outer boundary component. We shall now prove that the another boundary component Γ of the domain \triangle coincides with the circumference $|w|=q$ and hence the original domain β is mapped by $w=f(z)$ just onto the annular ring $q<|w|<1$.

Assuming that it were not the case, let now

$$
q<\operatorname{Max}_{w \in \Gamma}|w|=\left|w^{*}\right| \equiv p<1, \quad w^{*} \in \Gamma .
$$

Denote by $w=g(\zeta)$ a mapping function between the exterior of Γ and $|\zeta|>p$, under the condition $g(\infty)=\infty$. The function $h(\omega)=g\left(\omega^{-1}\right)^{-1}$ is then regular in $|\omega|<p^{-1}$ and vanishes at $\omega=0$. Since it satisfies the inequalities $|h(\omega)|<q^{-1}$ $\left(|\omega|<p^{-1}\right)$ and $h(\omega) / \omega \neq$ const, we
obtain, by Schwarz's lemma,

$$
|h(\omega)|<\frac{q^{-1}}{p^{-1}}|\omega| \quad\left(|\omega|<p^{-1}\right)
$$

ie.,

$$
|g(\zeta)|>\frac{q}{p}|\zeta| \quad(|\zeta|>p)
$$

Let L be the curve on ζ-plane corresponding to $|w|=1$ by the mapping $w=g(\zeta)$ and put

$$
\operatorname{Max}_{\zeta \in L}|\zeta|=\left|\zeta^{*}\right| \equiv P, \quad \dot{\zeta}^{*} \in L
$$

As $\left|g\left(\zeta^{*}\right)\right|=1$, we have, by the above-mentioned inequality,

$$
1>\frac{q}{p} p, \quad \text { i.e., } \quad q<\frac{p}{p}
$$

Next, let $S=G(W)$ be a mapping fundion between $|W|<1$ and the interprior of L, under the condition $G(0)=0$. The function $G(W)$ is reguar in $|W|<1$, vanishes at $W=0$ and satisfies the inequality $|G(W)|<P$ ($|W|<1$) . Hence wo have, again by Schwarz s lemma.

$$
|G(W)| \leqq P|W| \quad(|W|<1)
$$

(It will also be easily seen that the equality sign here never appears for $0<|W|<1$.) Denote by C the curve on W-plane corresponding to $|\zeta|=p \quad$ by the mapping $\zeta=G(W)$ and put

$$
\operatorname{Min}_{W \in C}|W|=\left|W^{*}\right| \equiv Q, \quad W^{*} \in C .
$$

As $\left|G\left(W^{*}\right)\right|=p$, we have

$$
p \leqq P Q, \quad \text { i.e.. } \quad \frac{p}{P} \leqq Q
$$

Thus, we obtain the inequalities

$$
q<\frac{p}{p} \leqq Q .
$$

On the other hand, the composed funclion $w=f^{*}(x) \equiv G^{-1}\left(g^{-1}(f(z))\right)$ is admissible for the family fo, and satisfies the relation

$$
m\left[f^{*}\right]=Q>q
$$

This contradicts to the defining maximum-property of q. Hence, $w=f(z)$ must be a mapping function from B onto the annular ring $q<|w|<1$, and the proposed mapping theorem is thus completely proved.

In the above-stated proof, we have, essentially, made use of Riemann's mapping theorem with respect to simplyconnected domains alone. That the mapping function is uniquely determined except any rotation about $w=0$, can easily be established also by a similar argument. (2)
(*) Received September 30, 1949.
(1) Cf. also Y.Komatu, Ain alternierendoes Approximationsverfahren für konforme Abbildung van einem Ringgebiete aus einen Kreisring. Proc. Imp. Acad. Tokyo 21(1945), 146-155.
(2) See also low. cit. (1).

Tokyo Institute of Technology.

