ON A NON-ABELIAN THEORY OF ALGEBRALC

FUNCTIONS

By Hiralma TOYANA.

Contents

Introduction.

Bibllography.
Chapter I. Generalized diviscrs,
Chapter II. Representations of the

fundamental groups.

Chapter I1I. Hype¢rabelisn integrais.
Chapter IV. Divisor classes,
Chapter V. lLogarithmic dilferentials.
Chapter VI, Inverslon problem,
Chapter VII. Unitary representations.
Chepter VIII. Duality theorem.

Introducstion

The theory of Abelian functions of
Riemann snd Welerstrass reallzed that
great scientific prophecy snunciated in
Abel’s Theorem. That theory of Abelian
functions and thas theory of autemorphiec
functiona of F. Klein and H. Foincars,
which can be regarded as tvhe moust beau~
tiful and profound in the last cenvury,
came however to the gtandstill since the
appearance of H., Weyl’s admirsble book
on Riemann surface. After E. Ariin’s
research on quadretic function flelds
over finlte constant fleld; the tendency
of investigations 1s directsed rether to=-
wards the methodologicel purification
and sbstractization. Chlefly by the
efforts of H, PHasse, F, K. Schmldt, M.
Deuring and E. Wittt this branch was
ralsed to the high level of perfection
and culminasted in A. Well’s procf of the
Hiemann conjecture. But sll thege theo-
ries remsin within the 1imit of = Abelian
mathematics”™, in which the commutativity
of the underlying groups plays the cen-
tral role. ¢«

The first step into the non=- .
Abelian mathematics” was.made by A, Weil
in his pionsering work on the generali-
zation of Abelisn functions, which point-
ed out to us for the first time %the pos-
8ibility of the thseory of hyperabslisn
functions. In his work the non-commate-
tive fundamental group sppesred inestesd
of the commutative Bettl group, and in
accordance therewith the notlion of divi-
sors is generallzed. One may regard the
zeneralization of Riemann~Roch’s theorsm

gnd the =zaslogue of Abel”s Theorem 53
the chief foundations of his itheory.

In this articie X %ill develop a
nen-ibelian theory of elgebraic funcs
tlons after the model of 4. ¥ell. Iin
Chaepter I the normel form of divisoré is.
sbtained end by this normalizatlon the
slgebrale and srithmetical structure of
divisors and dlvigors cliasses iz luve~
stigated. Chapter II deals with the ale
gebraico~geometricael propertiez of the
get of reprusentations, which should
find some imporient applieations in the
following Chapters. Chapber III 1ls dse
voted te the desc tiom of hypsrehellan
iategeals and by n3 of thlas nsw notlon
the correspondences between diviscrs and
representations 15 explieltly rsalized.
In Chapbter IV we will obtsin the normal
form of divisor classes under soms Yegt-
ristions, and the slgnificance of ioga=
rithmle differentlials in our theory 1is
polnted out. Chapter V is devotsd to
the existeuce yroof of logarithmic d1f-
ferentials, which constitvtes ons of the
chief diffieulties of our theory. In
Charier VI we will prove the non-Abelien
extenslon oi Jeeobi’ s inversion problem,.
in tnapter VII the properties of unitary
ropregsentstiony asre discussed and we
understand that there exlst familiar
vonnactions with the ususl theory of ro-
preaentations. d<hapiter VIII 1s devoled
te the Jduslity theorom of the “undamental
Broup.

This work was Begun 1n 1943 end ale
wost finished in 1946, Lut the suthor hes
teen glven no means of publication ©iil
now owing to the wertime difficultisds af
our country,

At this occasinn I wish to offep
hearty thanks to Prof. S, Iyamge({Tokyol,
Prof, T.Tannska(Sendal), Mr. X, Iwasawe
{Tokyo), sna Mr. J. IgusalTokyo), who
have. glven me kind and veluable sdvicss
and criticisus,

. Square brap?aﬁs in the foot-nobe
retir to the bibvilography nlaced in the
next.
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Chapter I. Generalized divisors

Let F be & cloged Riemann surface
of an algebraic function field K of ge-~
nus P with complex numbers as its con-
stant field. Throughout-the present
article b 1s assumed as greater than
unity, or in other words, rational and
elliptic cases are excluded, for these
cases seem to present numerous peculi-
arities,

A signature N(p) 1is definied for
every point » on ZF , such that its
value is greater than | only in finite
number of points 7, 0&; ------- ¢ » which
are called brench polnta. en by the
wellknown theorem of uniformization
there exlsts one gpd only one maximal
covering surface 7 with that signature

NiP) . This surface & 1s no more
closed, but on the other hand simply
connected. When N{p) 1is everywhere 1
and there exists_po branch points, the
maximal surface % 1s the universal co=-
vering surface of F o

The group of covering transforma-
tions (¢ of F with respect to 7F , which
is the fundamental group of F , 1s an
infinite discrete group with 2p+{ gene-
rators 4, 0, -Qp, 8, $p.C,,-- C¢ which are sub-
Ject to the gollow:{ng relations:

4 -—1 pei
(TTa: 4. a7 €76 CorCom @
int

» ne Te

C[ CX. = —eo - tm(’/

(o= N(q) =12, £)

where (4, dz,—- Qp, 4,0z, - £ represent
2p period loops and (, (g, Cp are
circuits around the branch points G,

.- o ~

%CAS is well kmown, between T andr
lies the so-g¢alled covering surface of
homologles & , which corresponds to the
commutator subgroup of the unramified G.
Therefore the group of covering trans-
formations is lsomorphic to the Bettl
group of F . H. Weyl pointed out that
g: is the maximal unramified relatively
ABelian covering surface of i , which
is the exact analogue of the Hilbert
class field in the dlgebralc number the-.
ory.[37]. ~

When we map F conformally onto the

unit circle the fleld K becomes the fleld
of automorphic functions bslonglng to the
Fuchsian group isomorphic to &G , and %
can be regarded as a fundamental domein
of that Fuchsian group. Hereafter we
regard F , and (+ chiefly from
this point of view.
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16t be & point on “F and T bs a
1ocal uniformising parameter in ¢the usi-~
ghborhood of ¢ , When N{q)> I
that_és‘. 1ls & brageh point of F,
T=t7 (m=N(g))_ 1s a local uniforml-
sing parsmeter of F. We denote by ";,
the fisld of all functions meromorphi?
in the nelghborhcod of p , which possess
s Laurent expansion with respect to-tT
wilth only a finite number of negative
powers. 7t denotes & set of all pr-
order non-singular square metrices, whoae
elsmentas bslong to Kp . Such s sot
forms a group with orglmx*y matriz-pmol-

tiplication., If both matrices 1. and
Up!  belohging to M¥p ‘tave integral
elgments, is called s unit fuunction
matrix. Then the set ¥, of all

makes & subgroup of W ' . When ig
not & branch point, a coset of Yf, in WY,

is named a local divisor. Hereafter the
lecal divisor ls expressed by a big
German letter (P o If %: be a bran-
ch point, i.e. N(le) >, morsover the
invariance of ® a8 a set for the sube
stitution C: 1is sssumed., The point is
called the base point of B

As to the local divisor @ the
following theorem of normal forms holds?

Theorem L. Every local divisor
containg a uniquely determined cavonicsl
matriz with the form:

<% Nt O - - B

™ e :

§

. ‘

~ M t

0 C s 0 A
r Loy

/ \\ T

B«
with ordew

di

where (= d: </ = == N{(p) and
ii a polynomial of t only

< olk ¢ when d., =< and
< olx when d¢ 2 dx .
Proof. At first we show the exi-

stence of such a matrix. If we can obe
taln such & matrix by left maltiplicstion
of sultable unit function metrix to a
given matrix, then the so obtalned matrix
belongs to the divisor.

et be a matrix bslonging to
{60 Gz --- - O
921 622 - 627"
o= . :
eﬂ ““““““ evv

In the first column O, 6 --- 0.,
we select a element of the lowest order
and bring 1t to the first row by a left
maltiplication of a suiltable permutation
matrix s which evidently belongs
to  Up



0, * \

olf
As 0, =17 (aratr) (g401s of the Low-
est order, @“/

are integral ﬂfc‘}‘mctionS of T . Then

foA% - %
U, 6=
o Ao - )
Agsin, if we apply the same proce-

dure to the second column , then we ob-
tain the matrix

T o 6/2
o T
92. = . .
: N
o o )

A

By the Euclidean algorlithm we get
o *
9”,: ZT Z'T' 9/2

*
the order of @,, Dbeing < ol
By the left multiplication of U}

- ' B T B,z
/ ,Z' ] ,rd oz \ _ T"‘L
Uf 0.~ o \ 0 -
o 10 ) \
L \

Similarly we can spply the same
method to the 3rd,e.c..rth columns suc-
cessively and obtain finally the matrix

ol * *.
T GIZ oo 6[\’
;sz '
0 o
. Td\'

whers em is ; polynomial of order

<oy If B

I4
and § belong to the same
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4 ’
/Td' B - /'L-d' Q/z 9/;
( rdz ,
’ . , 2
§=U8 , 0~ g= [
) 0 oy
,Ce(r T

then the unit function matrix U—

1s canonlieal, because both B and
are canonical. ,
We get 7:°‘* = U, TY (= 4o 7D
80 U = | = ol

As to the (12) element

8:2.: 6,7, + u,z’r"l‘

As the orders of B2 and B. 1is
<< g s We conclude

’

WU,;z=0 elz: G'z

Similarly we obtain successively

’ .
.= 91’!, O =B, Gr=10r
and ul?-”u/yz e owm Uy =
Finally we get
8”" 9’, U= Er
Thus the uniqueness of the normal form
is proved. The exponents o, ,ola, --- olv

in the main diagonal have the followlng
meaning,

Lot TP< be the greatest common
divisor of all the k-order subdetermi-
nants In the matrix

@” B - - Oy
eu ' (
R

then

01"::\(3,/ oy = "(31, .- °(v: f}r"‘ (37’—/

If the point ~4s8 a branch po-
int the divisor must be
invariant with respect to C: {¢f=9¢ )
according to Well’s definition

C
6=U6

where (J is the unit function metrix

ol o C C. o
A T U T G-,
et ' i ;“z\ fad

o s o

" 2 o
O § ._C*r ,gi ks



Comparing the (1,2)-clement, we get

C. ) o
e/z = § ’912, T U T ¢

C.
Beceuse the degree of 0, and 0. 1is

Smaller than ole,
[« oL
6,1= ; 9/2_, Uz =0

We denote the fractional part of a real
number x by x> and the integral
part by [ x73

X =[x} +<{x>,

Now we set

(=S, i = [,

Oé ol‘.<rn,

ooy d,
Then § ‘= S ', and the function
0, /T% remaing inyarisnt. Therefore
the function G = f,./17 1is & polyno-
mial of t only. Let the degree of 0.
with respegt to T be g2 and
that ot 0, with respect to Tt Dbe

¥ .
" Mhen

312-< dz -+ N 0(2.

2§, = d, +%5,§

By subtraction
a, — d, < (—gk)
From d, = d, follows

’ *
o(z >j/2

and from d, =< oz
kS

oL = G

This argument appliies esslly to every
g:x « Thus the theorem ls completely
prov@d. Qo€ ode
For convenience we denote the dis-
gonal matrix on the left hand by

follows

<P>- .

and the canonical matrixz on the right
hand vy

/td‘ 612‘ T e/f\
" .
[@]J LN \
o }
£
We call the former < (> the Irac-

tional part and the latter the integral
part of the local divisor ( . Our
Theorem 1 ggserts the unlque docompogl-
tion of in the form <C>{P71 -
In the next theorem we prove the
Ffact; which may be looked upon as the
somewhat weakened form of ths Theorem 1.
Theorem 2. If a matrix $2-8(t)
belongs tc local divisor s Where

Oéa’1<”’1

152 = ‘\\\ 5

T4
L

and B {t) ig a matrix belonging to
K s then S2 is written ax followss
o
§o=P<p>P
where P is a permutetion matrix,
Procf. We write S§2 0 in a nor-
mal form:
Q0=-U<LE>FI,

Operating on both sides, wo obiain

QB =US< P [R]°
and

A0 =UadPp>IP]

where

“gd' / 7



From (1) and (2) we havo
A= zl,(:AU_-/

Expanding (J  1in the powsr series of
T

U=Uer+ UT+---
U=+ U T+---

‘Then
A=(U+ Garr-)alU+--=n)

A=Uau

We ses that A and A have the same
characteristic values, differing only in
the order. Finally we can conclude the
existence of the permutation matrix P.
such that

S2=P<p> P

Hext we go to the viswepolnt in the
large by the Ilntroduction of the divisor.

To every point # of F we sup-
pose defined a local divisor of r-th
order, which has 88 1ts base point,
and smong these only the finite number
of them is different from E., . Such
a ast of local dlvisors 1s called simply
a diviser o We will denote such
& divison .& Dby

8=(F 6B,

writing expliclitly only local divisors
different from FE. . Here the order
of ch 1s unessential. T

This expression corrsesponds to the
dscomposition of divisors in primary
onss. But the above notatlon dees not
mean multipllcation,

‘From the divisor 5 we can con-
struct the divisor of order |/ s O »
which we shell call the norm divisor

191 = (81, 180 - 16D

As in the case of local divisor we shall
call the divisor

<"8>$ (<@i>)'/\632>1 ‘—”:9<G)’“>)

and

Qo8.C.

(81 = ([RT, TR, --500.1)
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the fractlonsl snd integrel pert of “i')
respectively. The degree of & 13
detfined asg fqllcws:

By the Theorem 1 we obtain esslly:

deg <> 1s ecalled the ramification
degree of & . The dlvisor .89 B
for which <.9> = F
1s called unramifled.

Becausge of the above definltion of
local divisor the set of local
function matrizes (§%)”" forms also a
divisor which we shall call the contra-
gredient divisor and designate by

D% . & remark should be made, Lhat
the set of inveras metrices 7' (6e.& )
does not meke s dlvisor 3in our senss.

Theorem 3, deg (D)= -deg (.O)

and .
<Q"p= Pk /¥ >p’
where P ia a permutation matelx, and

deg {O> = deg .O>>

Proof, Consiaering 1.9"|=187i= },BIN'; o

get
deg (D) =~ deg.d
By the Theorem 1
S =<LA>[0]

B=9¥"> 07"

On the other hand
B = .9">1.9%]
We obtain, using the Theorem 2
LI =PLyY > p?
and
c!'e(g LI =degc9>>

Qa8 olis



In our definition of divisors the
ordinary multiplicatlon seems to be 4if-
ficult to introduces. But the direct or
Kronecker multiplication can be defined
as follows:

Let ,<9, respe. <9z
of order r, , respe. Iz . If

resp. §’ belongs to
B, resp. I,

’

ell.-." 9”’1 {6[1 Tt 6.’"'2

g- | & o'~

’

’

Bar - Bo bu  Bun,

We form a matrix of r,rg
is the left direct product.

06, ---00,
6% = : :

order, that

\ 66 00e.v)

employing Macduffee’s notation.[1i],

The (r, r,)~-divisor, which contains
all such B.x @ is called the left
direct product of .9, end O and
denoted by O,+ X .9, .. We see easily:

Theorem 4. deg (.9,. x .§,) = r,deg$,

-+ r,deg 5,
and
(O x> =P 8> x<3>>P”!
where P 1s a permutation matrix.
Then
deg <, x I, > = deg<<.8, >y
Proof. By the well-known formula

in the determinant theory

(Do xQal=181™ 1"

We obtain easily

deg (9, x /sz) = T,deg 49/ —+ EX
deg Iz .

As for the second formuls

B =<9, ) Fo=<I>1.]

34

be a divisor

30

Oy X Da= (0> x <IN ([9)x1.0.7)

Ne set
< '8/>)< <4?z>:" ««3>)\ <f(9z,>> {9
where e i1s a function of ¢ only. Then

by Theorem 2

<’<C),)< .134> = P<< 8/‘X 'é)z>> Pﬁ
Prom thia we get

deg< 9, X .9, = 428 LI D13,

Az a natural counterpart of direct pro-
duct we may define the direct sum

8 +8.-(7 O)
T BN A
0 .9,
St11l more esaily we can prove for bhe

direct sum
Theorsm 5.

deg (9, +J.) = aeg(d,) + adeg[d)
(D, 40y =43,>+<I.>

[, +321=[8,7+41]

As In the classlcel theory we can
introduce the notion of divisor class,
Two divisors O, ard <z of the
same order r, which can be obtained from
each other by the right multiplication
of a non-singular matrix £
belonging to (< , 18 seld to belong
to the ssme divisor class, that is,

8/2/31E.

Of course the direct product and sum of
divisors are not commutstive, but those
of divisor classes are commutative, for

0 Ef,\(—9, o>(0 E‘rz\ ('31 2
(Ehol)\o S, E,IOJ: @ »3,/
and

P(8,-x3)P =9, x5



Moreover considering the distributive
law:

9, X% (8, +8)= (9, x I)+(3,-x3.)

The following theorem holds

Theorem 6. The set of all divisor
classes 1s additive and multiplicaetively
closed, and addition and multiplication
are both commutative, associative and
distributixe,

This algebralc system of divisor
clasgses, which 1s denoted by
is a natural generalizetion of divisor
class group in the classical theory,
and the subsystem [), of divisor claa-
ses of degree () is also important.

Theorem 7. If O, and I
belong to the same class,

P<Y> P=¢.8.>
Proof.

S,% -3
<-8/> [-81] % = U<'<91> [(c)z_] .

By the Theorem 2,
PLOSPT= <> q.0.d.

This theorem asserts that the exponents

< I = 1,850c0eol) Of T
in <.9> at the base point 7« are
invariant, when we replace .5 by
any divisor equivalent to .H s If we
disregard thelr grdering. et Nax
be e number of h are equal tod
at Zx , then Nuw (4t = 1,2,... 4 ),
called the remification indices, are
class invariants of divisor classes. By
means of N« we can axpresss

—~/

deg (95— ZZ A Ne

A ’P’L/“
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For any divisor b3g s there
8xist functions § belonging to k
such that D F are everywhere finilts.
The set {9y of all such %  makes
a linear system. The dimenslon of such

£ is called the dimension of O
and denoted by dim .& . Together
with deg O is also dim O claas

invariant of a
et A9, and .O:. Dbe divisors and
r, and o, be their ordsrs,
then there may be a (r, ,r, )-matrix
belonging to < , such that

H,#.9;7 _is everywhere finite. We zee
1mmedfately that these & belongs
to {3,.x .9, )

By the above notation we can write
Riemann~Roch’ s theorem gensralised Ly
Well as follows:

dim(ﬁ,x,&f) == aim(J, x.J, x w

+ r,degd, — r, deg.J.
—f,
— degl Iy xd» -7 v, (p—-1),
where w is a differential divisor. This
formula we gzhall call the Rlemann-Roche

Well’s theorem, which plays the funds.
mental role in our whole theory.

(%) Received Merch 7, 1949.

Tokvo Institute of Technology.





