ON A NON-ABELIAN THEORY OF ALGEBRATC FUNCTIONS

By Riram TOXAMA.

Contents

Introduction.
Bibliography.
Chapter I. Generalized diviscrs. Chapter II. Representations of the fundsmental groaps.
Chapter III. Hyperabelian intagrois. Shapter IV. Divisor classes. Chapter V. Logarithmic differentials. Chapter VI. Inversion problem. Uhapter VII, Unitary representations. Shapter VITL. Duality theoreg.

Introduction

The theory of Abelian functions of Riemann ond Neierstrass realized that great scientific prophecy omunciated in Abel's Theorem. That theory of tuallary functions and the theory of automorphic functions of F. Klein and H. Foincare, which can be regarded as the most beavtiful and profound in the last century, came however to the standstill since the appearance of H . Weyl's admirable book on Riemann surface. after E. Artin's research on quadratic function fielas over finite constant fields the tendency of investigetions is directed rether towards the methodologicel puriffeation and ajstractization. Chlefly by the efrorts of H. Basse, F. $K_{\text {. Schmidt, }}$. Deuring and B. rititt this branch was raised to the high level of pertection and culminated in A. Well's proof of the Riemann conjecture. But all thege theories remain within the ilmit of "Abelian mathematics", in which the commatativity of the underiging groups plays the central role.

The first step, into the "nonAbelian mathematics" was made by As Weil in his pioneering work on the generalization of Abelian functions, which pointed out to us for the first time the possibility of the theory of kyperabelian functions. In his work the noncocmmata. tive fundamental group appeared znetead of the commutative Betti group, and in accordance therewith the notion of duvi= sors is generailzed. One nay regard the generalization of fiemann-Roch's theorsm
and the analogie of Aben's Theorem s. 3 the chlef foundations of his theory.

In this anticle 1 wizl fevelop a nomerbelian theory of algebraic funco thons atter the model of a. Hell. in Chepter I the nomel rom of divitame is cbtained end by this nomplization tne slgebrate and swithedical structure or divisors end divisors ciasses fa invem gtigated. Cnapter II deais with the al-genraico-geometrical propartiee of the sot of reprssentations, whioh should find some important appications in the Following Chapters. Chapter Itr is de votect tic the descriptian of hypstebelian Lntegrals and ry moans of thia not notion the correspondenes between divisure end representations fis exptioftiy racilzed. In Chapeer IV we wỉl obteln the riormal forin of divisor classes under sowe reatm niotions, and the slgnificance of logam Fithmie differentials in our theory is pointed out. Chapter V is deyoted to the existence proof of logarithmie alrferentials, which constitutes one of the chief difflewities of our theory. In Chapter VT ze will prove the non-abelien extension of Jecobs's incersion problem. In Gnapter yT the prorextses of witary propesentadions spe difcusaed and wo undsxatand that there axiat familiar connactions wich the usust theory of tow preaentations. Thapter VITI is devotqui te the tualitivy theoram of the Funamental groap.

This wosk was begun in 1945 evid alm most findshed is 1946, but the author hes bean given no means of publication till now ouling to the wertime difficultiss af our country.

At this occagion I wish to offer hearty thanks to Prosis S. Iyarege (Tokyo), Prof. T. Tanneks (Sendai) s Mr. I. Imesama (Tokyo), ard Mir. J. Isusa(Tokyo), who have given me kind ard veluable advices and criticisuas.

Square brackets in the foot note reler to the blollography riseed in the next.

Bibliography.
[1] ReAlexandraff - He Hopf, Topologie. Borling 1935.
[2] H.F. Bakars Abel's theorem and the allied theory including the theory of the theta functions, Cembridge, 1897.
[3] GeBiskhoff, Lettice theory: New Yosk: 1940.
[4] O.Blumenthal, Zum Eliminationsproblem bes anslytischen Funktionen mehrerer Veränderlicher, Math. Ann. $57 .(2903)$.
[5] G.Ghevaliey, Lf theorie du corps de classes, Annals of hatnematics, 41 (1940). S.394.
(6) ReFricke - Fiokien. Vorlesungen usber die Theoris der antomorphen Funktionen, I, Lelpzig, 1807.
[7] K Mensel G.Landsherg. Meorie der algebraischen Funixtionen oiner Verisbleng Leipute, 1902.
[8] B.von Korgijartó, Vorlssunger uaber Fooologie, Ie Beriln, 1923.
[9] SoLsfschetz, Topologst New Yerk, 1930.
Z.C. Macduffea,
[10] 1. Ratrices with elements in a principal ideal ring, Bull. Amer.Math.Soc. $39(1933)$. p. 56es. 584 .
[12] 2. Theory of metrices, Berlin, 1933.
[iE] Thvo, Mewarn, Almost perindse funetion in a group, I. Transactions of the hase Mathosoc. $36(2934)$. 8. $45-402$.
[13] (ex.Osgocd, Gohrbuch der Gunktioresm theories III.
H. Poincsre,
[14] 1. Sur les groupes des Equations inneapes Ceuvres, fome II. p. $500-401$.
[15] 2. ifmoires sux les fonctions zêtafuchsicnnes, Deuvses, Tome II. P.402-462.
[1e] B.Riemsnn, Theorie der Aoelschen Fanktionen, Ges. Werke, p.
[17] Leschlosinger, Neue Grundiagen fuar einen Intint tesimalkalkuol der Glatrizen, Math.Zeitscluipt, 33 (2928) 33-61.
[ie] J.Sehreiar-S. Vham, Sur le nombre des générateuxs a'un groupa topow logique compact et connexe F Fundementa Math. 24 (2935).
[19] FeSbetri - EoLoefflerg, Voxilesungen ueber aigebraische Geometrio. Leipzig, 1921.
[20] K.Shoda, Exnige Saetze ueber Matrio zen, Jep. Jour of Math.13. (1937), S.361-365.
[21] T. Tannaka, Ueber den Dualitaetssatz der nicht-kommutativen topologischen uruppen, Tohoku Math. Journ. 45 (1938), 1-12.
(22] E.C.Titchmarsh, The theory of functions, Oxford, (1932).
H. Tôyama,
[23] 1. Zur Theorie der hyperabelschen Fanktionen, Iroc.
[84] 2.II, Proc. Imp.Acad. Tokyo, 20 (1944). p.554-557.
[25] 3. III, Proc.Imp. Acad. Tokyo,20 (1944). p.558560.
(26] 4. IV, Proc.Tmp.Acad. Tokyo,22 (1946). p.184-190.
5. Veraligemeinerung des Abelschen Integrals und Periodenrelationen, Proc.Imp.icad. Tokyo. 22 (1946).
6. Ueber die Darstellungsklasse der Fundamentalgruppe, Proc. of Physico-Math.Soc.Jspan,26 (1944),41-42.
7. Ueber den nicht-Abelschen Hauptaivisorsatz, Proc. Imp. Acad. Tokyo. (1948).
8. On commutators of matrices, Proc. Imp.Acad. Dokyo, (1947).
V.Volterra -.B. Hostinsky, Opérations infinitésimales linéaires, Paris, (1938).
Bl.van der Waerden

1. Topologische Begruendung des Kalkuels der abzaehlenden Grometrie, Biath.Ann. 102 (1987). 337-362.
2. Moderne Algebra, II, 2-te Auf= lage, Berlin, 1940.
3. Einfuehrung in die algebraische Geometrie, Berlin, 1939,
A. Well,
4. Généralisation des fonctions abéliennes, Journal de Liouville, $17(1938)$. p.47-87.
5. On the Riemann hypothesis in function fields. Proc.of Nat. Acad.U.S.A. 35 (1941),p.345347 .
H.Werl,
6. Die Idee der Riemannschen Flaeche, 2-te Auflage, Lelpzig 1923.
7. Gruppentheorie und Quantenmechanik, Leqpeig, 1928.
8. Classicel groups, Princeton, 1939.

Chapter I. Generalized divisors
Let ${ }^{\prime}$ be a closed Rlemsnn surface of an algebraic function Pleld K of genus p with complex numbers as its constant field. Throughout the present article p is assumed as greater than unity, or in other words, rational and elliptic cases are excluded, for these cases seem to present numerous peculiarities.

A signature $N(\beta)$ is dofinied for every point γ on \mathcal{H}, such that its value is greater than 1 only in finite
 are called branch pointa. Then by the wellknown theorem of uniformization there exjsts one and only one maximal covering surface \mathcal{F} with that signature
$N(p)$. This surface $\check{\mathscr{F}}$ is no more closed, but on the other hand simply connected. When $N(\beta)$ is everywhere 1 and there exists no branch points, the maximal surface $\not \approx$ is the universal com vering surface of \mathcal{F}.

The group of covering transformations G of \mathcal{F} with respect to \mathcal{F}, which is the fundamental group of \mathcal{F} is an infinite discrete group with $2 p+\ell$ gersem rators $a_{1}, a_{2}, a_{p}, f_{1} \cdots b_{p}, c_{1}, \cdots c_{l}$ which are subject to the following relations:

$$
\begin{aligned}
& \left(\prod_{i=1}^{p} a_{i} b_{i} a_{i}^{-1} b_{i}^{-1}\right) C_{1} c_{2} \cdots C_{\ell}=e \\
& C_{1}^{n_{1}}=C_{i}^{n_{2}}=\cdots=C_{\ell}^{n_{\ell}}=e \\
& \left(n_{i}=N\left(q_{1}\right), i=1,2, \cdots l\right)
\end{aligned}
$$

where $a_{1}, a_{2}, \ldots a_{p}, f_{1}, b_{2}, \ldots-f_{p}$ represent $2 p$ period loops and $C_{1}, C_{2}, \cdots \cdots C_{l}$ are circuits around the branch points qu, \cdots Ol o is well known, between \mathcal{F} and $\not \approx$ les the so-called covering surface of homolagies \mathcal{F}, which corresponds to the commutator subgroup of the unramified G. Therefore the group of covering transo formations is isomorphic to the Betti group of Fi. H. Weyl pointed out that \mathcal{F} is the maximal unramified relatively Abelian covering surface of \mathcal{F}, which is the exact analogue of the Hilbert class field en the algebraic number theory.[37].

When we map $\underset{F}{ }{ }^{7}$ conformally onto the unit circle the field K becomes the field of automorphic functions belonging to the Fuchsian group isomorphic to G, and \mathcal{F} can be regarded as a fundamental domain of that Fuchsian group. Hereafter we regard \mathcal{F}, $\not \approx$ and G chlefly from this point of view.

Let ϕ bo a point on find t be a local uniformising parameter in the nowghborhood of β. When $N(\%)>1$ 。 that is. of is brazch point of F. $\tau=t^{\frac{1}{\pi}}(n=N(\eta))$ is a local minormi. sing parameter of \mathfrak{F}. 1 de dente by \mathcal{K}_{p} the field of all functions meromorphit In the neighborhood of ϕ, which possess 2 Laurent expanaion with respect to τ with only a finite number of negative powers. Jof γ denotes set of all r order non-singular square matrices. Whoose elements bslong to $\bar{K} p$. Such s set forms a croup with ordinamy matrix mollo tiplicatiox. If both matroces U_{s} and Ub belongeng to ho hate integrel elemonts, J_{f} is called a unit function matrix. Thon the set Yep of all Uf
 not a brench point, a cosot of Ue in of p_{0} is named a local divisor. Hereafter the local divisor is expressed by a big German letter β - If of i be a brance ch point, 1.8. $N\left(q_{i}\right)>1$, moreoverv the invariance of β as a set for the subo stitution C_{i} is assumed. The point is called the base point of β

As to the local divisor β 攺 the following theonem of normal forms holds: Theorem 2. Every 2ocal dimism (β contains a uniquely determinod canonical matria with the form:

whexe $0 \leqslant d_{i}<m=N(p)$ and $\theta_{i n}$ is a polyromial of t only with ordes $\leqq d_{k}$ when $d_{i}<d_{k}$ sud \& α_{k} when $d_{i} \geqq d_{k}$
proof. At first we show the exi. stence of such a matrix. If we can ob. tain such a matrix by left multipliestion of suitable unit finction matrix to a given matrix, then the so obtainod mstrix belongs to the divisor.

β Let | θ |
| :---: |
| $\theta=\left(\begin{array}{cccc}\theta_{11} & \theta_{12} & \cdots & \theta_{1 r} \\ \theta_{21} & \theta_{22} & \cdots & \theta_{2 r} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ \theta_{r 1} & \cdots & \cdots & \theta_{r r}\end{array}\right)$ |

In the first column $\theta_{11}, \theta_{1,} \cdots \theta_{v,}$ we select a element of the lowest order and bring it to the first row by a laft multiplication of a suitable parmatation matrix P, which evidently belongs to Vep

$$
\begin{gathered}
\theta_{1}=P \theta \\
\theta_{1}=\left(\begin{array}{cc}
\theta_{11} & * \\
* & * \\
* &
\end{array}\right)
\end{gathered}
$$

As $\theta_{11}=\tau^{\alpha_{1}}\left(a_{0}+a_{t+}\right),\left(a_{0} \neq 0\right)$ is of the $10 \mathrm{w}-$ est order, $\theta_{i 1} / \theta_{11}^{\prime}$
are integral functions of τ. Then

$$
U_{\dot{p}} \theta_{1}=\left(\begin{array}{cccc}
\tau_{\alpha_{1}} & * & \cdots & * \\
\vdots & * & \cdots & *
\end{array}\right)
$$

Again, if we apply the same procedure to the second column, then we obtain the matrix

$$
\theta_{2}=\left(\begin{array}{cccc}
\tau^{\alpha_{1}} & \theta_{12} & & \\
0 & \tau^{\alpha_{2}} & & \\
\vdots & & \ddots & \\
\vdots & & \ddots & \ddots \\
0 & 0 & &
\end{array}\right)
$$

By the Euclidean algorithm we get

$$
\theta_{12}=q \tau^{\alpha_{2}}+\theta_{12}^{*}
$$

the order of θ_{12}^{*} being $<\alpha_{2}$ By the left multiplication of U_{p}

$$
U_{p} \theta_{z}=\left(\begin{array}{ccc}
1 & -q & \\
& 1 & 0 \\
& \ddots & \ddots \\
0 & & 1
\end{array}\right)\left(\begin{array}{lll}
\tau^{\alpha_{1}} & \theta_{12} & \\
& \tau^{\alpha_{2}} & \\
0 & \ddots & \\
& &
\end{array}\right)=\left(\begin{array}{cc}
\tau^{\alpha_{1}} & \theta_{12} \\
& \tau^{\alpha_{2}} \\
0 & \ddots \\
0 & \\
&
\end{array}\right)
$$

Similarly we can apply the same method to the 3 ra,....orth columns successively and obtain finally the matrix

$$
\left(\begin{array}{cccc}
\tau^{\alpha_{1}} & \theta_{12}^{*} & \cdots & \theta_{1 r}^{*} \\
& \tau^{\alpha_{2}} & & \vdots \\
& \ddots & & \vdots \\
0 & & \ddots & \\
& & & \tau^{\alpha^{\alpha}}
\end{array}\right)
$$

where $\theta_{i \kappa}$ is a polynomial of order $<\alpha_{\beta}$ If ${ }^{\bullet} \theta$ and θ^{\prime} belong to the same
$\theta=U \theta^{\prime}, \theta-\left(\begin{array}{ccc}\tau^{\alpha_{1}} & \theta_{12} & \cdots \\ & \tau^{\alpha_{2}} & \\ \\ 0 & & \\ \alpha^{\alpha_{r}}\end{array}\right) \quad \theta^{\prime}=\left(\begin{array}{cccc}\tau^{\alpha_{1}^{\prime}} & \theta_{12}^{\prime} & & \theta_{17}^{\prime} \\ & \tau^{\alpha_{2}^{\prime}} & & \\ & & \ddots & \\ 0 & & & \tau^{\alpha_{1}^{\prime}}\end{array}\right)$
then the unit function matrix U is canonical, because both θ and
θ^{\prime} are canonical.
We get $\tau^{\alpha_{i}}=u_{2}, \tau^{\alpha_{i}^{\prime}}(i=1, \cdots, \gamma)$
so $u_{i r}=1, \alpha^{\alpha_{i}=\alpha_{i}^{\prime}}$
As to the (12) olement

$$
\theta_{12}=\theta_{12}^{\prime}+u_{12} \tau^{\alpha_{2}}
$$

As the orders of θ_{12} and θ_{12}^{\prime} is
$<\alpha_{2}$, we conclude

$$
u_{12}=0 \quad \theta_{12}=\theta_{12}^{\prime}
$$

Similarly we obtain successively

$$
\theta_{1},=\theta_{13}^{\prime}, \theta_{14}=\theta_{14}^{\prime}, \cdots \quad \theta_{1 r}=\theta_{1 r}^{\prime}
$$

and $u_{13}=u_{14}=\cdots=u_{1 r}=0$
Finally we get

$$
\theta=\theta^{\prime}, \quad U=E_{r}
$$

Thus the uniqueness of the normal form is proved. The expenents $\alpha_{1}, \alpha_{2}, \ldots \alpha_{r}$ in the main diagonal have the following meaning.

Let $\tau^{\beta \kappa}$ be the greatest common divisor of all the k-order subdeterminants in the matrix

then

$$
\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}-\beta_{1}, \cdots \alpha_{T}=\beta_{r}-\beta_{r-1}
$$

Int If the point p is a branch poinvariant with respect to $C_{i} \quad\left(p=q_{i}\right)$ according to Weil's definition

$$
\theta^{c_{0}}=U \theta
$$

where U is the unit function matrix

Comparing the (1,2)-element, we get

$$
\theta_{12}^{c_{1}}=\zeta^{\alpha_{1}} \theta_{12}+u_{12} \tau^{\alpha_{2}}
$$

Because the degree of $\theta_{12}^{c_{1}}$ and θ_{12} is smailer than α_{2},
$\theta_{12}^{c_{i}}=\zeta^{\alpha_{1}} \theta_{12}, \quad u_{12}=0$
We denote the fractional part of a real number x by $\langle x\rangle$ and the integral part by $[x]$

$$
x=[x]+\langle x\rangle
$$

Now we set

$$
\begin{aligned}
& d_{1}=\left\langle\frac{\alpha_{i}}{n}\right\rangle n, \quad \alpha_{i}^{\prime}=\left[\frac{\alpha_{i}}{n}\right] n \\
& 0 \leqq d_{i}<n
\end{aligned}
$$

$g_{12}<\alpha_{2}+n \alpha_{2}$
$=g_{12}=d_{1}+n g_{12}^{*}$

By subtraction

$$
a_{1}-a_{2}<\left(\alpha_{2}^{\prime}-g_{2}^{*}\right)
$$

From $d_{1} \geqq d_{2}$ follows

$$
\alpha_{z}^{\prime}>g_{1 z}^{*}
$$

and from $d_{1}<d_{2}$ follows

$$
\alpha_{2}^{\prime} \geqq g_{12}^{*}
$$

This argument appiles easily to every
gik. Thus the theorem is completely proved: q.ee.d.

For convenience we denote the disgonal matrix on the left hand by
$\langle\beta\rangle=\left(\begin{array}{cccc}\tau^{\alpha_{1}} & & & \\ & \tau^{\alpha_{2}} & & 0 \\ & & \ddots & \\ & 0 & & \ddots \\ \\ & & & \tau^{\alpha_{v}}\end{array}\right)$
and the canonical matrix on the rignt hand by
$[\beta]=\left(\begin{array}{cccc}t^{\alpha_{1}} & \theta_{12} & \cdots & \theta_{12} \\ & t^{\alpha_{2}} & & \vdots \\ & \ddots & & \vdots \\ 0 & & \ddots & \vdots \\ & & & t^{\alpha^{2}}\end{array}\right)$
We call the fomer $<\beta>$ the frec. tional part and the latter the integral part of the local divisor β. Our Theonem 1 gsserts the unique decompog? tion of β in the form $\langle\beta\rangle[\beta]$. In the next theorom we prove the fact, which may be looked upon as the somewhat weakened form of the Theorem 1.

$$
\text { Theorem 2. if a matrix } \widehat{S_{2}} \theta(t)
$$

belongs to locel divisor β, where
$\Omega=\left(\begin{array}{lllll}\tau^{d_{1}} & & & \\ & \tau^{d_{2}} & & \\ & & \ddots & \\ & & \ddots & \\ & & & \tau^{d_{r}}\end{array}\right), \quad 0 \leq d_{t}<n$
and $\theta(t)$ ia a matrix belonging to
K, then Ω is writter as follows:

$$
\Omega=P\langle\beta\rangle P^{-1}
$$

where P is a permutation matrix. Proot. We write $\Omega \hat{\theta}$ in a norm mal form:

$$
\Omega \theta=U\langle\beta\rangle\left[\theta^{\prime}\right] .
$$

Operating C ouboth aicos. wo obtain

$$
\Omega^{c} \theta^{c}=U^{c}\langle\beta\rangle^{c}[\beta]^{c}
$$

and
$\Delta^{\prime} \Omega \theta=U^{c} \Delta\langle\beta\rangle[\beta]$

曷here
$\Delta^{\prime}=\left(\begin{array}{llll}\zeta^{d_{1}^{\prime}} & & \\ & \zeta^{d_{2}^{\prime}} & & \\ & \ddots & \\ & & \ddots & \zeta^{d_{v}^{\prime}}\end{array}\right), \Delta=\left(\begin{array}{lll}\zeta^{d_{1}} & \\ & \zeta^{d_{2}} & \\ & & \\ & & \\ & & \zeta^{d_{r}}\end{array}\right)$

From (1) and (2) we havo

$$
\Delta^{\prime}=V^{c} \Delta U^{-1}
$$

Erpanding U in the powsr sexies of τ

$$
\begin{aligned}
& U=U_{0}+U_{1} T+\cdots \\
& U^{-i}=U_{0}^{-i}+U_{1}^{\prime} \tau+\cdots
\end{aligned}
$$

Then

$$
\begin{aligned}
& \Delta^{\prime}=\left(U_{0}+U_{1} \zeta t+\cdots\right) \Delta\left(U_{0}^{-1}+\cdots \cdots\right) \\
& \Delta^{\prime}=U_{0} \Delta U_{0}^{-1}
\end{aligned}
$$

We see that \triangle and \triangle^{\prime} have the same characteristic values, differing only in the order. Finally we can conclude the existence of the permutation matrix P. such that

$$
\Omega=P<\beta>P^{-1}
$$

q.e. ${ }^{\text {d. }}$

Next we go to the viow-point in the large by the introduction of the divisor. To every point ρ of \mathcal{F} we suppose dofined a local divisor of p-th order, which has p as its base point, and among these only the finite number of them is different from E_{+}. Such a set of local divisors is called simply a divisor \mathcal{D} - Wo will denote such a divison θ by

$$
\theta=\left(\beta_{1},\left(\beta_{2}, \cdots \beta_{n}\right)\right.
$$

wifting explicitly only local divisors different fiom E_{r} - Here the order of β_{i} is unessential.

This expression corresponds to the decomposition of divisors in primary onss. But the above notation dees not mean multiplication.

From the divisor 27 we can construct the divisor of order 1,121 , which we shall call the norm divisor
$|D|=\left(\left|\beta_{1}\right|,\left|\beta_{2}\right|, \cdots\left|\beta_{n}\right|\right)$
As in the cage of local divisor we ghall call the divisor
$\langle D\rangle=\left(\left\langle\beta_{1}\right\rangle,\left\langle\beta_{2}\right\rangle, \cdots,\left\langle\beta_{m}\right\rangle\right)$
anc

$$
[D]=\left([\beta,],\left[\beta_{z}\right], \cdots,\left[\beta_{n}\right]\right)
$$

the fractional and integral part of 9 respectively The degree of \mathcal{O} 是 detined sis follows:

$$
\operatorname{deg}(\theta)=\sum_{i=1}^{n} \operatorname{deg}\left|\beta_{i}\right|
$$

By the Theorem 1 we obtain ossliy:

$$
\operatorname{deg}(D)=\operatorname{dog}\langle\delta\rangle+\operatorname{dog}[D]
$$

deg $\langle 9\rangle$ is celled the ramificettor degree of 8 . The alvisor 8 . for which $\langle\otimes\rangle=E$ is called unramified.

Because of the above definition of
local divfsor θ the set of locel function matrises $\left(\theta^{2}\right)^{-1}$ froms also a divisor which we shall call the contro gredient divisor and designate by
\mathcal{D}^{k} - A remark should be made, that the get of inverse matricos $\theta^{-1}(\theta \in \overparen{D})$ does not make a divisor in our sonse., Theorem 3. $\operatorname{deg}\left(D^{5}\right)=-\operatorname{deg}(D)$ and

$$
\left.\left\langle 2^{k}\right\rangle=P\langle\Delta\rangle^{-1}\right\rangle P^{-1}
$$

where $P \quad 13$ a permutation matrix. and

$$
\left.\operatorname{deg}\left\langle D^{k}\right\rangle=\operatorname{deg}\langle\Delta\rangle^{-1}\right\rangle
$$

Proof. Consiaering $\left|D^{k}\right|=\left|\theta^{-i}\right|=|D|^{-1}$, get

$$
\operatorname{deg}\left(D^{k}\right)=-\operatorname{deg} \theta
$$

By the Theorem 1

$$
\begin{aligned}
& \theta=\langle D\rangle[D] \\
& D^{k}=\left\langle\langle Q\rangle^{\prime \prime}\right\rangle[D]^{\alpha}
\end{aligned}
$$

On the other hand

$$
g^{k}=\left\langle D^{\prime \prime}\right\rangle\left[g^{k}\right]
$$

We obtain, using the Theorem 2

$$
\left\langle D^{n}\right\rangle=P\left\langle\left\langle\theta^{-1}\right\rangle P^{-1}\right.
$$

and

$$
\operatorname{deg}\left\langle g^{k}\right\rangle=\operatorname{deg}\left\langle\langle\mathcal{D}\rangle^{-1}\right\rangle
$$

In our definition of divisors the ordinary mulciplication seems to be difficult to introduce. But the direct or Kronecker multiplication can be defined as follows:

Let θ_{1} resp. θ_{2} be a divisor

θ_{1} resp. θ_{z},

$$
\theta=\left(\begin{array}{ccc}
\theta_{11} & \cdots & \cdots \\
\theta_{1 r_{1}} \\
\theta_{21} & & \\
\vdots & & \\
\theta_{r_{1} 1} & \cdots & \theta_{r_{1} r_{1}}
\end{array}\right), \theta^{\prime}=\left(\begin{array}{ccc}
\theta_{11}^{\prime} & \cdots \cdots & \theta_{1 r_{2}}^{\prime} \\
\vdots & & \vdots \\
\vdots & & \vdots \\
\theta_{r_{21}}^{\prime} & & \theta_{r_{2} r_{2}}
\end{array}\right)
$$

We form a matrix of $r_{1} r_{2}$ order, that is the left direct product.

$$
\theta \cdot x \in_{\theta^{\prime}}^{\prime}=\left(\begin{array}{cccc}
\theta \theta_{11}^{\prime} & \cdots & \theta \theta_{1 r_{2}}^{\prime} \\
\vdots & & \vdots \\
\theta \theta_{r_{2} 1}^{\prime} & & & \\
& \theta_{r_{2} r_{2}}^{\prime}
\end{array}\right)
$$

omploying Macduffee's notstion. [ii].
The ($r_{1} r_{2}$)-divisor, which contains all such $\theta \cdot x \theta^{\prime}$ is called the left direct product of \mathcal{D}_{1} and \mathcal{D}_{2} and denoted by $\mathcal{O}_{1} \cdot x \mathcal{D}_{2}$ - We see easily:

Theorem 4. $\operatorname{deg}\left(\theta_{1} \times \theta_{2}\right)=r_{2} \operatorname{deg} \vartheta_{1}$ $+\quad r_{1} \operatorname{deg} \Theta_{2}$
and

$$
\left.\left.\left\langle\mathcal{D}_{1} \cdot x \mathcal{D}_{2}\right\rangle=P \ll \mathcal{O}_{1}\right\rangle \cdot x\left\langle\mathcal{Q}_{2}\right\rangle\right\rangle P^{-1}
$$

where $\underset{\text { Then }}{P}$ is a permutation matrix.

$$
\operatorname{deg}\left\langle Q_{1} \cdot \times Q_{2}\right\rangle=\operatorname{deg}\left\langle\left\langle Q_{1}\right\rangle \cdot \times Q_{2}\right\rangle
$$

Proof. By the well-known formule in the determinant theory

$$
\left|D_{1} \cdot x \mathscr{D}_{2}\right|=\left|D_{1}\right|^{r_{2}}-\left|\mathcal{D}_{2}\right|^{r_{1}}
$$

We obtain easily

$$
\operatorname{deg}\left(D_{1} \times \theta_{2}\right)=r_{2} \operatorname{deg} \theta_{1}+
$$

$\operatorname{deg} P_{2}$
As for the second formula
$\theta_{1}=\left\langle\theta_{1}\right\rangle\left[\theta_{1}\right], \theta_{2}=\left\langle Q_{2}\right\rangle\left[\theta_{2}\right]$
so

$$
\theta_{1} \cdot x \theta_{2}=\left(\left\langle\theta_{1}\right\rangle \cdot x\left\langle\mathcal{Q}_{2}\right\rangle\right)\left(\left[\theta_{1}\right] \cdot x\left[\theta_{2}\right]\right)
$$

We set
$\left\langle D_{1}\right\rangle \cdot \times\left\langle\theta_{2}\right\rangle=\left\langle\left\langle Q_{1}\right\rangle \cdot x\left\langle\alpha \theta_{2}\right\rangle\right\rangle \cdot \theta$
where θ is a function of tonly, Then by Theorem 2

$$
\left.\left.\left\langle\theta_{1} \cdot \times D_{2}\right\rangle=P \ll D_{1} \cdot \times \theta_{2}\right\rangle\right\rangle P^{-1}
$$

From this we get

$$
\left.\operatorname{deg}\left\langle\theta_{1} \cdot \times \theta_{2}\right\rangle=\operatorname{dog}\left\langle Q_{1}\right\rangle \times\left\langle Q_{2}\right\rangle\right\rangle
$$

As a natural counterpart of direct product we may define the direct sum

$$
\theta_{1}+\theta_{2}=\left(\begin{array}{cc}
\theta_{1} & 0 \\
0 & \theta_{2}
\end{array}\right)
$$

Still more easily we can prove for the direct sum

Theorem 5.

$$
\begin{aligned}
& \operatorname{deg}\left(\partial_{1}+D_{2}\right)=\operatorname{deg}\left(\mathscr{D}_{1}\right)+\operatorname{deg}\left(g_{2}\right) \\
& \left\langle D_{1}+\mathscr{D}_{2}\right\rangle=\left\langle\mathscr{D}_{1}\right\rangle+\left\langle\mathscr{D}_{2}\right\rangle \\
& {\left[\mathscr{D}_{1}+\mathcal{D}_{2}\right]=\left[\mathscr{D}_{1}\right]+\left[\mathscr{D}_{2}\right] .}
\end{aligned}
$$

As in the classicel theory we cen introduce the notion of divisor class. Two divisors D_{1} and D_{2} of the same order r, which can be obtained from each other by the right multiplication of a non-singular matrix Φ belonging to K, is said to beiong to the same divisor cless, that is.

$$
\theta_{1}=\rho_{2} \Phi
$$

Of course the direct product and sum of divisors are not commutative, but those of duisor classes are commutative, for

$$
\left(\begin{array}{lc}
0 & E_{r_{1}} \\
E_{r_{2}} & 0
\end{array}\right)\left(\begin{array}{ll}
\theta_{1} & 0 \\
0 & g_{2}
\end{array}\right)\left(\begin{array}{cc}
0 & E_{r_{2}} \\
E_{r_{1}} & 0
\end{array}\right)=\left(\begin{array}{cc}
g_{2} & 0 \\
0 & \theta_{1}
\end{array}\right)
$$

and

$$
P\left(\theta_{1} \times \theta_{2}\right) P^{-1}=\theta_{2} \times \theta_{1}
$$

Moreover considering the distributive 1aw:

$$
D_{1} \times\left(\rho_{2}+D_{3}\right)=\left(\theta_{1} \times \theta_{2}\right)+\left(\theta_{1} \times \mathcal{S}_{2}\right)
$$

The following theorem holds
Theorem 6. The get of all divisor classes is additive and multiplicetively closed, and addition and multiplication are both commutative, associative and distributiase.

This algebraic system of divisor classes, which is denoted by D, is a natural generalization of divisor class group in the classical theory, and the subsystem D, of divisor claso ses of degree 0 is elso important.

Theorem f. If \mathcal{D}_{1} and \mathcal{D}_{2} belong to the same class,

$$
P\left\langle Q_{1}\right\rangle P^{-1}=\left\langle\theta_{2}\right\rangle
$$

Proof.
$\rho_{1} \Phi=\mathscr{D}_{2}$

$$
\left\langle g_{1}\right\rangle\left[\theta_{1}\right] \Phi=U\left\langle g_{2}\right\rangle\left[D_{2}\right] .
$$

By the Theorem 2,

$$
P\left\langle\mathscr{Q}_{1}\right\rangle P^{-1}=\left\langle\mathscr{S}_{2}\right\rangle \quad \text { q.e. } \alpha_{0}
$$

This theorem esserts thet the exponents $d_{i} \quad(1=1,2, \ldots . . r)$ of τ In $\langle\mathcal{Q}\rangle$ at the base point $\% \mu$ are invariant, when we replace \forall by any divisor equivalent to P, if we disregard their ordering. Let $N_{\mu \alpha}$ be n number of d_{i} which are equal to α at σ_{μ}, then $N_{\mu \alpha}\left({ }_{\mu}=1,2, \ldots \ell{ }^{4}\right.$), called the ramification indices, are class invariants of divisor classes. By means of $N_{\mu \alpha}$ we can express:

$$
\operatorname{deg}\langle\Omega\rangle=\sum_{\mu} \sum_{\alpha=0}^{n_{\mu}-1} \frac{\alpha N_{\mu \alpha}}{n_{\mu}}
$$

For any divisor \mathcal{D}, thero exist functions Φ belonging to k auch that $D \Phi$ are everywhere findto. The set $\{D\}$ of all such $\bar{\Phi}$ mabtes a linear Bystem. The dimension of such $\{8\} \quad$ is called the dimension of θ and denoted by dim \mathcal{O}. Together with deg θ isalso dim 9° clas invariant of θ and ist be divisors and r_{1} and r_{2} be their orderss then there may be a (x_{1}, r_{2}) matrix $0_{1} \frac{\text { 雷 }}{}{ }^{-1}$ belonging to k everywhere finite. we see immedtately that these Φ belongs to $\left\{\mathcal{\theta}_{1} \cdot \times \mathcal{Q}_{2}^{K}\right\}$.

By the above, notetion we can write Riemann-Roch's theorem generalised by Weil as follows:

$$
\begin{gathered}
\operatorname{dim}\left(\rho_{1} \times \mathcal{D}_{2}^{k}\right)=\operatorname{dim}\left(\mathcal{D}_{2} \times \rho_{1} \times w\right) \\
+r_{2} \operatorname{deg} \mathcal{Q}_{1}-r_{1} \operatorname{deg} \rho_{2} \\
-\operatorname{deg}\left\langle\left\langle Q_{1}\right\rangle \times\left\langle Q_{2}\right\rangle\right\rangle-x_{1} x_{2}(p-1),
\end{gathered}
$$

where is a differential divisor. This formula we shail call the Riemanmmoche Weil's theorem. which plays the funda.mental role in our whole theory.
(*) Recgifed March 7, 1849.

Tokyo Ingtitute of Tachnology.

