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Intr oduct i on

The theory of AbelIan functions of
Riemann snά Weierstrass realized that
great scientific prophecy enunciated in
Abel's Theorem* That theory of Abelian
functions and the theory of automorphic
functions of F. Klein and H

o
 Foincare,

which can be regarded as chθ most beau-
tiful and profound in the last century,
came however to the standstill since the
appearance of H. Wβyl

f
β admirable book

on Riemann surface. After B Artin's
research on quadratic function fields
over finite constant field* the tendency
of investigations is directed rather fco«
wards the methodological purification
and abstractizatίon* Chiefly by the
efforts of H. Basse, F* K. Schmidt, M«
Deurlng and E. Witt this branch was
raised to the high level of perfection
and culminated in A Λfeil* a proof of the
Kiemann conjecture* But all the,se theo-
ries remain within the limit of

 r
 Abelian

mathematics*', in which the commatativity
of the underlying groups plays the cen-
tral a?ole

 ζζ

The first step into the non- -
Abelian mathematics" was.made by A* Weil
in- his pioneering work on the generali-
zation of Abelian functions, which point-
ed out to us for the first time the pas*
sibility of the theory of hyperabelian
functions. In his work the non~CGϊBmut&»
tive fundamental group appeared instead
of the commutative Bettl -group, and in
accordance therewith the notion of, divi-
sors is generalized. One may regard the
generalization of Riβmann-Roeh's h

and the analogue of Abel's Theorem as
the chief foundations of his theory*

In this article I will develop a
nor?-Abelian theory of algebraic func-
tions after fche model of A Weil* In
Chapter I the normal form of divisors' is-
obtained and by this normalization til©
algebraic and- arithmetical structure of
divisors &nά divisors classes is inve-
stigated* Chapter II deals with the al-
gebraieo-geometrical properties of the
set of representations, which should
find some important applications in the
following Chapters. Chapter III ίa de-
voted tc the description of hyp^rabelian
integrals and b^means of this new notion
the correspondence between divisors &nά
representations is explicitly realised*
In Chapter IV we will obtain the normal
form of όlvlaor classes under som© rest-
rίctions, and the significance of loga-
rithmic differentials in our theory is
pointed out Chapter V is devoted to
the -existence proof of logarithmic dif-
ferentials, which constitutes one of the
chief difficulties of our theory* In
Chapter ¥1 ve will prove the non-Abβlian
extension of Jacob1' s inversion problem*
In Gnaptβr VJI the properties of unlt&ry
representations are discussed &na w©
understand that there ©xist familiar
connections with the usual, theory of rβ -
preaentatidng* Criapter V1IΓ is devoted
to the duality theoras? of the fundamental
group

This work was begun in 1945 *mά al-
most finished in 1946

9
 but the author has

been given no means of publication till
now owing to the wartime difficulties <r>f
ovit country.

At this occasion I wish to offer
hearty thanks to Prof* S* lya iaga(Tokyo.),
Prof •T.Tannaka(Sβndai), Mr

β
 K* Iwas&wa

(Tokyo), &na Mr J. Igusa(Tokyo), who
have, given me kind and valuable advices
and criticismso

Square brackets in t-hβ foot-note
refer to the bibliography placed in the
next.
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Chapter I Generalised divisors

Let 3* be a closed Riβmann surface
of an algebraic function field K of ge-
nus £ with complex numbers as its con*
stant field* Throughout "the present
article \> is assumed as greater than
unity, or in other words, rational and
elliptic cases are excluded, for these
cases seem to present numerous peculi-
arities*

A signature N(j>) is definied for
every point $ on ,3* such that its
value is greater than 1 only in finite
number of points fy. 3U, ----- %ι , which
are called branch points* Then 'bj the
wellknown theorem of uniformiz&tion
there exists, one and only one maximal
covering surface £f% wit^th&t signature
Ntjp)

 #
 This surface J is no more

closed, but on the other hand simply
connected* When Nlf) is everywhere 1
and there exists^po branch points, the
maximal surface ̂  is the universal co-
vering surface of ^ ®

The group of covering transforma-
tions G* of Jf with respect to ^ , which
is the fundamental group of J , is an
infinite discrete group with 2|?-t-£ gen»«
x ators Gίι,Cίι,-ΰLj>,$r*"fy.G,—

 c
-t "which are sub-

ject to the rollowing relations?

< ? - *

where CLι,Qt,—- OLp, ^,,£z,-— -vp represent
2 f> period loops and C

t
,C*,-~~ - " Q are

circuits around the branch points $/

°As is well known, between 3< and3*
lies the so-called covering surface of
homologies £β , which corresponds to the
commutator subgroup of the unramified G*
Therefore the group of covering trans-
formations is isomorphic to the Betti
group of 5& H Wβyl pointed out that
Bi is the maximal unramified relatively

Aoelian covering surface of 3* » which
is the exact analogue of the Hubert
class field in the algebraic number

8
 the«>

ory.[3 7]. ~
When we map j* conformally onto the

unit circle the field K becomes the field
of automorphic functions belonging to the
Puchsian group isomorphic to Gf , and 3
can be regarded as a fundamental domain
of that Puchsian group* Hereafter we
regard J , J* and Q- chiefly from
this point of view.

Let fo be a point on 3 and t ba a
local uniro mising parameter in the nei-
ghborhood of $>

 9
 When N K ) > ί ,

that J.s* η̂  is a branch point of ^^
T«*t> C ^ — N ( ^ ) ) ^ is a local uniform!-
sing parameter of $ WΘ denote by fξί
the field of all functions meromorphiί*
In the neighborhood of jf> , which possess
a Laurent expansion with respect toτ
with only a finite number of negative
power*** ΊP&k denotes a set of all r-
order n©n«»singular square matrices

9
 whoa®

elements belong to ^ . Such a set
forms a group with ordinary matrix»mul-
tiplication If both matrices '{Jt, and
Vf

1
 belonging to TJrtf have Integral

elements^ U^ is called a unit function
matrix* Then the set Utp of all U)
makes a subgroup of Uίt When f is
not a branch point, a coset of y(. ίnW^,
is naiaad a local divisor* Heraafter th®
local divisor is expressed by a big
Crorman letter (p * If °fji be a bran-
ch point, i*e

β
 fsi(^)>/ moreovei* the

invariance of (P as a set for the sub-
stitution Cι is assumed* The point ia
called the base point of (P *

As to the local divisor (F> the
following theorem of normal forms holds!

Theorem l Every local divisor (β
contains a uniquely determined canonical
matrix with the forms

ίτ
Ml
 Λ ft*' 6,z - 0

/ r
\

0

0
T

t*

0

V
where ΰ <£ ̂c << <*- •« M if) and Q

;κ

is a polynomial of t only with ordβϊ»
-£. °̂ κ , when d, -< «κ
•< o(

κ
 when Λ > <̂κ «
Proof

β
 At first we show the exi-

stence of such a matrix* If we can ob-
tain such a matrix by left multiplication
of suitable unit function Beatrix to a
given matrix, then the so obtained matrix
belongs to thθ divisor«

Let σ b# a matrix belonging to

In th@ first column ΘM, ft*--- θ̂ /
we select a element of the lowest order
and bring it to the first row by a left
multiplication of a suitable permutation
matrix p , which evidently belongs
to V
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\

of th« low-θ
ί (
τ ί

eat order,

are integral functions of T . Then
ITT

1
' * - *\

Again, if we apply the same proce-
dure to the second column * then we ob-
tain the matrix

Θ=UΘ',

0
if'

then the unit function matrix J
is canonical, because both θ and

θ are canonical ,
We get T^* » u

ι t
 τ^' (i» A Ό

so u
4
 * ~ / , ĉ

t
 = ̂

As to the (12) element

As the orders of Θ/JL and β/«
<C c^

 9
 we conclude

Similarly we obtain successively

and U/3 = V,* - - - ̂-Uit^O
Finally we get

is

o o

By the Euclidean algorithm we get

the order of Q ,
z
 being •<

By the left multiplication of

r* ft*

Thus the uniqueness of the normal form
is proved. The exponents at

t
 ,ol

Zt
 ... olψ

in the main diagonal have the following
meaning* ^

Let Ύ*
κ
 be the greatest common

divisor of all the k-order subdeterxni-
nants in the- matrix

then

Similarly we can apply the same
method to the 3rd,.c».»rth columns suc-
cessively and obtain finally the matrix

where B
t
-
K

<oi
κ
 If 'θ
(P

is a polynomial of order
r

and β belong to the same

If the point f> ^ls a branch po-
int fy; the divisor (p> must be
invariant with respect to Cc ίί-^"' )
according to Well's definition

where \J is the unit function matrix
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Comparing the (1*2)-element, we get

Because the degree of θ,z and θ
lίL
 is

smaller than plz.
y

and the canonical matrix on the right
hand by

it* θ« -— αΛ

0

We denote the fractional part of a real
number x by < x > and the integral
part by [ xl

Now we set

N
Then S ~ S » and the function

Biz/*?*' remains invariant* Therefore
the function Q

lSL
 =* θ,z / τ*' is a polyno-

mial of t only* Let the degree of 0
/4

with respect to f be /̂£ and
that of θ/z with respect to t be

Then

ύ

We call the former < (P > the frac-
tional part and the latter the integral
part of the local divisor (p

 o
 Our

Theorem 1 asserts the unique decomposi-
tion of (P in the form <(P> t(Pl »

In the next theorem we prove the
.fact* which may be looked upon as the
somewhat weakened form of the Theorem 1*

Theorem 2
O
 If a matrix S2-Θ(t)

belongs to local divisor (p

iτ
4
' .

0 -d
\

and θ it) is a matr3.x belonging to

9
 then Si is written as followss

where P
Proofs

mal forms

is a permutation matrix«
We write £2 θ in a nor

By subtraction
Operating C on'both sides

P
 wo obtain

From follows

and from d, -<c ̂  follows

4' ̂  ̂
This argument applies easily to every

^ t κ Thus the theoϊ*θm i s completely
proved* q oβ dβ

For convenience we denote the dia-
gonal matrix on the left hand by

52
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Prom (1) and (2) we have

Expanding If in the power series of

Then

We see that <d and A have the same
characteristic values, differing only in
the order* Finally we can conclude the
existence of the permutation matrix P

a

such that

&-?<?>?"
 q

...
d
.

Next we go to the view-point in the
large "by the introduction of the divisor®

To every point (p of 3^
 w θ

 sup-
pose defined a local divisor of r«th
order, which has ^ as its base point,
and among these only the finite number
of them is different from £

r
 * Such

a set of local divisors is called simply
a divisor JB * We will denote such
a divisor jQ by

(ft. ft.--HO,
writing explicitly only local divisors
different from £.

τ
 « Her© th© order

of (re is unessential©
This expression corresponds to the

decomposition of divisors in primary
ones,- But the above notation d©ea not
mean multiplication*

•From the divisor J9 we can con-
struct the divisor of order / $ \Jd\ »
which we shall call the norm divisor

As in the case of local divisor we shall
call th© divisor

and

the fractional and integral p&rt of ^
respectively* The degree of JQ ίa
defined as follows:

By the Theorem 1 we obtain easilys

d@g

deg <
ί ?
8> is called th© ramification

degree of &
 9

 The divisor *S
for which < ^Q > =- E
Is called unramifled

Becauae of the abov© definition of
local div\ŝ 3r JQ the set of local\ Q th set of local
function matrices [θ

T
)~

l
 forms also a

divisor which we shall call the contra-
gredient divisor and designate by
JQ

 β
 A remark should be made*, that

the set of inverse matrices 6~
J
 ( 6 e 3 )

does not make a divisor in our sense,,
Theorem 3

β
 dθg (^)

H
>

and ,,

where j la a permutation matr.

Proof. Gonsiαering
get

By the Theorem 1

"Ί»/-θΓ

On the other hand

We obtain^ using the Theorem 2

and

« ^ >-'
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In our definition of divisors the
ordinary multiplication seems to be dif-
ficult' to introduce. But the direct or
Kronecker multiplication can be defined
as follows?

Let J), r@sp* κj& be a divisor
of order i\

 ?
 resp

β
 r^ If

θ resp Q
/
 belongs to

£, resp. 3z. ,

SO

θ-

fθ,,-- θ,r,\

\6t,l -•- θt.

fθ,' ----- 6,+Λ

We form a matrix of r,Pj, order, that
is the left direct product.

employing Macduffee*s notation. DO.
The (r, r

A
)-divisor, which contains

all such Θ X Q" is called the left
direct product of JQ

f
 and JQ*. and

denoted by JQ, K *d& o We see easily*
Theorem 4. deg C-S, x .&) « S
-f r, deg JB

Λ

and

where P
Then

is a permutation matrix.

. x ̂ > -

Proof, By the well-known formula
in the determinant theory

We obtain easily

deg (4 x

deg ^ .

As for the second formula

A = <

<A >>
set

where θ is a function of t only* Then
by Theorem 2

From thla we get

As a natural counterpart of direct pro-
duct we may define the direct sum

•δ, 0

o -<3,
Still more easily we can prove for the
direct sum

Theorem 5*

id, 4 ϋ θ - dβgf-θ,) -+ dβg (d,)

As in the classical theory we can
introduce the notion of divisor class

β

Two divisors *9/ and <8z. of the
same order τ

9
 which can be obtained from

each other by the right multiplication
of a non-singular matrix 3L
belonging to K » is said to belong
to the same divisor class^ that is

9

Of course the direct product and sxm of
divisors are not commutative, but those
of divisor classes are commutative, for

o

and
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Moreover considering the distributive
laws

The following theorem holds
Theorem 6. The set of all divisor

classes is additive and multiplicatlvely
closed, and addition and multiplication
are both commutative, associative and
distributee*

This algebraic system of divisor"
classes, which is denoted by f) ,
is a natural generalization of divisor
class group in the classical theory,
and the subsystem D

β
 of divisor clas<~

ses of degree 0 is also important.
Theorem "/• If B

t
 and 3%.

belong to the same class,

Proof.

By the Theorem 2
9

For any divisor xT , there
exist functions <£ belonging to K
such that J9 ]E aϊ

5
© everywhere finite

 o

The set {$ y of all such J. makes
a linear system» The dimension of such
1 5 } is called τhθ dimension of-O

and denoted "by dim -Q
 0

 Together
with deg tQ is also dim ̂ 9 class
invariant of ̂ 9

Let *d
f
 and *<5̂  be divisors and

v, and r^ be their orders,
then there may be a (r, ,r

x
)-matrix

j? belonging to K > such that
βiJί-Jd"1 ^3 everywhere f i n i t e . We see
immediately that these j£ belongs
to ί&t X^£} .

By the above, notation we can write
Riemann-Roch' s theorem generalised by
Weil as follows?

(p -

where w is a differential divisor. This
formula we shall call the Rlemann-?Roch-
Weil^s theorem, which plays the funda-
mental role in our whole theory.

This theorem asserts that the exponents
dc (i <=. 1,2, r) of Tr

in <x9> at the base point °I
}/
JL. are

invariant, when we replace ,9- by
any divisor equivalent to JQ ,

(
 if we

disregard their ordering. Let N^*
be a number of dc

 w
Sή|

ϊn
 are equal tool

at ^/* , then |^
rt
 ( > — 1,2,... £ ),

called the ramification indices, are
class invariants* of divisor classes

δ
 By

means of N,«* we can express %

(*) Marofe 7, 1949
 β

Tokv© Institute ©f Technology.
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