consequently we get

and orror of the integral (2) and that substituted $g_{i}\left(t_{i}\right)$ thereinto is less than δ. Then, on account of (1) our resuIt follows.
(*) Reseived March 7, 1949.

Tokyo Institute of Technology.

Let us substitute $f_{i}(t)$ by partially ilnear curves $g_{i}(t)$ whose corners are $g_{i}(k / N)=f_{i}(k / N), k=1,2, \cdots, N$. For an arbitrarily given positive number δ, we can choose N sufficiently large such that $\left|f_{i}^{j}(t)-g_{i}^{j}(t)\right|<\varepsilon \quad$ and $\left|\frac{d f_{i}^{j}(t)}{d t}-\frac{d g_{i}^{j}(t)}{d t}\right|<\varepsilon ;$

Where on the right side $x^{j}=f_{1}^{j}\left(t_{1}\right)+\cdots+$ $f_{n}^{j}\left(t_{n}\right)$

Proof. The integral on the right side is

$$
\int_{0 \leqq t_{i} \leqq i} A\left(x_{1}^{1}, \cdots, x^{n}\right) d e t\left|\frac{d f_{i}^{j}\left(t_{i}\right)}{d t_{i}}\right| d t_{1} \cdots d t_{n}
$$

VECTOR-GROUP IN REAL EUCLIDEAN SPACE

By Tatsuo HOMMA and Takizo MINAQANA.

We shall describe in this paper an elementary proof of the theorem which has also been proved in this volume by Prof. Iwamura, Messrs. M. Kuranishi and T. Hayashida.

We denote "free vectors" in an n dimensional real euclidean space R_{n} by $x, y, z, \ldots, a, b, C, \ldots .$. , and the corres. ponding points in R_{n} by the same symbols, i.e., "a point x " means the point which is located by the free vector x starting from the original point 0 previously determined in R_{n}. The distance between any two points x and y is defined by the euclidean one, i. $\theta_{0},|x-y|$. We shall prove in this paper the following Theorem and Corollary.

THEOREM. Let M be a real euclidean vector-group in R_{n} and contain a continuum K. Then M contains the whole straight-line through any two distinct points of K

COROLLARY. Let M be a real euclidean vector-group in R_{n} and let any two points of M be connected by a continuw in M. Then M coincides with a real innear vector-group.

We shall prove the theorem by the induction with respect to the dimension-
number n of R_{n}. If $n=1$, the theorem is ovident. Suppose $n>1$.

IENMA 1. Let K be any continuum in M. We define K^{\prime} as the aggregate of all the points $x-y+z$, where x, if and Z run throughout K. Then K is siso a continuum in M and $K \subset K^{\prime}$. The proof is immediate. We are going to prove that the straight-line segment joining any two distinct points a and b of K is contained in $K^{0 f}=\left(K^{\prime}\right)^{\prime}$ As K is connected, a and b can be connected for any positive ε by an ε-chain with its points of joint all belonging to K. This chain can be represented by

$$
x(t) ; \quad 0 \leqslant t \leqslant 1,
$$

Where $x(t)$ is a continuous curve in $0 \leqslant t \leqslant 1$, with its points of joint $x\left(t_{i}\right)$: $0=t_{0}<t_{1}<t_{2} \leqslant \ldots<t_{m}=1$ all belonging to K and the parts $x(t), t_{i} \leqslant t \leqslant t_{i+1}$, $i=0,1,2, \ldots m-1$ are all stralght-line segments. Moreover $\left|x\left(t_{i+1}\right)-x\left(t_{i}\right)\right|<\varepsilon$, for $i=0,1,2, \ldots, m-1$.

Now let R_{n-1} be an ($n-1$) dimensional hyperpiane in R_{n} tinrough a anä b, two distinct points of K. Then the $R_{n=1}$ separates $P_{i s}$ into two ciosed conver point sets H_{1} and H_{2}.

LEMMA 2. There oxiats a linemseg-ments- ε-chain in H_{1} connecting a and b with its points of joint all bolonging to K^{\prime}.

Proor'. To construct thia new ε 。 chain, we roplace every part of the chain $x(t), k_{v,} \leq t \leq t_{k_{\nu}}, i_{v}<k_{v}$, where $x\left(t_{i}\right)$ mean points of joint and

$$
\begin{aligned}
& x\left(t_{i y}\right) \in H_{i}, \quad x\left(t_{k, y}\right) \in H_{1} ; \\
& x\left(t_{i}\right) \in H_{2}, \quad t_{i v}<t_{i}<t_{k y,},
\end{aligned}
$$

by the following, chains

$$
y(t)=x\left(t_{k_{y}}\right)-x\left(t_{i_{\nu}}+t_{k_{v}}-t\right)+x\left(t_{i_{i v}}\right)
$$

for $t_{i y} \leqslant t<t_{\xi_{V}}$.
Thiz new chajn is evidently a straight-lineosegments- - -chain in H_{i} connocting a and b, and their points of joint 211 belong to K^{\prime}. Hereapter we denote this ehaln by $u(t)$, cf which points of joint are $u\left(t_{2}{ }^{\text {i }}\right.$, Now let us displace tinis chain uriformiy within its ε, wnighbeurnood so slightly into new $s_{0} m l_{\text {n }}-$ s, - E-chain that it remains in H_{1} and no two of ita points of joint have the same height from the Riri excopt the couple, a and b whose heights are both zero. Lat us introduce into this chain a new parameter t so that t is proportjonal to its curve-Iength between tro consecutive points of joint. Now let us x epresent this chain by $z(t)$ and Let $z(t)$ have the maximum hoight from the R_{n-1} at the unique point $z\left(t_{p}\right)$: $0<t_{p}<1$

IEMMA 3 . For the above mentioned chain $z(t): 0 \leqslant t \leqslant 1, z(0)=a, z(1)=1$ there exist two one-valued continuous reai functions $t(u)$ and $s(u)$ in $0 \leqslant u \leqslant 1$ which satisfy.

$$
t(0)=s(0)=t_{p}, \quad t(1)=0, \quad s(1)=0 .
$$

$$
0<t(u)<t_{p}, t_{p}<s(u)<1 \text { for } 0<u<1
$$

and $Z(f(u))$ and $Z(s(u))$ have the same
neight from the R_{n-1} for any $u, 0 \leqslant u \leqslant 1$, and reciprocally. Let F be the set of all the points (t, s), whore $0 \leqslant t \leqslant t_{p}, \quad t_{p} \leqslant s \leqslant 1$ and $z(t)$ and $z(s)$ have the same hoight from the R_{n-1}. It can easily be seen that F is a compact and locally connected set. In fact, any point of F, except (0,1) and (t_{p}, \hat{t}_{p}) , has for its sufficiently smail neighbourhood relative to F two different straight-line segments, where the considered point of F belongs simultaneously to one end of each segment. In other words, the relative neighbourhond of any point of F except the two points, if sufficiently small, is homeomorphic to a line segment and the point is not on its end. As for the two. exceptional points, their relative neighbourhoods are both straight-line segments but they lie on one end of each one. From the above mentioned properties we can easily conclude that F has a simple chain (i.e.. having no loop) joining $(0,1)$ and $\left(t_{p}, t_{p}\right)$.). If represent this curve by

$$
\begin{array}{ll}
(t(u), s(u)): & t(0)=t_{p}, s(0)=t_{p} \\
& t(1)=0, s(1)=1, \\
& 0 \leqslant u \leqslant 1 .
\end{array}
$$

Thess $t(u)$ and $s(u)$ are the desirad functions.

Proof. We can see easily that the continuous curve $x(u)=a+z(s(u))-z(t(u))$ Lies in the R_{n-1} and there exista at least one point of $K^{\prime \prime}$ within $3 \varepsilon-$ neighibourhood of sny point of the curve. If we tend ε to zero, we can concalude that the R_{n-1} contains a curve in the K^{*} connecting a and b. q.e.d. The Lemma 4 has reduced the problem to the case of $(n-1)$-dimensional space. This sompletes the induction. The theorem and the cornilary are immediate consequences of Lemma 4.

Race17ed March 10, 1948.

