$$
I\left(k_{1}, \cdots, k_{n}\right)=\int_{\frac{t_{i}-1}{N} \leqq t_{i} \leqq \frac{k_{i}}{N}} A\left(x^{1}, \cdots, x^{n}\right) d e t\left|k_{i} g_{i}^{j}\right| d t_{1} \cdots d t_{n}
$$

A theorem that an arc-wise connected subgroup of the n-dimentional (real) vector group is also a vector group, was proved recently by Iwamura, Kuranishi, and Homma and Minagawa, each by different methods. In this paper I shali give another proof. I shail show, in addition, some integral equality concerning periodic functions.

It is sufficient to prove the fol= lowing

Theorem 1. Let in the n-dimensional Euclidean space E^{n} there be n continuous curves $f_{i}(t), 0 \leqq t \leqq 1$ (vector functions) $i=1,2, \ldots, n, \quad f_{l}(t)$ joining the origin to the end of the i-th unitvector e_{i}. And let each coordinate be taken modulo 1. Then the vector sum $\left\{f_{1}\left(t_{1}\right)+\right.$ $\left.\cdots+f_{n}\left(t_{n}\right) ; 0 \leqq t_{i} \leq 1\right\}$ covers the whole space.

Proof. The whole space E^{n}, each coordinate being taken modulo 1 , is a torus T^{n}. Vector sum $F=\left\{f_{1}\left(t_{1}\right)+\cdots+f_{n}\left(t_{n}\right)\right.$ (mod. 1): $\left.0 \leqq t_{i} \leqq 1\right\}$ is compact in T^{n}. for $f_{i}(t)$ are continuous in $0 \leqq t \leqslant 1$ and T^{n} is a continuous image of E^{n} If F did not cover T^{n}, the rest would be open and contrin an open sphere (of radius δ). So if we substitute $f_{i}(t)$ by slightly different continuous curves
$g_{i}(t)$ so that $\left|f_{i}(t)-g_{i}(t)\right|<\delta / n, \quad G=\left\{g_{1}\left(t_{1}\right)\right.$ $+\cdots+g_{n}\left(t_{n}\right)$ (mod.1); $\left.0 \leq t_{i} \leq 1\right\}$ would not cover T^{n}, elther. In particular we may take for $g_{i}(t)$ partially linear curves, each having a finite number of corners:

$$
g_{i}(t)=\frac{1}{N}\left(g_{i}+\cdots+_{k-1} g_{i}\right)+_{k} g_{i}\left(t-\frac{k-1}{N}\right), \frac{k-1}{N} \leq t \leq \frac{k}{N}, k=1, \cdots, n, k g_{i}
$$

being constant vectors and $\frac{1}{N}\left(g_{i}+\cdots+_{N} g_{i}\right)$ $\Rightarrow e_{i}$. In that case we shall get the following identity. Let $A\left(x^{1}, \ldots, x^{n}\right)$ be any continuous function on T^{n}, then
(1)

$$
\int_{T^{n}} A\left(x^{1}, \cdots, x^{n}\right) d x^{1} \cdots d x^{n}=\int_{0 \leqslant t_{i} \leqslant 1} A\left(x^{1}, \cdots, x^{n}\right) d g_{1}\left(t_{1}\right) \cdots d g_{n}\left(t_{n}\right)
$$

Where on the right side $x^{i}=g_{1}^{i}\left(t_{1}\right)+\cdots+g_{n}^{j}\left(t_{n}\right)$. The integral on the right side is to be taken as the sum of ${ }^{\prime} N$ Riamannian integrals of the type

We have only to show (1) in special cases where we take $A\left(x^{\prime}, \cdots, x^{n}\right)=e^{2 \pi i\left(\ell_{1} x^{\prime}+\cdots+k_{n} x^{n}\right)}$, ($\left\{\ell_{j}\right\}$ being any set of integers), on account of the completeness of the trigonometric functions (for an arbitrarily given $\varepsilon, A\left(x^{1}, \cdots, x^{n}\right)$ is approximated uniformly by some trigonometric polynomial). But these are verified by straightforward calculation:
(we put $\sum_{j=1}^{n} l_{j}{k_{i}}_{i} g_{i}^{j} \kappa_{k_{i}} h_{i}$ and $\sum_{k=1}^{t} k_{i}={ }_{t} H_{i}$).

$$
\begin{aligned}
& \int_{0 \leqq t_{i} \leqq 1} e^{2 \pi i\left(l_{1} x^{\prime}+\cdots+l_{n} x^{n}\right)} \cdot d g_{1}\left(t_{1}\right) \cdots d g_{n}\left(t_{n}\right)=\sum_{\substack{k_{i}=1,2, \cdots N(i \\
i=1,2, \cdots, n}} I\left(k_{1}, \cdots, k_{n}\right) \\
& \left.=\sum_{k_{i}} \int_{0 \leq t_{i} \leq \frac{1}{N}} e^{2 \pi i \sum_{j=1}^{n} \sum_{i=1}^{n} \ell_{j}\left\{\frac{1}{N}\left(g_{i}^{j}+\cdots+k_{i}-1 g_{i}^{j}\right)+k_{i} g_{i}^{j} t_{i}\right\}} \quad \operatorname{det} t_{k_{i}} g_{i}^{s} \right\rvert\, d t_{1} \cdot d t_{R}
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{drt}\left|\sum_{k=1}^{n} \frac{e^{2 \pi i \frac{1}{N} H_{k}}-e^{2 \pi i \frac{1}{N} k_{k} H_{i}}}{2 \pi i h_{k} h_{i}}\right|=\prod_{s} \frac{i}{2 \pi i l_{s}} \cdot \operatorname{det} . \mid \sum_{k=1}^{n} \\
& \left.\frac{e^{2 \pi i \frac{1}{N} k H_{i}}-e^{2 \pi i \frac{1}{N} k-1} H_{i}}{2 \pi i{ }_{k} h_{i}} \times 2 \pi i l_{s} g_{i}^{s} \right\rvert\,=0
\end{aligned}
$$

(when all l_{i} are not zero),
since in the last determinant sums of components which are in the same column are all zeros. When $l_{1}=l_{x}=\cdots=l_{n}=0$, the value of the integral is 1 , as readily be seen. Hence (1) is proved.

If G did not cover T^{π}, the rest would be an open set H. If we put for
$A\left(x^{1}, \cdots, x^{n}\right)$ a continuous function that is positive in H and is zoro outside of
H, then the left side of the equalify (I) is positive and the right side would be zero. That is a contradiction.

We can als.o prove the following
Theorem 2. If in Theorem $1 f_{i}(t)$ belong to $C^{(1)}$ class, then for an arbitrary continuous function $A\left(x^{1}, \cdots, x^{n}\right)$ on T^{n}.
(2) $\int_{T^{n}} A\left(x^{1}, \cdots, x^{n}\right) d x_{1} \cdot \cdots d x_{n}=\int_{D_{\leqslant}} A\left(x_{i}, \cdots, x^{n}\right) d f_{1}\left(t_{1}\right) \cdot d f_{n}\left(t_{n}\right)$
consequently we get

and orror of the integral (2) and that substituted $g_{i}\left(t_{i}\right)$ thereinto is less than δ. Then, on account of (1) our resuIt follows.
(*) Reseived March 7, 1949.

Tokyo Institute of Technology.

Let us substitute $f_{i}(t)$ by partially ilnear curves $g_{i}(t)$ whose corners are $g_{i}(k / N)=f_{i}(k / N), k=1,2, \cdots, N$. For an arbitrarily given positive number δ, we can choose N sufficiently large such that $\left|f_{i}^{j}(t)-g_{i}^{j}(t)\right|<\varepsilon \quad$ and $\left|\frac{d f_{i}^{j}(t)}{d t}-\frac{d g_{i}^{j}(t)}{d t}\right|<\varepsilon ;$

Where on the right side $x^{j}=f_{1}^{j}\left(t_{1}\right)+\cdots+$ $f_{n}^{j}\left(t_{n}\right)$

Proof. The integral on the right side is

$$
\int_{0 \leqq t_{i} \leqq i} A\left(x_{1}^{1}, \cdots, x^{n}\right) d e t\left|\frac{d f_{i}^{j}\left(t_{i}\right)}{d t_{i}}\right| d t_{1} \cdots d t_{n}
$$

VECTOR-GROUP IN REAL EUCLIDEAN SPACE

By Tatsuo HOMMA and Takizo MINAQANA.

We shall describe in this paper an elementary proof of the theorem which has also been proved in this volume by Prof. Iwamura, Messrs. M. Kuranishi and T. Hayashida.

We denote "free vectors" in an n dimensional real euclidean space R_{n} by $x, y, z, \ldots, a, b, C, \ldots .$. , and the corres. ponding points in R_{n} by the same symbols, i.e., "a point x " means the point which is located by the free vector x starting from the original point 0 previously determined in R_{n}. The distance between any two points x and y is defined by the euclidean one, i. $\theta_{0},|x-y|$. We shall prove in this paper the following Theorem and Corollary.

THEOREM. Let M be a real euclidean vector-group in R_{n} and contain a continuum K. Then M contains the whole straight-line through any two distinct points of K

COROLLARY. Let M be a real euclidean vector-group in R_{n} and let any two points of M be connected by a continuw in M. Then M coincides with a real innear vector-group.

We shall prove the theorem by the induction with respect to the dimension-
number n of R_{n}. If $n=1$, the theorem is ovident. Suppose $n>1$.

IENMA 1. Let K be any continuum in M. We define K^{\prime} as the aggregate of all the points $x-y+z$, where x, if and Z run throughout K. Then K is siso a continuum in M and $K \subset K^{\prime}$. The proof is immediate. We are going to prove that the straight-line segment joining any two distinct points a and b of K is contained in $K^{0 f}=\left(K^{\prime}\right)^{\prime}$ As K is connected, a and b can be connected for any positive ε by an ε-chain with its points of joint all belonging to K. This chain can be represented by

$$
x(t) ; \quad 0 \leqslant t \leqslant 1,
$$

Where $x(t)$ is a continuous curve in $0 \leqslant t \leqslant 1$, with its points of joint $x\left(t_{i}\right)$: $0=t_{0}<t_{1}<t_{2} \leqslant \ldots<t_{m}=1$ all belonging to K and the parts $x(t), t_{i} \leqslant t \leqslant t_{i+1}$, $i=0,1,2, \ldots m-1$ are all stralght-line segments. Moreover $\left|x\left(t_{i+1}\right)-x\left(t_{i}\right)\right|<\varepsilon$, for $i=0,1,2, \ldots, m-1$.

