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TANGENT SCROLLS IN PRIME FANO THREEFOLDS
ATANAS ILIEV AND CARMEN SCHUHMANN

Abstract

In this paper we prove that any smooth prime Fano threefold, different from the
Mukai-Umemura threefold X,,, contams a 1-dimensional family of intersecting lines.
Combined with a result in [Sch] this mmplies that any morphism from a smooth Fano
threefold of index 2 to a smooth Fano threefold of index 1 must be constant, which
gives an answer 1n dimension 3 to a question stated by Peternell.

§1. Introduction

1.1. A smooth projective variety X is called a Fano variety if the anti-
canonical bundle —Ky is ample. Then the index of X is the largest positive
integer r = r(X) such that —Ky = rH for some line bundle H on X.

The smooth Fano threefold X = X; = P9*! (d = degX) is called prime if
p(X) = rankPic(X) =1, r(X) = 1, and —Kx is the hyperplane bundle on X. By
the classification of Fano threefolds smooth prime Fano threefolds exist iff 3 <
g <12 (g #11), and then d =2g—2 (see [I1]).

1.2. (see §4.2, §4.4 in [IP], or §l in [I2]). Let / be a line on the smooth
prime Fano threefold X, and let N,y be the normal bundle of / = X. Then

(1). either (a). Nyxy =0® O(=1); or (b). Nyxy = 0(1) ® O(-2).

(2). The Hilbert scheme #y of lines on X is non-empty, any irreducible
component #, of #y is one-dimensional, and either H#, is non-exotic, i.e. Ny/x is
of type (1)(a) for the general / € #,; or H#, is exotic, i.e. Nyx is of type (1)(b)
for any /€ #,.

(3). The component #, is exotic if either the elements / € #, sweep out the
tangent scroll R, = X to an irreducible curve C = X; or g=3 (le. X =Xz is a
quartic threefold), and then the lines / € /#, sweep out a hyperplane section R,
X, which is a cone over a plane quartic curve, centered at some point x € Xj.

1.3. For example, the scheme #y of the Fermat quartic X = Xy =
(x§ +++-+ x4 =0), which is a prime Fano threefold of g =3, is a union of
40 double components each of which is of type (1.2)(1)(b) (see Remark 3.5(ii)
in [I1]).
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The only known example of a prime Fano threefold X of g >4 such that
Ay has an exotic component #,, is the Mukai-Umemura threefold X,,. The
scheme Ay, = 2, and the surface R, is the hyperplane section of X3, swept out

by the tangent lines to a rational normal curve Cj; = X;, of degree 12 (see [MU]).

1.4. By a theorem of Kobayashi and Ochiai the index r = r(Y) of a smooth
Fano n-fold Y can’t be greater than n + 1; and the only smooth Fano n-folds of
r > n are P" for which r = n+ 1 and the n-dimensional quadric QJ for which r =
n (see e.g. [Pe], p. 106). In particular, except P* and 03, any smooth Fano 3-
fold must have index r < 2.

It is shown by Remmert and Van de Ven (for n = 2) and later by Lazarsfeld
(for any n) that the projective space P” does not admit surjective morphisms
to a smooth projective n-fold X # P" (see [RV], [L]). The same is true for
morphisms f: QF — X # P", QF (see [PS]). In particular, P*> and Q3 do not
admit surjective moprphisms to smooth Fano threefolds X of smaller index r(X).

Let f: Y — X be a non-constant morphism between smooth Fano 3-folds
of p=1. By Kor. 1.5 in [RV], p(Y) =1 implies that f must be surjective, and
by the preceding r(Y) can’t be >3. Therefore r(Y) =2, r(X)=1. This gives
rise to the following question stated originally by Peternell (see (2.12)(2) in [Pe]).

QuEsTiON (Pe). Are there non-constant (hence surjective) morphisms f :
Y — X from a smooth Fano 3-fold Y of p(Y) =1 and r(Y) =2 to a smooth
Fano 3-fold X of p(X) =1 and r(X)=1?

In this paper we give the expected negative answer to (Pe).

Let f:Y — X be as above, and assume that f is non-constant. Then f
must be surjective and finite since p(Y) =1 (see Kor. 1.5 in [RV]). Therefore
f*:H3(X,C)— H*(Y,C) will be an embedding, in particular 43(X) < h3(Y)
(see also [Sch]). For any Fano threefold 4%° = 0 and A* = 2h>! since the anti-
canonical class is ample. Therefore 42! (X) <h>!(Y). Since A>!(Y) <21 for
any Fano 3-fold Y of r =2 (see [I1]), then the existence of a non-constant mor-
phism f:X — Y as in (Pe) implies that A>!(X) <21. This gives a negative
answer to (Pe) whenever h>!(X) > 21.

The only smooth non-prime Fano threefolds of p=1 and r=1 are the
sextic double solid X, and the double quadric X, for which the answer to (Pe)
is negative since A*!(X)) =52 > 21 and A>!(X]) =30 >21. By the same ar-
gument the answer to (Pe) is negative also for the quartic threefold X, since
h*!(X4) =30 > 21. Any other smooth prime Fano threefold X = X;, , = P9*},
4<g<12, g#11 has h>!(X) <20 (see [I1]).

In [Sch] is given a negative answer to (Pe) provided X contains a conic
of rank 2 (a pair of intersecting lines). The only known Fano threefold X of
p(X) =1 and r(X) = 1 without intersecting lines is the Mukai-Umemura threefold
X = X,,, and a negative answer to (Pe) in case X = X;, is given by E. Amerik
(see [Schl).
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Therefore, in order to give a negative answer to (Pe), it is enough to prove
the following

PROPOSITION (B). Any smooth prime Fano threefold X,y > = P!, 4 <
g <12, g # 11, different from the Mukai-Umemura threefold X,,, contains a 1-
dimensional family of conics of rank 2.

In Section 2 we prove Proposition (B) for 4 < g <9 on the base of the
following technical

LEMMA (A). A smooth prime Fano threefold X = Xpy o <« PY™!, 3<g<9
can’t contain the tangent scroll Sy,_> to a rational normal curve Cy of degree g.

By a result of Yu. Prokhorov, the only smooth prime X = X5, ,, g = 10,12
such that the scheme of lines #x has an exotic component is the Mukai-
Umemura threefold X;, (see [Pr]). This implies Proposition (B) for g = 10, 12.
Indeed, let X = X5,_, be a smooth prime Fano threefold such that the scheme of
lines sy on X has a non-exotic component #,. Then, by Lemma 3.7 in [I1],
the general element of #, will represent a line / = X which intersects at least one
other line on X.

This completes the proof of Proposition (B), which yields a negative answer
to (Pe).

In Section 3 we prove Lemma (A) for any particular value of g, 3 <g <9.

For the prime Fano threefolds X, » — P9t (3 =34,56,8) we prove
Lemma (A) by using the Mukai’s representation (see (3.1)) of the smooth X5, 5,
3 < g < 10 as a complete intersection in a homogeneous or almost-homogeneous
variety X(g). More concretely we see that if the threefold X = X(g) (g9 = 3,4,
5,6,8) is a complete intersection in X(g) of the same type as the smooth prime
X4, and if X contains the tangent scroll S»;_» to the rational normal curve C,
of degree g, then X must be singular—see (3.4), (3.5), (3.6), (3.13), (3.15), (3.19).

For g =7 we use the properties of the projection from a special line / <
X342, g > 7 to reduce the proof of Lemma (A) for g = 7 to the already proved
Lemma (A) for g = 5—see (3.20)—(3.24). To prove Lemma (A) in case g =9 we
can use the same approach as for g = 7. But a more elegant proof, based on the
description of the double projection from a line, had been suggested by the
Referee—see (3.25).

§2. Lemma (A) = Proposition (B) for 4 < g <9.

2.0. Assume that the smooth prime Fano threefold X = X5, » (4<g<9)
does not contain a 1-dimensional family of conics of rank 2.

LeMMA 2.1. Under the assumption (2.0):
(). The Hilbert scheme #x of lines on X has a unique irreducible component
Ho;
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(il). #, = Hx is exotic, and the lines | € #, sweep out a tangent scroll R, €
Ox(d)], d > 2.

Proof of Lemma 2.1.

(i). Let #, and 5, be two different irreducible components of #y, and let
R, and R, be the surfaces swept out by the lines /€ #, and /€ #,. Since
Pic(X) = Z.H, where H is the hyperplane section, any effective divisor on X must
be ample. In particular the general line / € #, intersects the surface R, < X.
If moreover / = R,, for the general /e #, then R, =R, and this surface
contains two 1-dimensional families of lines. Therefore R, = R, is a quadric
surface on X, which contradicts Pic(X) = Z.H. Therefore the general /€ i,
intersects R,, and does not lie in R,; and since R, is swept out by lines then
there exists a line /' = R, which intersects /. Since /e #, is general this
produces a 1-dimensional family of intersecting lines / 4+ /' (= conics of rank 2
on X)—contradiction.

(ii). If #x = A, is non-exotic then, by Lemma 3.7 of [Il], the general
element of #, will represent a line / = X which will intersect at least one
other line m = X, i.e. X will contain a 1-dimensional family of intersecting lines
(= conics of rank 2). Therefore #, is exotic.

Since #, is exotic and g > 4 then R, is the tangent scroll to a curve C = X
(see (1.2)(3)), and since Pic(X) = Z.H then R, € |0x(d)| for some ineteger d > 1.
If R, is a hyperplane section of X (i.e. d = 1) then, by Lemma 6 in [Pr], C = C,
must be a rational normal curve of degree g. However the last is impossible
since then Lemma (A) will imply that X is singular. Therefore d > 2. q.e.d.

We shall show that nevertheless X contains a 1-dimensional family of conics
[ +m of rank 2 where /,me H#,.

Remark. Let C; be the (possibly empty) set of singular points of C. For
any x € C — C; denote by /. the tangent line to C at x. For a point x = x(0) €
Cs define a tangent line to C at x to be any limit lim,(;)_.x() ;) of tangent lines
Ly to points x(t) € C — C; (see Chapter 2 § in [GH]). Clearly, C can have only
a finite number of tangent lines to x(0) € C; (see also Chapter 2 §1.5 in [Sh]).

2.2. By the initial assumption (2.0), X does not contain a 1-dimensional
family of conics of rank 2. In particular, X does not contain a 1-dimensional
family of pairs of intersecting tangent lines to C.

Since the surface R, € |Ox(d)|, d =2, and Span X = P! then SpanR, =
P9t g >4 (see also Lemma 6 in [Pr]). Since R, is swept out by the tangent
lines to C then Span C = SpanR, = P9*!. In particular C does not lic on a
plane. Since R, is the tangent scroll to the non-plane curve C then S¢ is singular
along the curve C.

Let L # C be (if exists) an irreducible curve on R, such that R, is singular
along L. If L is not a tangent line to C, then the general point of L will be an
intersection point of two or more tangent lines to C (see §4 in [P2]). The last is



TANGENT SCROLLS IN PRIME FANO THREEFOLDS 415

impossible since, by assumption, on X can lie at most a finite number of pairs of
intersecting lines.

Therefore any irreducible curve L # C such that L = Sing R, must be a
tangent line to C. In addition, the tangent scroll R, to C still can be singular
along a tangent line L to C—for example if L is a common tangent line to two
or more branches of C at x, or if C has a branch with a cusp at x, or if xe
C — C; but x is an inflexion point of C and then R, has a cusp along /,, etc. (see
§2, §4 in [P2]).

Let A = R, be the union of all the irreducible curves L on R, such that

L # C and R, is singular along L. By the above argument, either A = § or A is
a union of a finite number of tangent lines to C.
_ Let v:R, — R, be the normalization of R,. Fix a desingularization 7 :
R, — Ry, and let 6 =t0v:R, — R,. Let E,...,E; (k>0) be all the irre-
ducible contractable curves on R,, i.e. all the irreducible curves E, < R, such
that o(E,) € R, is a point. 3

Denote by ~ the linear equivalence of divisors on the smooth surface R,
and let E be a divisor on R,. Call E a zero divisor on R, if E ~ 0; call the non-
zero divisor E contractable if E ~ a\E\ + - - - + ay Ey for some ay,...,ax € Z. Let
C’' = R, be the proper g-preimage of C on R,. Since R, is the tangent scroll to
the irreducible curve C then the curve C’ is irreducible and o|., : C' — C is an
isomorphism over a dense open subset of C (see also Lemma 2.3 below).

Let C{,...,C/ be all the irreducible curves on R, such that ¢(C]) is an
irreducible component of A. Therefore

KR" ~ U*KRO —mC' — Z,:L,,.,,p,-Ci’ + E

for some positive integers m, py,...,p,, and a contractable (or zero) divisor £ on
R,.

Lemma 2.3. Let X fulfills (2.0). Then the tangent scroll R, = X to C has a
cusp of type v: =u’+--- along C, at a neighbourhood of the general point
x € C @ R,; in particular m = multc R, = 2 (see also §5 in [P2] and §4 in [P1]).

Proof of Lemma 2.3.

(1). We shall see first that R, is irreducible at any neighbourhood of the
general point x € C, i.e. R, has one local branch at x.

Assume the contrary, and let x € C be general. Let U = X be a complex-
analytical neighbourhood of x such that Ry = R,N U is reducible. Since R, is
swept out by the tangent lines to C, the last imlies that for the general point
ye Cy=CNU (hence for the general y € C) there exists (possibly non-unique)
ze C, z #y such that y lies on a tangent line to C at z. Since the set C; =
{x1,...,x,} of singular points of C is finite (or empty), and any such x, has at
most a finite number of tangent lines, then the general y € C doesn’t lie on a
tangent line to z € C;. Therefore the general y € C lies on the tangent line /; to
C at some (possibly non-unique) z € C — Ci;.

If moreover [, # I, (where J, is the tangent line to C at y) then all such /, + /.



416 ATANAS ILIEV AND CARMEN SCHUHMANN

will produce a 1-dimensional family of conics of rank 2 on X, which contradicts
the initial assumption (2.0) about X.

If I, = [, then this will imply that the tangent line /, to C at the general y € C
is tangent to C at two or more points. But then the projection C of C = P9*!
from the general subspace P/~2 = P9*! = Span X will be a plane curve with a 1-
dimensional family of lines tangent to C at two or more points, which is
impossible.

(2). It rests to see that the unique local branch of R, at the general xe C
has a cusp of type v?> =u’+--- along C at a neighbourhood of x.

Since R, € |Ox(d)| and d >2, then SpanC = SpanR, = P?*!| g >4 (see
above).

Let x be a general point of C. In order to prove that the tangent scroll
R, X to C has a cusp of type v>=u’+--- at a neighbourhood of x it is
enough to see that the projection of R, from a general PY~> = P9*! has a cusp
at x. 3This reduces the check to the case when R, is the tangent scroll to a curve
CcP.

Since x is a general point of C = P? then, after a possible linear change of
coordinates in P3| the curve C has (at x = (1:0:0:0)) a local parameterization,
or a normal form (see §2 in [P2], or Chapter 2 §4 in [GH]):

Cu:(%(2) ;- :x0(2) = (1: 24 0(z%) : 22 +0(2) : 22 + 0(z%), |zl < 1,

where 0(z¥) =X, 4a;z/. Since the coefficient at zX in xi(z) = 2% + o(2%*!) is
1#0 (k=2,3) then, after a possible linear change of (xi,xz,x3), the local
parameterization of C at x=(1:0:0:0) can be written as

Cu : (x%,(2) : x1(2) : x2(2) : x3(2))
=1:z+00zY 22 +0(Y 2 +o(zY), |7 <1,

ie. Cy approximates, upto o(z*), the twisted cubic C; = {(1:z:22:2z%)}.
Therefore, at a neighbourhood of x = (1:0:0:0), the unique local branch (see
(1)) of the tangent scroll R, to C is parameterized by

Ry : (x,(z,1) : x1(2,1) : x2(2, 1) : x3(2,1))
=(1:z4+t+0(z" +0(2)t: 2% + 2zt + 0(z*)
+0(z3)t: 22 + 322t 4 0(z*) + o(2%)1).

In affine coordinates (x;,x3,x3) the tangent line to C at x = (0,0,0) is
spanned by the vector n, = (1,0,0), and the normal space C? < C3(xi,x,,x3)
to n, at x is defined by x; = 0. In order to prove that Ry has a cusp along C at
a neighbourhood of x we shall see that the curve Dy = Ry N (x; = 0) < C(f has
a cusp at x.

On Dy =RyN(x;=0), one has: 0=x; =z+1t+0(z*) +0(z%)1, ie. t=
—z+40(z*). Let u= —x, v=—x3/2. Therefore, on Dy = C?
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u=—(z* 42zt + 0(z*) + 0(z*)t) = 2% + 0(z*)
v=—1/2(z* + 322+ 0(z*) + 0(z*)1) = 2> + o(z*),

ie. 8u2 =2+ 0(z%), uo =25 + 0(z%), v? =z 4 0(27), ud =20+ o(2}), uPv=z"+
o(z®),...

Let C|y, = (fy(u,0) =0) be the local equation of Dy = C(u,v) at x =
(0,0). Therefore, upto a constant non-zero factor, fy(u,v) = v* —u® + ¢y ju?v +
c1,uv’ + -+, ie. C|, has a double cusp-singularity of type v> = u’ +--- at x =
(0,0) (see §5 in [P1], §4 in [P2], Chapter 5 Examples 3.9.5, 3.9.1 and Chapter 1
Exercise 5.14 in [H]).

Therefore R = R, has a pinch of type v> =u’>+--- along C at a neigh-
bourhood of the general point x € C, which proves Lemma 2.3.

2.4. By the definition of Cj,..., C/ any irreducible component of A can be
represented (possibly non-uniquely) as the image o(C]) of some C/, i=1,...,r.
Since g| : C' — C is an isomorphism over an open dense subset of C then the
general point x € C has a unique g-preimage x’ on C’, and the proper preimage
[l = R, of the tangent line /, to C at x intersects C’ transversally at x’. Since,
by assumption, on X doesn’t lie a 1-dimensional family of pairs of intersecting
lines then the tangent line /, to C at the general point x € C does not intersect
any other tangent line to C. B

Therefore the non-singular surface R, has a structure of a possibly non-
minimal ruled surface with a general fiber L’ := the proper o-preimage of the
general tangent line /; to C. In particular K; .L" = —2, and since the curve C’
is a section of R, then C'.L' =1.

By the definition of C/ the curves o(C/) = R, are irreducible components
of A; and since by (2.2) the components of A can be only tangent lines to C
then ¢(C)) is a tangent line to C. Therefore any component of ¢~!(c(C/)), in
particular C/, will not intersect the general fiber L’ of R,, i.e. C/.L' =0.

Moreover a contractable curve E, can’t intersect the general fiber of R, since
otherwise the point o(E,) € R, will be a common point of a 1-dimensional family
of tangent lines to C. The last is impossible since g > 4 and the smooth X =
X4-> can’t contain cones—see (1.2). Therefore E,.L' =0 for any j=1,...,k;
and since E is a sum of such E, then E.L' = 0.

Since Ky ~ —H and R, ~ dH on X then, by adjunction, Kg, ~ (d — 1)H|, .
Since the hyperplane section H intersects the general tangent line / to C at one
point then *(H|g ) is also a section of R,, i.e. ¢*(H|g ).L'=1. Therefore

-2 = Kﬁo.Ll = (G'*KRH —mC' — 2,:11.”7rpicil + E).L/
=(d—1)o"(H|g,).L' —mC'.L' - 21, wpiCl.L'+EL
=(d-1)—m, ie. d=m—1.

Since X = X3, is smooth and g >4 then, by Lemma (A), d > 1. There-
fore m =d + 1 > 2, which is impossible since m =2 by Lemma 2.3.
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This contradicts the initial assumption (2.0) that the smooth X = X5, », 4 <
g <9 does not contain a 1-dimensional family of conics of rank 2. g.e.d.

§3. Proof of Lemma (A)
3.1. By [Ml], [M2] any smooth prime Fano threefold X, » = P9*!, 3 <

g <10 is a complete intersection of hypersurfaces Fy, F>,...,Fy of degrees di,
dy,...,dy in a homogeneous (for g = 6—an almost homogeneous) space X(g),
and:

if g=3 then 2(3)=P* N=1, d, =4

if g=4 then 2(4)=P° N=2, d =2, dy=3;

if g=5then X(5)=P°, N=3, di=dr=ds = 2;

if g = 6 then 2(6) = K.G(2,5) = P'° is a cone over the grassmannian G(2, 5)
CP9, N=4, d] =d2=d3= 1, d4=2;

if 7<g <10 then X5, = Z(g) N P¥"!, where Z(7) c P'® is the spinor 10-
fold, £(8) = G(2,6) = P, £(9) c P is the sympletic grassmann 6-fold, and
¥(10) = P' is the G,-fivefold.

3.2. To prove Lemma (A), it is enough to see that if X = X5, , < Z(g) is a
3-fold complete intersection as in (3.1) (assuming implicitly that such X may have
singularities) then X5, » can’t be smooth. We shall prove this separately for any
value of g, 3 <g <09.

For g = 3,4,5,6,8 we use that X(g) is either a projective space or a (cone
over) grassmannian, which makes it possible to compute directly that the general
such X3, > © Sy must have 12 —g singular points on the curve C,.

For g = 7,9 we assume that X = X5,_» < S5,_» is smooth, and then project
X from a tangent line to C, to derive a contradiction on the base of the already
known Lemma (A) for g =5.

33. NoratioNn. Let n>1, m>0 be integers, let P""(z:w)=
P"™ " (zg: o 1 Zy i Wpg1 i -+ Waim) be the complex projective (n + m)-space, and
let F(z:w)=F(zo: - :2Zy:Wnt1:- " : Wnim) De a homogeneous form. Denote
by V.F = (0F/0zy,...,0F/0z,) the gradient vector of F with respect to (z) =
(zo:+--:zp).

Let Fi(z:w),...,Fx(z:w) (k=1) be homogeneous forms. Denote by:

(Fi,....,Fi) cClz:w|=Clzg::2y: Wny1: - : Wyym]|—the homogeneous
ideal generated by Fi,..., Fg;

V(Fi,...,Fy)—the projective variety defined by Fy,...,F;

le(a:b) = Jz(Fl,...,Fk)l(a:b) = [V.Fy;.. .;Vsz]l(a:b)——the Jacobian matrix J,
of partial derivatives of Fj, ..., Fy with respect to (z) = (2o,...,2s), computed at
the point (a:b) € P (z:w), (where V,F; are regarded as rows of J,).

Let e.g. m=0, let X =V (F,...,F) = P*(z9:---:2,), and let dimX =d.
Then dim 7. X > d for any x € X, where T, X is the tangent space to X at x;
and the point x € X is singular if dim 7, X > d (see e.g. Chapter 2, §1.4 in [Sh]).
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Equivalently x € X 1s singular if rank J,|, < n —d. The subset SingX = {xe X :
rankJ.|, < n—d} = X of all the singular points of X is a proper closed subset of
the projective algebraic variety X, defined on X by vanishing of all the (n — d) x
(n — d) minors of J;.

3.4. Proof of Lemma (A) for g = 3. The tangent scroll to the twisted cubic
Cs:(xo:x1:X2:x3) =5:= (53 : 5351 : Sos? : 57) is the quartic surface Sy = V(f)
< P3(x) where f(x) = 3x7x3 + 6xox1x2x3 — 4x3x3 — x2x3 — 4x3x3. The surface
Sy is singular along Cj since the gradient vector V,f|. =0 for any 5e Cs.

Let the quartic threefold X;  P*(x: u) be such that Sy = X;NP3(x), and
let Xy = V(F)  P*(x : u) where F(x: u) = Zo<i<af,(x)u*"". Therefore f; € (f),
i.e. fy = ¢f for some constant c € C.

Let x€ X4. Then x e Sing Xy iff Vi, Fxy =0. Let s=(sp:51)€ P!. Then
(5:0) € Sing X4 iff 0 = Vi uF|5.0) = (VxF,0F [0u)]|5.0) = (Vx5 f3(5)) = (0, f3(5)).

Therefore either f3(5) = 0 (i.e. f3(5) =0 for any s = (so : 51)), and then Xj is
singular along Ci, or f(5) # 0, and then (5: 0) € Sing X4 iff s = (so : 1) is a zero
of the (non-vanishing) homogeneous form Fy(s) = f3(3) = f3(s3 : s3s1 : s0s? : 57) of
degree 9.

In addition, for the general f3(x) all the zeros of Fy(s) = f3(5) are simple, i.e.
different from each other. Therefore the general X; o S4 has 9 =12 — g(Xy)
singular points on C3;. In coordinates as above, these singular points of X4 are
the images of the 9 zeros of Fy(s) under the Veronese map v3: P! — C3 < Xy,
v3:5=1(s0:81)— (5:0).

3.5. Proof of Lemma (A) for g =4. The tangent scroll to the rational
normal quartic Cg: (xo:Xj:- - :Xs) =5:=(s§: 581 :--:5]) is a complete in-
tersection S¢ = V (g, f) = P*(x) where g(x) = 3x} —4x1x3 + xox4 and f(x) =
X3 — 2x0x2 — 2x2x4 + 3xox2x4. The surface Sg is singular along C, since the
gradients of ¢ and f are linearly dependent along Cs; more precisely V.f|; =
5553V q|; for any Se Cy.

Let Xs = V(Q,F) < P°(x:u) be a complete intersection of the quadric
O(x:2) =Xock<2qr(x)u>* =0 and the cubic F(x:z)=Zo<i<3qi(x)u*' =0,
and let Sg¢ = Xg N P*(x). In particular, (¢, f3) < (¢, f) as homogeneous ideals
in Clx]=Clxg:---: x4

For the fixed Xs = V(Q, F) the generators Q,F of the homogeneous ideal
(Q,F) can be replaced by ¢’Q and ¢"F + L(x:u)Q, for any pair of nonzero
constants ¢’ and ¢”, and for any linear form L(x:u). Now, (92, f3) < (q,f)
yields that one can choose Q and F such that g, = ¢’q and f3 = ¢”f, where ¢’,&"
are either 0 or 1.

Consider the general case ¢’ = &” = I; the study in the degenerate case &'.¢”
=0 is similar. The subscheme Sing X¢ = Sing V(Q, F) is defined by rank[V, ,Q;
V..F|<1. By the choice of Q and F, Vi .0|s.0) = (Vx 2[5, q1(5)) and Vi .F| 3.
= (Vif3ls £5(5)), where 1.go =¢ and 1.f3=f. Just as in case g =3, the last
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together with the identity Vifls— si5iVeqls =0 lmply that (5:0) e Sing X iff
F3(s) := f5(5) — s352.q1(3) = 0, where §=(s§: 508 sH.

The Veronese map vg: P' — Cyc Xy, vg:5= (so s1) — (5:0) states an
isomorphism between P' and C,. Therefore either Fy(s) =0, and then X
is singular along Ci, or Fg(s) # 0, and then the singular points of X5 on C, are
the v4-images of the zeros of the homogeneous form Fg(s) of degree 8. As
in case g = 3, for the general f>(x), ¢q1(x) the form Fz(s) has only simple zeros.
Therefore the general Xg > S¢ has 8 = 12 — g(X;) singular points on Cj.

3.6. Proof of Lemma (A) for g =5. The tangent scroll to the rational
normal quintic Cs:x, = sg sj;, 0<i<5 is a complete intersection Sg =
V(q',q",q") = P°(x) where q'(x) = 4x1x3 — 3x% — X0X4, 4 "(x) = 3x1x4 — 2x2x3 —
xoxs and ¢"(x) = x1xs — 4xx4 + 3x2. The surface S is singular along Cy4 since
the gradients of ¢',q” and ¢" are linearly dependent along Cs. More precisely

/ll

(%) 52V q'|s — 5081V q" | — qu =0 for any Fe Cs.

Let Xs=V(Q',0",0")cPS(x:u) be a complete intersection of the quadrics
Q'(x:z)= Zo<k<2q,’c(x)u2“k (i=",","), and such that Sg = X3 N P*(x). In par-
ticular (ql,ql,q{”) (q',q9",9") as homogeneous ideals in C[ 1=Clxo: -+ : x4].
Therefore g;,q; and g¢{" are linear combinations of ¢’,¢” and ¢". Since the
ideal (Q', 0", Q") of X is generated also by any GL(3)-transform of the triple
(Q',0",0"), we may assume that ¢) =¢'q’, qj =¢"q" and ¢’ =¢"'q"”, where
¢',e” and & are 0 or 1. The subscheme (Sing X3)|c, c P! is defined by

2 > rank[V, ,0"; V. ,Q0"; Vx,uQ/”“(f»o

= rank[(Vx&'q’l3,41(5)); (Vx"q" |5, 47 (5)); (Ve " 9" |5, 1" (5))].

Let F(s) = &'s?q|(5) — &"sos19] (5) — &"s3q]"(3).

The Veronese map vs: P — Cs = Xz, vs:s=(so:8)+— (5§:0) states an
isomorphism between P! and Cs. Just as in (3.5), () and (**) imply that either
F;(s) =0, and then X; is singular along Cs, or Fy(s) # 0, and then the singular
points of Xs on Cs are the vs-images of the zeros of the homogeneous form F;(s)
of degree 7. Moreover, for the general linear forms g;(x), g7 (x),q{"(x) the form
F;(s) has only simple zeros. Therefore the general Xz o Sg has 7 =12 — g(Xs)
singular points on Cs.

(xx)

Lemma (A) for g = 6,8.

LemMA 3.7. Let n>3, and let G=G(1:n) = G(2,n+ 1) = P""+D/271 pe
the grassmannian of lines in P" = P(C™"). Let C = G = P""V/2"! pe g smooth
irreducible curve such that dim Span(C) > 3. Let the surface Gr(C) = P" be the
union of lines | = P" such that le C =« G=G(l:n), and let Sc = Span(C) =
P D2=1 be the surface swept out by the tangent lines to C (or the tangent scroll
to C—see above).
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Then the tangent scroll Sc to C lies on G = G(1:n) iff

either all the lines | € C have a common point, i.e. Gr(C) is a cone,

or there exists an wreducible curve Z — P" such that all the lines | € C are
tangent lines to Z, i.e. Gr(C) is the tangent scroll to Z.

Proof. For n=3 this result can be found in [AS]. For n>3 one can
apply induction, using the fact that projection from a point in P" induces a
projection from G(2,n+ 1) onto G(2,n). g.e.d.

Lemma 3.8. Let C, = G(2,9/2+2) = G(1 : P9**y (g = 6,8) be a rational
normal curve such that the tangent scroll Syy_» to Cy is contained in G(2,9/2 + 2).
Then:

(i). If g =6 then the lines 1 = P*, 1€ Cs sweep out the tangent scroll to a
rational normal curve Cy < P*.

(ii). If g = 8, and if there exists a 3-fold linear section Xi4 = G(2,6) N P° such
that X4 > S, then the lines {l cP:le Cs} sweep out the tangent scroll to a
rational normal curve Cs < P>,

Proof. Let g = 6,8, let the lines / € C; sweep out a cone Gr(Cy) < P
see Lemma 3.7, and let x be the vertex of Gr(C,). Then C, is contained in the
Schubert g/2-space PY/* = ogp0(x) ={lc PY**1: xel}. Since C, is projec-
tively normal it must span a g-space. Therefore g < g/2 + 1 which contradicts
g =6,8. Therefore, by Lemma 3.7, the lines / € C; must sweep out the tangent
scroll to a rational curve C; < P9/%+!,

Let g=6, and let C;cP>*cP* Then CscG(1:P3) =01 (P*)cG(1: PY).
Therefore 6 = dim(Span Cs) < dim(Span G(1 : P*)) = 5—contradiction. There-
fore d > 4 since C; must span P*, and now it is easy to see that the rational
normal curve Cg is the curve of tangent lines to C; iff d =4.

Let g=8, and let C;cP*c P’ Then Cgc G(1: P4) = (P*

G(1:P3). Let P’ =SpanG(1: P*). Then P®= SpanCs < P’. By condition
Cs < Xia = G(1: P5)N P°. Therefore P cP°NP’ and Xi4> Z,:= G(1: P
NP3, Since P® = P9 Span G(1:PY, Z, is at least a hyperplane section of the
6-dimensional grassmannian G(1 : P4). This contradicts X4 o Z, and dim X4
=3. Therefore d > 5 since Span C; = P>, and now it is easy to see that the
rational normal curve Cg is the curve of tangent lines to C; iff d =5. q.e.d.

Proof of Lemma (A) for g = 6.

3.9. By (3.1) any smooth prime Xjo is a complete intersection of three
hyperplanes and a quadric in the cone K.G(2,5) = P'%. Let o be the vertex of
the cone K.G(2,5) < P!, and let X = K.G(2,5), be as in (3.1). There are two
kinds of such threefolds Xjo (see [I1], [Gu]):

(i). g = 6—first kind: o ¢ Span(X), and then the projection p, from o sends
X isomorphically to Xjo = G(2,5)ﬂP7ﬂQ, where G(2,5) < P’ by the Pliicker
embedding, P’ = P° and Q is a quadric.
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(ii). g = 6—second kind: o € Span(X), and then 7 = p,|y : X = X|) — Y5 is
a double covering of a threefold Ys = G(2,5)NP®. In particular, if Xj, is
smooth then the intersection Ys = G(2,5) N P® is smooth.

g =6 (first kind)

3.10. Let X;0=G(2,5NP'NQ be a (possibly singular) complete inter-
section as in (3.9)(i), and assume that Xjo contains the tangent scroll Sjy to a
rational normal curve Cg of degree 6. By Lemma 3.8(i) the points of Cg are
the Pliicker coordinates x;(s) of the tangent lines to a rational normal quartic
Ci=x=s5,0<i<4, ie.

0 1 25 352 4¢3
0 s> 253 35

(xij(s)) =f1... ... 0 4288
. 0 s°
0

Therefore the subspace P = Span(Cs) = P° is defined by Hy=H; = H, =0
where H() = X03 — 3X12, H] = Xo4 — 2X13 and H2 = X14 — 3X23.

3.11. Introduce in P® the coordinates ()y=(vg:--:v6) = (xo01 : X02 : X12 :
X13 : X23 © X24 : X34), and let Is, = C[v] := Clvy,...,vs] be the homogeneous ideal

of the tangent scroll S;g = P® to Cs. Let Pfy = XapXeq — XacXbd + XaaXpe, 0 <
a<b<c<d<4:ab,c,d#k (ke{0,1,2,3,4}) be the 5 Plicker quadrics in

the coordinates xj. In coordinates (v) of P® = P®(v) the restrictions g; of Pf to
PS are

qo(v) = Dylg — V3V5 + 31)3, ql(v) = v1vg — 3005 + 20304,

q2(v) = vovs — Vo204 + 2v§, q3(v) = vovs — 3v1v4 + 20503,

qa(v) = vovs — vyv3 + 303,

In the open subset Uy = {vy = 1} = P®(v) the curve C is parameterized by
Cs = {(v) =5 := (1,2s,5% 25%, 5% 25 5%)}.

Now, it is easy to see that the quadric q(v) = Svyvs — 20105 + 3vgvs vanishes
at the points of the tangent scroll Sjp to Cs, and the homogeneous ideal I, =
(qO, <y 44, q) < C[U]

Let J, = J,(qo, - - -, 44,9) be the Jacobian matrix of (qo,...,qs,q) With respect
to v=(v1,...,06). The surface Sjp = Vs is singular along Cg since rankJ,|; <
4 = codimps Sio for any se Cs. For the special choice (v) of the coordinates this
can be verified directly:

s‘zvvqolf = (0,s4, —25% 652, —2s,1), s_lV,,ql |y = (s5, —6s*,253, 457, —3s, 2),
V,qols = (0,-95% 853, —95%,0,1), sV,q3l; = (=3s°,4s%,25%, —652,5,0),
5°Voqals = (=25%,65%,—25°,5%,0,0), and V,q|; = (—4s°,55* 0,552, —4s,3).
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(*). Therefore rank J,|; = 4 for any 5 C, and the linear 4-space of linear
equations between the gradients V,qols, ..., Vyq4l; and Vvq[~ is spanned on the
Pfaff-equation s72V,qol; + 57!V, q1l; +V,,q2| +sV,,q3| +52V,q4l: =0 and the 3-
space of equations V,q|; = ao.s 2V, qol; + a1.57'Voqi |z + @2.Voqa|z + a3.5Vo g3 +
as.s V,,q4| = 0 where:

(xx). ag+4as+3a4 =28, a1 —3a3 —2a4 = —4, ar +2a3 + a4 = 3.

3.12. In the dual space P°, let G = G(2,5) = P° be the grassmannian of
hyperplane equations represented by the skew-symmetric 5 X 5 matrices of rank 2.
It is easy to see that the plane I1 = (Hy, H,, H,)» = P° of hyperplane equations
of P® = Span Cs does not intersect G.

Let A =TI be any line in II. In P° the line A defines, by duality, the
subspace P’(A) > P® = Span Cs. 1t is easy to see that the fourfold W(A) =
GNP'(A), where G = G(2,5), is smooth. In fact, W(A) will be smooth iff the
line A does not intersect G. The last is true since A cII and
IING =0@. Therefore any X;o > Sy is a quadratic section of the smooth 4-fold
W =W(A).

3.13. Let X;0=G(2,5 NP 'NQ > S)y, where Q is a quadric. We shall
show that the singularities of Xj9o on Cs are the zeros of a homogeneous form of
degree 6 on Cg~ P!. To simplify the notation, we shall show this for one
special choice of the line A < IT (see (3.12)); the check for any other A = II is
similar.

Let A={H, =0} cII. Then, in coordinates (v) and u = xj4 — 3x23 in
P’(A), the subspace P%(x) = (u= 0). Therefore any quadric Q < P’(A), such
that QN X9 = Syo, can be written in the form Q = Q(v,u) = cu® + L(v)u + q(v)
where ce C and L is a linear form of (v).

Let Ok(v,u) (k=0,1,...,4) be the restriction of the Pfaff quadric Pf;
on P’ (v,u), and let J, , = [V, 4Q0;...;Vs404; V, 4Q] be the Jacobian matrix of
(Q07 (RN Q47 Q)

The singularities of Xjo on Cg are the points (3:0)e P’ for which
rank Jv,u|(s.0) < 4 = codimp7 Xo.

Let (5) = 6Q,/6u|~ i=0,...,4. The rows of Jv,u’(s,()) are Vu,inl(y:o) =
(Vugils, 1:(8)), i=0,...,4 and V,, le(s 0) = (Vugls, L(5)). For the special choice
of the line A < 1'[ the linear forms /; =i(5) are (l,l1, b, 1l 1) = (s*,0,—3s%,
—25,0

T)herefore, in view of (%), Xjo will have a singularity at (5,0) € Cg if there
exist constants a, ...,as satisfying (++) and such that L(5) = (ap — 3az — 2a3)s?
(here 5= (1,2s,52,253, 5% 257, 5%)—see above).

By (#*) ap— 3a; —2a3 =—1. Therefore, in homogeneous coordinates

(so:81), s =s51/50, the Vanety X10 will be smgular at the point ((5):0) e Cg iff
Fs(s0 : 51) 1= L(s§ : 2s3s1 = sgs? : 25357 : s3st : 25087 : s8) + s§sf = 0.

The Veronese map vg: P — Cs = Xqg, V6:(S0:81)— (5:0) = (sg : ngsl :
sgs? 25353 ¢ shst i 25087 591 0), states an isomorphism between P' and G;.
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Therefore either Fg(so : 51) = 0, and then Xjq is singular along Cg, or Fg(so : 51) #
0, and then the singular points of Xj9 on Cg are the vg-images of the zeros of the
homogeneous form Fg(so : s1) of degree 6.

The choice of an arbitrary line A < IT will only change the homogeneous
sextic forms defined by /;(5), i=0,...,4. q.e.d.

g = 6 (second Kkind)

3.14. Letn:X = X], — Y5, X = P’, be a double covering of the Del Pezzo

threefold Y5 = G(2,5) N P® branched along the quadratic section B  ¥5. Below
we shall identify the branch locus B = Y5 and the ramification divisor R < X},
R=~B.

3.15. Assume that X contains the tangent scroll S = Sjy to the rational
normal sextic C= Cg, and let / =S be a general tangent line to C. Then
Nyx = 0(1) ® 0(-2) (see (1.2)), and n(/) = Y5 also is a line. If Ny, =
O ® O then dn : Njjy — Ny v, has one-dimensional kernel along /. In this case
[ is contained in the ramification divisor R of #. The last is possible only for a
finite number of /’s. Therefore, at least for the general tangent line / = S to C,
the line n(/) = n(S) is a (—1,1)-line on Y5, i.e. Nyy vy, = O(—1) @ O(1). There-
fore n(S) = Y5 coincides with the surface S_;; = Y5 swept-out by the (—1,1)-
lines on Ys, which in turn is a tangent scroll to a rational normal sextic (see
[FN]). Clearly n:.S — S_;; is an isomorphism and S_;; is the tangent scroll
to 71'(C6).

Assume first that S=R. Then S_;; =n(S)=B=R. Therefore X is
singular along Cs since the branch locus B=S_;; of = is singular along Cg.
In order to prove Lemma (A) for g = 6 (second kind) it rests to see the general
X{, © Sio such that S # R is singular. This will imply that any X|, = Sjo must
be singular—since the property X[, = Sip to have a singularity is a closed
condition.

Since 7 : X|, — Y5 is a 2-sheeted covering with a ramification divisor R, then
H'(X{,,0(1)) =n*H’(Ys,0(1)) + C.R where R is the hyperplane equation of
R < X|,. Therefore, since S =~ n(S) and S # R, then =(S) is tangent to the
branch locus B of n along a (possibly singular) canonical curve C§y = BNH =
n(S) N H for some hyperplane H < P®. Since 7n(S) = S_;,; then the general X7,
> 8§ = Si0, S # R comes from a branch locus B totally tangent to S_;; along a
general hyperplane section HNS_; ;. Since H is general then H intersects the
rational normal sextic 7(Cs) at 6 points p,...,ps such that p; # p; for i #j. By
pi € B and the identification B = R, we may cosider p; as points on R < X|,. We
shall see that

(x*) LeMMA. p;eSingX|,, i=1,...,6.

Proof of (x). Let U; = Y5 be a sufficiently small neighborhood of the point
pi. Since Ys is smooth, we can identify U; with a disk in C3, and let (u,v,w) be
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local coordinates in U; s.t. p; = (0,0,0). Let f(u,v,w) =0 be the local equation
of Sjo in U;. Since Sy is the tangent scroll to the smooth rational curve Cg, and
pi € Cs, one can choose the coordinates u,v,w such that f = u® —v? (since the
scroll Sip has a double cusp-singularity along Cs—see Lemma 2.3). Let ¢ =0
and & = 0 be the local equations of B and H in U;. Since B and Sy are singular
along C§, = BNH = SioNH, h?, f and q are linearly dependent, i.e. ah? + Bf +
yq = 0 for some constants «,f,y. Moreover o # 0 and y # 0 since 7(S) = S and
n(S) # B, and one may assume that f # 0 (otherwise B=2H and X7, will be
singular along the surface Ryeq = Breq = H). Since p; € H, h(0,0,0) =0 and & =
au+bv+ cw+0(2), where o(k) denotes a sum of terms of degree > k.
Therefore the surface B is singular at p; since BN U; = (¢ =0), and the series
expansion

q(u,0,w) = —B/3f —af/yh® = B/y(0* — ') —a/y(au+ bo+ ew + 0(2))?

has no linear term. Since B is the branch locus of n:X[;, — Y5, the
threefold X7, will be also singular at p;e R= B, i=1,...,6. In addition, the
6 = 12 — g(X],) singular points pi,...,ps of X{, lie on the rational normal curve
Cs < X{- q.e.d.

Proof of Lemma (A) for g = 8.

3.16. The Da Palatini construction (see [Pu]). Let P° = P(V) where V=
CS and let V = Hom¢(V, C) be the dual space of V. The points H € /}2V =
Hom¢(A?V, C) can be regarded as skew-symmetric linear maps H : ¥ — ¥, and
the hyperplanes (H = 0) = P'* = P(A’V) can be regarded as points of P'* =
P(N*V). )

Let Pf = {H € A’V) : rank(H) < 4}/C*. Then Pf is the Pfaff cubic hy-
persurface in P!* defined, in coordinates, by vanishing of the cubic Pfaffian of the
skew-symmetric (6 x 6)-matrix H. Let Uiy = A*V be a 10-dimensional subspace,
and let

Us = Us = {H e ¥ = Homc(A2V, C) : H|y,, = 0}.

Let moreover Ujp = A’V be such that rank(H) > 4 for any H € Uj;, and let
X4 = G(2, 6) ﬂP(Ulo) and B; = PfﬂP(Ug).

The construction “Da Palatini”” of G. Fano shows that any hyperplane P* =
P(V) defines a birational isomorphism ¢ : Xj4 — B3 which can be described as
follows (see [Pu]):

Identify the point b € B3 and (the projective equivalence class of) the skew-
symmetric 6 x 6 matrix corresponding to b. Since rank b =4 for any b € B3 the
projegctive kernel n, of b will be a line in P°. Let W := ), p {m = P(Kerb)}
c P

The fourfold W can be described by an alternative way. Identify the point
1€ G(1:5) and the line / = P°, and let W':= ) {l/ < P’|le X14} < P°. Then
(see [Pu, p. 83)):



426 ATANAS ILIEV AND CARMEN SCHUHMANN

(a). for the general ve W' there exists a unique | € X4 such that vel,

(b). for the general we W there exists a unique b€ B such that w € np;

(c). W'=Ww.

Let H c P° be a general hyperplane. Then, by (a), (b) and (c), the maps
¢:Xu— HNV, ¢(l)=HNIl and ¢ : B3 > HNV, y(b) = HNnp are birational
isomorphisms. The composition & = &y = z//‘l o¢: X14 — Bj is a birational iso-
morphism, depending on the choice of the hyperplane H = P’ (see [Pu, p. 85]).

3.17. The dual cubic fourfold of S;;. By Lemma 3.8 (ii) the curve Cs is the
Pliicker image of the tangent scroll to a rational normal quintic Cs : (x¢ : --- : Xs)
=§=(1:s:5%:---:5% in P3(x). The points of the curve Cg are the Pliicker
coordinates x;;(s) of the point 5e Cs:

0 1 25 352 4s® 5s°
0 52 253 35 45

e 0 s* 2s° 3s
s =|{ o 6 a7

0 s

Therefore S14 = G(2,6) N P? where P® = (Hy=---=Hs=0) c P" and:
Hy = x03 — 3x12, Hi = xo4 —2x13, Hj = 3x05 — 5x14,
H3 = x14 — 3x23, Hj=x15—2x, Hs5= x5 —3x3.
Let I1° := (Hy, ..., Hs) = P be the projective linear span of {Hy, ..., Hs},

and let B; = PfN{H,,...,Hsy. Introduce projective coordinates (f : ---: t5) in
IT° such that the point (to,...,ts) represents the vector toHp + --- + tsHs. Then
the cubic 4-fold B; = PfﬂPS([O R t5) is defined by B3 : F = 32ty15t5 — tytsts —

20215 — 21013 + 3t113t4 — 12t 1at4 — 458315 — 90212 = 0.

The 6-vector (0,...,0) is the only value of (#,...,?s) where the 15 Pfaffians
Pfi(t,...,ts) of the matrix H(to,...,ts) = toHo + --- + tsHs vanish. Therefore
rank b =4 for any b € Bj.

The fourfold B; = (F =0) c IT° is singular, and it is not hard to check

that Sing Bz = (V(,....;-xF = (0,...,0)) = IT° is the rational normal quartic curve
Cy={[r]=(1:2r:r*/3:82/3:2r3 : r*)|r € C}; for simplicity we let tp = 1.

3.18. Now we are ready to prove Lemma (A) for g =8.

Let X4 = G(2,6)NP° = P(Uyy) be such that Xj4 > Sj4, and let B; =
PfﬂP(UlJb) Then Sl4 < X14 = G(2, V)DP(UI()) 54 P8 = SpanSM c P(Ulo) =
Span X14 < P(Ujy) = I1° < By = B;. Since B; < B; then rank(H) = 4 for any
H € Bj; (see (3.17)), hence the Da Palatini birationalities ¢ : X14 — B; (see (3.16))
are well-defined.

Assume that Xj4 is smooth. Then B; must be smooth (see above or [Pu,
p. 83]). But B; must be singular at any of the intersection points of the hyper-
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plane P(Uj;) < IT° and the rational quartic curve C; = Sing B;—contradiction (see
the end of (3.17)). Therefore any X4 > S14 must be singular. q.e.d.

3.19. Remark. 1f P(Uj;) = Span(Cs) then Bj is singular along Cy, and it
can be seen that then X4 is singular along Cs. Let P(Uj,) # Span(Cs). Then
the hyperplane P(Uj;) < IT° intersects the rational normal quartic C4 = Sing Bs
in 4 possibly coincident points by, b;,b3,b4. Let, for simplicity b; be different
from each other. Then one can show that the general Da Palatini birationality
B3 — X4 sends {b1,b3,b3,b4} to 4 = 12 — g(X14) singular points of X4 which lie
on Cs. Let H < P° be a hyperplane, and let &' : By — Xj4 be the Da Palatini
birationality defined by H. We shall see that for the general H the rational map
é;,l = Yy is regular at a neighborhood of any 4;, and f;,l (b;) € Cg. For this, by
the definition of the maps ¢ and , it is necessary to see that the kernel-map
ker: By — G(1:5), b— ny sends the quartic C4 isomorphically to Cs.

Let b = (b;) € Bs. Then the Pliicker coordinates of the line n; = ker(b) are
(=1)"7 Pf;;(b), where Pf;(b) are the 15 quadratic Pfaffians of the skew-symmetric
matrix b; note that rank(b) =4 for any be B; = B;. Now, it rests only to
replace b by the general point b(f) = Hp + tHy + t>/12H, + 2?/3H; + 3 /AH, +
t*/16Hs € C4, and to see that the Pliicker coordinates of h(¢) parameterize the
general point x;(5) of Cg (where s =2/r)—see (3.17).

Proof of Lemma (A) for g =7

3.20. In the proof of Lemma (A) for g = 7 we shall need the known by [12]
description of the projection from a line / on a smooth prime Fano threefold
X242 such that Ny = O(1) @ O(-2).

3.21.

LemMA (see §1 Proposition 3 in [12]). Let [ be a line on the smooth prime
Fano threefold X = Xpy—» < PU*' such that Nyy = 0,(=2) @ O,(1), and let
0:X'— X be the blow up of . Let Z' =a7'(l), let H ~c*H —Z' be the
proper preimage of the hyperplane section H of X, and let n: X — X" < P97! be
the projection from l. Then:

(). If g=>5 then the composition ¢ =noc:X' — P9\ is a birational
morphism (given by the linear system |H'|), to a threefold X" < P97".

(i). The restriction to Z' = P(Nyyy) = F3 of the linear system |H'| is the
complete linear system |s' + 3f’|, where s' and f' are the classes of the exceptional
section and the fiber of the rational ruled surface Z'.

(iii). The restriction §|, of ¢ to Z' maps Z' to a cone Z" over a twisted cubic
curve, contracting the exceptional section s’ of Z' to the vertex of Z".

(iv). If g = 7 then there are only a finite number of lines [ c X (i=1,...,N)
which intersect I. Let Il = X' of I; (i=1,...,N) be the proper preimages I} < X'
of ; (i=1,...,N). Then the morphism ¢ : X' — X" is an isomorphism outside
HU---UlyUs', and ¢ contracts s' and any of l] to isolated double points of X"

(v). Let H" = ¢(H') be the hyperplane section of X". Then if g =7 then
—Kyr ~ H" ie. the variety X" = X2’Eg—2)—2 < P97 is an anticanonically embedded

Fano threefold with isolated singularities as in (iv).
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3.22. Suppose that there exists a smooth prime X = Xj; < P® which
contains the tangent scroll Sj; to the rational normal curve C;. Therefore the
general such X is smooth, and we may suppose that X > S, is general.

Let / = S;; be any of the tangent lines to C; and let #: X — X" be the
projection from /. By [I2, §1] (see also (1.2)) N;x = O(1) @ O(-2), therefore
Lemma 3.21 (i)-(v) take place.

By Lemma 3.21 (v) the threefold X” = Xy’ = P°®is an anticanonically embedded
Fano threefold of genus 5. Let S” = X" be the proper image of S);, and let
C”" = 8" = X" be the proper image of C;. It is easy to see that C" = C{ is a
rational normal quintic, and S” = S < X” is the tangent scroll to C”.

In order to use the proof of Lemma (A) for g =5 we have to see
whether X{' < PS is, in fact, a complete intersection of three quadrics. If X’
were nonsingular then the classification of the smooth Fano threefolds will imply
that X” will be a complete intersection of three quadrics. But X” is singular—
see Lemma 3.21 (iv),(v).

However, especially in this case, X” = Xy = P® is still a complete inter-
section of three quadrics (see Theorem 6.1 (vii) in [I1]).

Denote by Sing(X) N C the set of singular points of X = X}, on C, and let
Sing(X")N C” be the set of singular points of X” on C”.

3.23. By the proof of Lemma (A) for g = 5, the elements of Sing(X")NC
are in a (1:1) correspondence with the different zeros of a homogeneous form
Fy(s, : s1) of degree 7. (see (3.6)). Clearly, the vertex o of Z” lies on C”.
Moreover, by (3.21)(iv), o is a double singularity of X”. Since /N Sing X =0,
and since the tangent lines /’ #/ to C = C; do not intersect /, (3.21)(iv) yield
that, set-theoretically: Sing(X)NC = Sing(X")N C" — {o}.

Let F;(so:s1) =0 be as above. Since dim Sing X" = 0, the form F; does
not vanish on C;; and we can assume that o= (1:0) and F;(0:1) #0.
Therefore if s =s;/s0 and f7(s) = F(1:s) then deg f;(s) =7. By the previous
the elements of Sing(X) N C correspond to the different zeros of the polynomial
s~™. f7(s) =0, where m = mult, f5(s).

By the local definition of m, the integer m = m(o) = mult, f;(s) does not
depend on the genus g > 7 of X,,_, as well on the choice of the general tangent
line / to C,. It can be seen that m = 2, but for the proof it is enough to know
that m < 2.

(*) LemMMA. m <2.

Proof of (x). By construction X" > S”UZ" where S” = Sy is the tangent
scroll to the rational normal quintic C” = Cg such that o € C”,Z” is a cone over
a twisted cubic, and o is the vertex of Z. Moreover Z” is triple tangent to S” at
the tangent line F to C” at 0. Indeed S” is a hyperplane section of Z” which
passes through the vertex o of Z. Therefore S”.Z =fi + /> +f3 is a sum of 3
rulings of Z”. Since f; are rulings of Z, o € f; for i = 1,2,3. Therefore any f; is
a line on the tangent scroll S” to C” which passes through o e C”. Therefore
fi = F must be a tangent line to C” at o, ie. S$".Z" = 3F.
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By Theorem 9.9 in [I3], the general complete intersection Xz = P® of three
quadrics, containing a cone Z3 over a twisted cubic, is a projection of X, from
a line / such that Ny y, = O(1) ® O0(-2). The inverse of the projection 7; is
defined by the linear system |H + Z3|, where H is the hyperplane section of Xj.

Let X3 o Z3U Sg be as above. Then Xj, will contain a tangent scroll S, to
a rational normal curve C;, and / will be a tangent line to C;. Therefore any
Xg o Z3U Sg will be a deformation of a projection of X7, = Sy, from a tangent
line to Cj.

It rests to see that m(Xg) = mult, f; < 2 for f; corresponding, as above, to
some particular such Xj.

Example. Let P°(x) = Ps(xo :---:xs5), and let go = —xoxg + 4x1x3 — 3x§,
q1 = —Xo0X5 + 3x1x4 — 2x2Xx3, @2 = —X1X5 + 4X2X4 — 3x32. Then S = (qo =q1 =
¢2 = 0) = P5(x) will be the tangent scroll to the rational normal quintic Cs :
x=s57"s) (0<i<5).

Let Xs=(Qo=01=0,=0)cPS(x:u)=Pxo:x;:x2:%x3:X4:x5: 1),
where

Qo = qo + Lo(x4 : x5)u,
O1=q1+ (12x1 + Li(x4 : x + 5))u,
0> = q2+ (27/2x2 + Ly(x4 : X5))u,

Ly,L, and L, being linear forms of (x4:xs). Evidently X3N (v =0)=S;.
Let P*=P*xo:x :xy:x3:u) = P, and let Z3 = XgNP* Then Z; =
(P() = P1 = Pz = 0) e P4, where P() = X1X3/3 — x§/4, P1 = XU — X2X3/6, P2 =

xou — x3/9.

Therefore Z3 is a cone with center o = (1:0:---:0) € Cs over the twisted
cubic curve C3 = Z3N (xg =0), Cs: (X1 :x2 2 x3 1 u) = (83 : 2638, : 30027 : 7). Let
s = 51/50, and we may suppose that the point (0:---:0: 1) € Cs is not a singular

point of Xg. Then, by (3.6), the equation of (Sing Xs)|c, is

f1(s) = s20Q0/0u(l :5: - :8°) —50Q1/0u(l :5: - :5°) +0Qs/0u(l :5:---:5°)
=52 Lo(s*,5%) — s(125 + Ly (s*,5%)) + (27/25* + La(s*,s*)) = 3/25% + o(s%),

where o(s?) is a sum of terms of degree > 3. Therefore m(Xs) = mult, f5(s) = 2.
q.e.d.

3.24. Let X = X, o S12 be general. Since m < 2 then degs™"f7(s) > 7 —
2=5=12-¢g(X12) > 0. In particular g(s) := s ™f;(s) is not a constant. Since
9(0) # 0, and since the elements of Sing(X)NC are in a (1:1) correspondence
with the different zeros of g(s) = s™™f7(s) (see above), then X}, must be singular,
which contradicts the initial assumption. This proves Lemma (A) for g =7.



430 ATANAS ILIEV AND CARMEN SCHUHMANN

Proof of Lemma (A) for g = 9.

3.25. Let Xj6 = P'° contains the tangent scroll S = Sj¢ to the rational
normal curve C = Cy, and suppose that nevertheless Xj¢ is smooth.

Let L = Xj6 be a tangent line to C, and consider the double projection 7 =
nor of X from the line L, i.e. 7 is the rational map on X defined by the non-
complete linear system |Ox(1 —2L)|. Since X = Xj¢ is assumed to be smooth
then, by §2 in [I2]:

(¥). m=my sends X birationally to P3. Moreover, on P* there exists a
smooth irreducible curve C = C3 of genus 3 and degree 71, which lies on a unique
cubic surface Ss = P>, and such that the inverse to m birational map ¢ : P> — X is
given by the non-complete linear system |0p:(7 —2C)|.

By (%), the proper image n(H) of any hyperplane section H < X is an
irreducible component of an effective divisor S7 € |0ps(7 —2C)|. If moreover H
contains the line L but H ¢ |Ox(1 —2L)| (for example if H = Si¢) then n(H) <
P? will be a quartic surface containing the curve C = C3 (see the proof of the
Main Theorem in §2 of [I2]), and in this case S7 = n(H) + S3 € [0p:(7 —2C)|.

Therefore Sy := n(Sy6) is a quartic surface in P* containing the curve C =
C73. Moreover, the double projection 7 sends the general tangent line L' to Cy
to a tangent line 7(L’) to the proper image 7(Cs); and since Cy = P! then 7(Co)
is rational. Therefore the quartic surface Sy = 7(S)6) is the tangent scroll to the
rational curve 7(Cy) = P3. The last is only possible if 7(Cy) = C; is a twisted
cubic and Sj is the tangent scroll to C3, and we shall see that this is impossible.

The surface Sy = P? is the tangent scroll to the twisted cubic C;. Then, by
Lemma 1.6 and p. 498 in [MU], the normalization of S is the quadric P! x P!,
and the map v: P' x P! — S, is given by a linear system of bidegree (1,2).

Let T' < P! x P! be the proper transform of C3, and let (a, b) be the bidegree
of . Therefore 7 =deg(C3)=2a+b, and 3=g(C3)=g(I)=(a—1)(b-1).
Obviously, these two equations for the integers a and b have no integral solu-
tions—contradiction.

Therefore X6 > Sj¢ can’t be smooth, which proves Lemma (A) in case
g=09.

This completes the proof of Lemma (A).
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