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TANGENT SCROLLS IN PRIME FANO THREEFOLDS

ATANAS ILIEV AND CARMEN SCHUHMANN

Abstract

In this paper we prove that any smooth prime Fano threefold, different from the

Mukai-Umemura threefold X{2, contains a 1-dimensional family of intersecting lines.

Combined with a result in [Sch] this implies that any morphism from a smooth Fano

threefold of index 2 to a smooth Fano threefold of index 1 must be constant, which

gives an answer in dimension 3 to a question stated by Peternell.

§1. Introduction

1.1. A smooth projective variety X is called a Fano variety if the anti-
canonical bundle —Kx is ample. Then the index of X is the largest positive
integer r = r(X) such that -Kx = rH for some line bundle H on X.

The smooth Fano threefold X = Xd c P9+x (d = degZ) is called prime if
p(X) = rank Fic(X) = 1, r(X) = 1, and -Kx is the hyperplane bundle on X. By
the classification of Fano threefolds smooth prime Fano threefolds exist iff 3 <
g < 12 (gφll), and then d = 2g-2 (see [II]).

1.2. (see §4.2, §4.4 in [IP], or §1 in [12]). Let / be a line on the smooth
prime Fano threefold X, and let Nι/X be the normal bundle of / c= X. Then

(1). either (a). Nι/X = Θ® 0 ( - l ) ; or (b). Nι/X = 0(1) Θ 0 ( - 2 ) .
(2). The Hubert scheme 2tfx of lines on X is non-empty, any irreducible

component 2tf0 of fflx is one-dimensional, and either ffl0 is non-exotic, i.e. Nηx is
of type (l)(a) for the general / e / o ; or 2tf0 is exotic, i.e. N\jX is of type (l)(b)
for any / e J^o-

(3). The component J^o is exotic if either the elements / e J^o sweep out the
tangent scroll Ro <= X to an irreducible curve C c X; or g — 3 (i.e. X = X4 is a
quartic threefold), and then the lines / e Jί?o sweep out a hyperplane section Ro a
X4 which is a cone over a plane quartic curve, centered at some point x e X4.

1.3. For example, the scheme J4?x of the Fermat quartic X = X4 =
(XQ H ^ xt = 0)J which is a prime Fano threefold of # = 3, is a union of
40 double components each of which is of type (1.2)(l)(b) (see Remark 3.5(ii)
in [II]).

Received September 7, 1999; revised March 21, 2000.

411



4 1 2 AT ANAS ILIEV AND CARMEN SCHUHMANN

The only known example of a prime Fano threefold X of g > 4 such that
3tfχ has an exotic component 2tf0, is the Mukai-Umemura threefold X22. The
scheme 3tfχι = 23tf0 and the surface Ro is the hyperplane section of X22 swept out
by the tangent lines to a rational normal curve Cn <=• X22 of degree 12 (see [MU]).

1.4. By a theorem of Kobayashi and Ochiai the index r = r(Y) of a smooth
Fano n-fo\d Y can't be greater than n + 1; and the only smooth Fano «-folds of
r > n are Pn for which r = « + 1 and the ̂ -dimensional quadric β | f° r which r =
n (see e.g. [Pe], p. 106). In particular, except P3 and Q2, any smooth Fano 3-
fold must have index r < 2.

It is shown by Remmert and Van de Ven (for n = 2) and later by Lazarsfeld
(for any n) that the protective space Pn does not admit surjective morphisms
to a smooth projective «-fold X φPn (see [RV], [L]). The same is true for
morphisms f : Qζ ^ X f Pn, Q2 (see [PS]). In particular, P3 and Q\ do not
admit surjective moprphisms to smooth Fano threefolds X of smaller index r(X).

Let / : Y —» X be a non-constant morphism between smooth Fano 3-folds
of p = 1. By Kor. 1.5 in [RV], p(Y) = 1 implies t h a t / m u s t be surjective, and
by the preceding r(Γ) can't be >3. Therefore r(Y) = 2 , r(X) = 1. This gives
rise to the following question stated originally by Peternell (see (2.12)(2) in [Pe]).

QUESTION (Pe). Are there non-constant (hence surjective) morphisms / :
Y -> X from a smooth Fano 3-fold Y of p(Y) = 1 and r(Y) = 2 to a smooth
Fano 3-fold X of />(JT) = 1 and r(X) = 1?

In this paper we give the expected negative answer to (Pe).

Let / : Y —> X be as above, and assume that / is non-constant. Then /
must be surjective and finite since p(Y) = \ (see Kor. 1.5 in [RV]). Therefore
/ * :H3{X,C)^>H3(Y,C) will be an embedding, in particular h3(X)<h3(Y)
(see also [Sch]). For any Fano threefold Λ3'0 = 0 and h3 = 2A2 1 since the anti-
canonical class is ample. Therefore h1Λ{X) <h2Λ(Y). Since h1Λ(Y) < 21 for
any Fano 3-fold Y of r = 2 (see [II]), then the existence of a non-constant mor-
phism / : X —• Y as in (Pe) implies that h2jl(X) < 21. This gives a negative
answer to (Pe) whenever h2'ι(X) > 21.

The only smooth non-prime Fano threefolds of p = 1 and r = 1 are the
sextic double solid X2 and the double quadric X[ for which the answer to (Pe)
is negative since h2Λ{X{) = 52 > 21 and h2>ι(xfi = 30 > 21. By the same ar-
gument the answer to (Pe) is negative also for the quartic threefold X4 since
h2'l(X4) = 30 > 21. Any other smooth prime Fano threefold X = X2g-2 <= Pβ+ι

9

4<g<12, gφ\\ has h^\X) < 20 (see [II]).
In [Sch] is given a negative answer to (Pe) provided X contains a conic

of rank 2 (a pair of intersecting lines). The only known Fano threefold X of
p(X) = 1 and r(X) = 1 without intersecting lines is the Mukai-Umemura threefold
X = X22i and a negative answer to (Pe) in case X = X22 is given by E. Amerik
(see [Sch]).
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Therefore, in order to give a negative answer to (Pe), it is enough to prove
the following

PROPOSITION (B). Any smooth prime Fano threefold X2g-2<=P9+ι, 4 <
g < 12, g Φ 11, different from the Mukai-Umemura threefold X2'2, contains a 1-
dimensional family of conies of rank 2.

In Section 2 we prove Proposition (B) for 4 < g < 9 on the base of the
following technical

LEMMA (A). A smooth prime Fano threefold X = Xig-i c= Pg+\ 3 < g < 9
can't contain the tangent scroll Sig-i to a rational normal curve Cg of degree g.

By a result of Yu. Prokhorov, the only smooth prime X = Xig-i, g = 10,12
such that the scheme of lines $?χ has an exotic component is the Mukai-
Umemura threefold X{2 (see [Pr]). This implies Proposition (B) for g = 10,12.
Indeed, let X = Xig-2 be a smooth prime Fano threefold such that the scheme of
lines 3/Fχ on X has a non-exotic component 2tf0. Then, by Lemma 3.7 in [II],
the general element of 3tf0 will represent a line I a X which intersects at least one
other line on X.

This completes the proof of Proposition (B), which yields a negative answer
to (Pe).

In Section 3 we prove Lemma (A) for any particular value of g, 3 < g < 9.
For the prime Fano threefolds Xig-2 c Pg+ι (# = 3,4,5,6,8) we prove

Lemma (A) by using the Mukai's representation (see (3.1)) of the smooth Xig-i,
3 < g < 10 as a complete intersection in a homogeneous or almost-homogeneous
variety Σ(g). More concretely we see that if the threefold X c Σ(g) (g = 3,4,
5,6,8) is a complete intersection in Σ(g) of the same type as the smooth prime
^2g-2, and if X contains the tangent scroll S2g-2 to the rational normal curve Cg

of degree g, then Xmust be singular—see (3.4), (3.5), (3.6), (3.13), (3.15), (3.19).
For g = 7 we use the properties of the projection from a special line / c:

X2g-2, g > 7 to reduce the proof of Lemma (A) for g — 1 to the already proved
Lemma (A) for g — 5—see (3.20)-(3.24). To prove Lemma (A) in case g = 9 we
can use the same approach as for g = 7. But a more elegant proof, based on the
description of the double projection from a line, had been suggested by the
Referee—see (3.25).

§2. Lemma (A) >̂ Proposition (B) for 4 < g < 9.

2.0. Assume that the smooth prime Fano threefold X = X2g-2 (4 < g < 9)
does not contain a 1-dimensional family of conies of rank 2.

LEMMA 2.1. Under the assumption (2.0):
(i). The Hilbert scheme fflx of lines on X has a unique irreducible component
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(ii). 2tf0 — #?χ is exotic, and the lines / e / o sweep out a tangent scroll Ro e
\(9χ{d)l d>2.

Proof of Lemma 2.1.
(i). Let J^o and JfΌo be two different irreducible components of J^χ, and let

Ro and R^ be the surfaces swept out by the lines / e / o and leJ^oo Since
Pic(Z) = Z.H, where H is the hyperplane section, any effective divisor on X must
be ample. In particular the general line / e 34?O intersects the surface R^ c X-
If moreover / cz R^ for the general I e 34?O, then Ro = R^ and this surface
contains two 1-dimensional families of lines. Therefore Ro = R^ is a quadric
surface on X, which contradicts Pic(X) = Z.H. Therefore the general / e 2tf0

intersects R^ and does not lie in R^; and since ROD is swept out by lines then
there exists a line /' c R^ which intersects /. Since I e Jf0 is general this
produces a 1-dimensional family of intersecting lines / + /' (= conies of rank 2
on X)—contradiction.

(ii). If 2tfx = ̂ o is non-exotic then, by Lemma 3.7 of [II], the general
element of 2tf0 will represent a line / c X which will intersect at least one
other line m a X, i.e. X will contain a 1-dimensional family of intersecting lines
(= conies of rank 2). Therefore Jfo is exotic.

Since 2tf0 is exotic and g > 4 then Ro is the tangent scroll to a curve C c X
(see (1.2)(3)), and since Pic(X) = Z.H then Ro e \Gχ(d)\ for some ineteger d > 1.
If Ro is a hyperplane section of X (i.e. d = 1) then, by Lemma 6 in [Pr], C — Cg

must be a rational normal curve of degree g. However the last is impossible
since then Lemma (A) will imply that X is singular. Therefore d > 2. q.e.d.

We shall show that nevertheless X contains a 1-dimensional family of conies
/ + m of rank 2 where I,me J^o.

Remark. Let Cs be the (possibly empty) set of singular points of C. For
any x e C — Cs denote by lx the tangent line to C at x. For a point x = x(0) e
Cs define a tangent line to C at x to be any limit l im^^^o) lx(ή of tangent lines
lχ(t) to points x(ί) e C - Q (see Chapter 2 §4 in [GH]). Clearly, C can have only
a finite number of tangent lines to x(0) e Cs (see also Chapter 2 §1.5 in [Sh]).

2.2. By the initial assumption (2.0), X does not contain a 1-dimensional
family of conies of rank 2. In particular, X does not contain a 1-dimensional
family of pairs of intersecting tangent lines to C

Since the surface Roe\Θx(d)l d>2, and SpanX = Pg+ι then SpanR0 =
1, # > 4 (see also Lemma 6 in [Pr]). Since Ro is swept out by the tangent

lines to C then Span C = Span Ro = P9+x. In particular C does not lie on a
plane. Since Ro is the tangent scroll to the non-plane curve C then Sc is singular
along the curve C.

Let L Φ C be (if exists) an irreducible curve on Ro such that Ro is singular
along L. If L is not a tangent line to C, then the general point of L will be an
intersection point of two or more tangent lines to C (see §4 in [P2]). The last is
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impossible since, by assumption, on X can lie at most a finite number of pairs of
intersecting lines.

Therefore any irreducible curve L φ C such that L c Sing Ro must be a
tangent line to C. In addition, the tangent scroll Ro to C still can be singular
along a tangent line L to C—for example if L is a common tangent line to two
or more branches of C at x, or if C has a branch with a cusp at x, or if x e
C - Cs but x is an inflexion point of C and then Ro has a cusp along lx, etc. (see
§2, §4 in [P2]).

Let Δ a Ro be the union of all the irreducible curves L on Ro such that
L φ C and Ro is singular along L. By the above argument, either Δ = 0 or Δ is
a union of a finite number of tangent lines to C.

Let v : Rn —• Ro be the normalization of Ro. Fix a desingularization τ :
#„ -> #„, and let σ = τov: RnΓ* Ro. Let Eu...,Ek (k > 0) be all the irre-
ducible contractable curves on Rn, i.e. all the irreducible curves Et a Rn such
that σ(Et) e Ro is a point.

Denote by ~ the linear equivalence of divisors on the smooth surface Rn,
and let E be a divisor on ^ r t . Call is a zero divisor on Rn if is ~ 0; call the non-
zero divisor E contr actable if is ~ a\E\ Λ h #&£& for some a\,...,akeZ. Let
C c j?rt be the proper σ-preimage of C on ^ w . Since Ro is the tangent scroll to
the irreducible curve C then the curve C" is irreducible and σ\c, : C —> C is an
isomorphism over a dense open subset of C (see also Lemma 2.3 below).

Let C[,...,C'r be all the irreducible curves on Rn such that σ(C/) is an
irreducible component of Δ. Therefore

for some positive integers ra,/?i,... ,/?r, and a contractable (or zero) divisor E on

LEMMA 2.3. Lei X fulfills (2.0). 77ze« ί/ze tangent scroll Ro a X to C has a
cusp of type v2 — u3 + along C, αί α neighbourhood of the general point
xe C a Ro; in particular m — m u l t c i ^ = 2 (see also §5 in [P2] and §4 in [PI]).

Proof of Lemma 2.3.
(1). We shall see first that Ro is irreducible at any neighbourhood of the

general point x e C , i.e. Ro has one local branch at x.
Assume the contrary, and let x e C be general. Let U c X be a complex-

analytical neighbourhood of x such that Ru — Ro Π U is reducible. Since i?0 is
swept out by the tangent lines to C, the last imlies that for the general point
y e Cu = C Π U (hence for the general y e C) there exists (possibly non-unique)
z e C, z Φ y such that y lies on a tangent line to C at z. Since the set Cs =
{*!,... ,xs} of singular points of C is finite (or empty), and any such xt has at
most a finite number of tangent lines, then the general y e C doesn't lie on a
tangent line to z e Cs. Therefore the general y e C lies on the tangent line lz to
C at some (possibly non-unique) z e C — Cs.

If moreover ly φ lz (where ly is the tangent line to C at y) then all such ly + lz
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will produce a 1-dimensional family of conies of rank 2 on X, which contradicts
the initial assumption (2.0) about X.

If ly = lz then this will imply that the tangent line ly to C at the general y e C
is tangent to C at two or more points. But then the projection C o f C c Pg+X

from the general subspace P9~2 c P9+x = SpanX will be a plane curve with a 1-
dimensional family of lines tangent to C at two or more points, which is
impossible.

(2). It rests to see that the unique local branch of Ro at the general xe C
has a cusp of type v2 — u3 H along C at a neighbourhood of x.

S i n c e R o e \Θχ(d)\ a n d d > 2 , t h e n Span C = S p a n R 0 = P9+\ g>4 ( s e e
above).

Let x be a general point of C. In order to prove that the tangent scroll
Ro a X to C has a cusp of type υ2 — u3 H at a neighbourhood of x it is
enough to see that the projection of Ro from a general P9~3 a P 6 ^ 1 has a cusp
at x. This reduces the check to the case when Ro is the tangent scroll to a curve
CaP3.

Since x is a general point of C <= P 3 then, after a possible linear change of
coordinates in P3, the curve C has (at x — (1 : 0 : 0 : 0)) a local parameterization,
or a normal form (see §2 in [P2], or Chapter 2 §4 in [GH]):

Cv : (JC,(Z) : : xn(z)) = (1 : z + o(z2) : z2 + o(z3) : z3 + c(z4)), \z\ < 1,

where o(zk) =Σj>kajZJ. Since the coefficient at z^ in ^ ( z ) = z^ + o(z^+ 1) is
1 7̂  0 (& = 2,3) then, after a possible linear change of (xi,X2>*3), the local
parameterization of C at x = (1 : 0 : 0 : 0) can be written as

Cυ : (xo(z) : x\(z) : x2(z) : ΛΓ3(Z))

= (1 : z + o(z4) : z2 + o(z4) : z3 + o(z4)), |z| < 1,

i.e. Cu approximates, upto o(z4), the twisted cubic C3 = {(1 : z : z2 : z 3)}.
Therefore, at a neighbourhood of x = (1 : 0 : 0 : 0), the unique local branch (see
(1)) of the tangent scroll Ro to C is parameterized by

Ru : (*0(z, 0 : *i(z, ί) : x2(^, 0 : ^ 3 ^ , 0)

= (1 : z 4- ί + o(z4) + o(z 3 )ί : z2 + 2zt + o(z4)

+ φ 3 ) / : z3 + 3z2ί + φ 4 ) + o{z3)t).

In affine coordinates (x\,X2,xτ>) the tangent line to C at x = (0,0,0) is
spanned by the vector nx = (1,0,0), and the normal space C 2 cz C 3 (JCI,X2,^3)
to nx at x is defined by x\ = 0. In order to prove that Ru has a cusp along C at
a neighbourhood of x we shall see that the curve DJJ = RuΠ (x\ = 0) c C2 has
a cusp at x.

On Du = RuΓ\(x\=0)9 one has: 0 = xx = z + ί + o(z4) + o(z3)/, i.e. ί =
- z + φ 4 ) . Let w = — X2, v = — X3/2. Therefore, on DJJ c C 2
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u = -(z2 + 2zt + φ 4 ) + o(z3)t) = z2 + φ 4 )

v = -l/2(z3 + 3z2t + φ 4 ) + o{z3)t) = z3 + o(z4),

i.e. u2 = z4 + φ 6 ) , m; = z5 + φ 6 ) , t;2 = z6 + φ 7 ) , u3 = z6 + φ 8 ) , Λ = z7 +

Let Cl^ = (fu(u,υ) = 0) be the local equation of DJJ cz C2

o{u,υ) at JC =
(0,0). Therefore, upto a constant non-zero factor, fu(u,v) = v2 — u3 + C2,\u2v +
c\,iuv2 Λ , i.e. C\v has a double cusp-singularity of type v2 — u3 H at x =
(0,0) (see §5 in [PI], §4 in [P2], Chapter 5 Examples 3.9.5, 3.9.1 and Chapter 1
Exercise 5.14 in [H]).

Therefore R — Ro has a pinch of type v2 = u3 -\ along C at a neigh-
bourhood of the general point x e C, which proves Lemma 2.3.

2.4. By the definition of C [ , . . . , C'r any irreducible component of Δ can be
represented (possibly non-uniquely) as the image σ(C/) of some C/, / = l , . . . , r .
Since σ| c, : C -^ C is an isomorphism over an open dense subset of C then the
general point x e C has a unique σ-preimage x' on C", and the proper preimage
/£ c: ^ r t of the tangent line lx to C at x intersects C transversally at x1. Since,
by assumption, on X doesn't lie a 1-dimensional family of pairs of intersecting
lines then the tangent line lx to C at the general point x e C does not intersect
any other tangent line to C.

Therefore the non-singular surface Rn has a structure of a possibly non-
minimal ruled surface with a general fiber L1 := the proper σ-preimage of the
general tangent line lx to C. In particular KR.L' — —2, and since the curve C
is a section of ^ w then C .V = 1.

By the definition of C/ the curves σ(C/) c i?o are irreducible components
of Δ; and since by (2.2) the components of Δ can be only tangent lines to C
then σ(C/) is a tangent line to C. Therefore any component of σ~ ι(σ(C/)), in
particular C/, will not intersect the general fiber L' of Rn, i.e. C/.Z/ — 0.

Moreover a contractable curve Ej can't intersect the general fiber of Rn since
otherwise the point σ(Ej) e Ro will be a common point of a 1-dimensional family
of tangent lines to C. The last is impossible since g > 4 and the smooth X =
^20-2 can't contain cones—see (1.2). Therefore Ej.L' = 0 for any j = 1,...,/:;
and since is is a sum of such E3 then E.L' — 0.

Since Kx ~ -H and 7^ - ffi on I then, by adjunction, KRo ~ (d - l)H\Ro.
Since the hyperplane section H intersects the general tangent line / to C at one
point then σ*(H\R ) is also a section of Rn, i.e. σ*(H\R).L' — 1. Therefore

-2 - tf^.1/ = (σ*KRo - mC - Σ^ l r . . , r A C/ + E).L'

= (d- l)σ*(H\Ro).L' - mC'.L' - Σ^^piC .L' + E.L'

= (d — 1) — m, i.e. d = m— I.

Since X = ^ - 2 is smooth and g > 4 then, by Lemma (A), d > 1. There-
fore m = d + 1 > 2, which is impossible since m = 2 by Lemma 2.3.
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This contradicts the initial assumption (2.0) that the smooth X = X2g-2, 4 <
g < 9 does not contain a 1-dimensional family of conies of rank 2. q.e.d.

§3. Proof of Lemma (A)

3.1. By [Ml], [M2] any smooth prime Fano threefold X2g-2 <= Pg+\ 3 <
g < 10 is a complete intersection of hypersurfaces F\,F2, .. ,FN of degrees d\,
d2,...,dχ in a homogeneous (for g = 6—an almost homogeneous) space Σ(g),
and:

if g = 3 then Σ(3) = P 4 , TV = 1, dλ = 4;
if g = 4 then Σ(4) = P 5 , N = 2, dλ = 2, d2 = 3;

if g = 5 then Σ(5) = P6, N = 3, d{ = d2 = d3 = 2;

if # = 6 then Σ(6) = K.G(2,5) cz P 1 0 is a cone over the grassmannian G(2,5)
aP\ N = 4, dι=d2 = d3 = 1, d4 = 2;

if 7 < gf < 10 then X2g.2 = Σ(#) n P 3 + 1 , where Σ(7) cz P 1 5 is the spinor 10-
fold, Σ(8) = G(2,6) cz Pι\ Σ(9) cz P 1 3 is the sympletic grassmann 6-fold, and
Σ(10) cz P 1 3 is the G2-fivefold.

3.2. To prove Lemma (A), it is enough to see that if X — X2g-2 cz Σ(g) is a
3-fold complete intersection as in (3.1) (assuming implicitly that such J m a y have
singularities) then X2g-2 can't be smooth. We shall prove this separately for any
value of g, 3 < g < 9.

For g = 3,4,5,6,8 we use that Σ(g) is either a protective space or a (cone
over) grassmannian, which makes it possible to compute directly that the general
such Xig-i => Sig-i must have 12 — g singular points on the curve Cg.

For g — 1,9 we assume that X = X2g-2 a S2g-2 is smooth, and then project
X from a tangent line to Cg to derive a contradiction on the base of the already
known Lemma (A) for g = 5.

3.3. NOTATION. Let n > 1, m > 0 be integers, let Pn+m(z: w) =

Pw + W(zo : : zΛ : wn+\ : : ww+m) be the complex projective (n + m)-space, and
let F(z : w) =F(zo : : zn : wn+\ : : wn + m) be a homogeneous form. Denote
by VZF = (dF/dzo,... ,dF/dzn) the gradient vector of F with respect to (z) =
(z0 : : zn).

Let Fi(z : w),... ,i^(z : w) (k > 1) be homogeneous forms. Denote by:
(Fu...,Fk) c:C[z : w] = C[z0 : : zn : wn+\ : : wn+m\— the homogeneous

ideal generated by F\,...,Fk\
V(F\,..., .Fit)—the projective variety defined by Fu...,Fk;

{a-.b) = Λ( ίΊ, -iFk)\{a:b) = [ v ^i5 5 V zi^] |(β : A)— the Jacobian matrix Jz

of partial derivatives of F\,..., Fk with respect to (z) = (zo,..., zn), computed at
the point (a : b) e Pn+m(z : w), (where VZF/ are regarded as rows of / z ) .

Let e.g. m = 0, let X = V(FU ...,Fk)<=: Pn(z0 : : zn), and let d i m ^ = d.

Then dim J^X > d for any x e l , where TXX is the tangent space to X at x;
and the point x e l i s singular if dimTXX > d (see e.g. Chapter 2, §1.4 in [Sh]).
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Equivalently x e l i s singular if r a n k / ^ < n — d. The subset Sing X = {x e X :
rankJz\x < n — d) a X of all the singular points of X is a proper closed subset of
the projective algebraic variety X, defined on X by vanishing of all the (n - d) x
(n — d) minors of Jz.

3.4. Proof of Lemma (A) for g — 3. The tangent scroll to the twisted cubic
C3 : (xo : x\ : X2 : X3) = ? : = (SQ : SQS\ : sos^ : sj) is the quartic surface *S4 = V(f)

P 3(x) where /(x) = 3x^x| + 6xo-Xi*2*3 - 4xjxi — x^xj - 4XQX|- The surfacex^xj
£4 is singular along C3 since the gradient vector V x / | - = 0 for any se C3.

Let the quartic threefold X4 <=P4(x: u) be such that S4 = X4ΠP3(x), and
let X4 = V(F) c P 4 (x : w) where F(x : «) = Σ 0 <^< 4 /; (x)w4"z. Therefore/4 e (/),
i.e. f4 = c/ for some constant c e C.

Let x e X4. Then x e Sing X4 iff Vx UFX = 0. Let s = (s0 : Ji) e P 1 . Then
( ? : 0 ) e S ^ J T 4 # 0 = VX,UF\(I:O) = (yxF,dF/du)\(I:O) = (V x/| y,/ 3(?)) = (0,/3(?)).

Therefore either Af?) = 0 (i.e. /3(?) = 0 for any s = (so : s\)), and then X4 is
singular along C4, or fs(s) ψ 0, and then (?: 0) e Sing X4 iff s = (,?o : 5i) is a zero
of the (non-vanishing) homogeneous form Fg(s) =fc(js) =/3(SQ : ̂ ^1 : ô̂ f ^1) of
degree 9.

In addition, for the general fo (x) all the zeros of Fg(s) =/3(?) are simple, i.e.
different from each other. Therefore the general X4 => *S4 has 9 = 1 2 — g(X4)
singular points on C3. In coordinates as above, these singular points of X4 are
the images of the 9 zeros of Fg(s) under the Veronese map v^ : Px —• C3 c X4,
ί;3 : 5 = (JO : s\) ^ (s : 0).

3.5. Proof of Lemma (A) for g = 4. The tangent scroll to the rational
normal quartic C4 : (xo : x\ : : x4) = ? : = (^ 0̂̂ 1 : ' " : ί̂") ^s a complete in-
tersection ^6 = V(q,f) a P4(x) where q(x) = 3x | - 4xiX3 + xo-̂ 4 and /(x) =
JC| — 2xo*3 - 2x^x4 + 3xo ̂ 2 ̂ 4 The surface Sβ is singular along C4 since the
gradients of q and / are linearly dependent along C4; more precisely V x/| ? =

Ψ ? v * # l ? f o r a n y ? G C4
Let ^6 — V{Qi F) ci P 5 (x : w) be a complete intersection of the quadric

Q(x : z) = Σ0<k<2qk(x)u2~k = 0 and the cubic F(x : z) = Σ0<ι<3qι(x)u3~ι = 0,
and let $6 = ̂ 6Π/ > 4 (x). In particular, (^2^/3) <= (^?/) a s homogeneous ideals
in C[x] = C[xo : : x4].

For the fixed X6 = V(Q,F) the generators Q,F of the homogeneous ideal
(Q,F) can be replaced by c'Q and c"F + L(x : u)Q, for any pair of nonzero
constants c' and c", and for any linear form L(x : M). NOW, {qi,f^) c (#,/)
yields that one can choose β and i 7 such that #2 = e'^ a n d / 3 = ε"/, where ε^ε'7

are either 0 or 1.
Consider the general case εf = ε" = 1; the study in the degenerate case ε'.ε"

— 0 is similar. The subscheme SingXβ = Sing V(Q,F) is defined by rank[VXjUQ;

Vx,uF}<l. By the choice of Q and F9 V x,Mβ| ( ? : 0 ) = (Vxq2\I,qι(s)) and VX,WF| ( ? : O )

where 1.̂ 2 = # and I./3 = / . Just as in case g = 3, the last
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together with the identity V x / | ? - s$sftxq\f = 0 imply that (s:0)eSingX6 iff

Fs(s) :=/ 2 (?) - s$sf.qi(s) = 0, where s= ( 4 : ψ i : : J?)
The Veronese map t>4 : P 1 —> C4 cz A"6> ι?4 : 5

1 = ( 0̂ : ^1) «->• (?: 0) states an
isomorphism between P 1 and C4. Therefore either F%(s)=0, and then A^
is singular along C4, or i<8(V) # 0, and then the singular points of Xβ on C4 are
the tλ*-images of the zeros of the homogeneous form F%(s) of degree 8. As
in case g = 3, for the general fi(x), qι(x) the form F&(s) has only simple zeros.
Therefore the general Xβ => Sβ has 8 = 12 — g(Xβ) singular points on C4.

3.6. Proof of Lemma (A) for g = 5. The tangent scroll to the rational
normal quintic C5 : xt = SQ~1S[, 0 < / < 5 is a complete intersection S% =
V{q\ q\ q"') cz P5{χ) where q'(x) = 4x^3 - 3xf - xo^4, ^ / ; W = 3xix4 - 2x2^3 -
xo-̂ 5 and q'"{x) = X1X5 — 4x2^4 + 3^3. The surface S% is singular along C4 since
the gradients of q',q" and q"f are linearly dependent along C5. More precisely

(*) s\Vxq%-sosιVxq%-sfrxq'\ = O for any ?eC 5 .

Let Xs = K(β', β / ;, β w ) czPβ(x : w) be a complete intersection of the quadrics
Qι(x : z) =Σ 0 <*<2 qι

k{x)u2-k (/ = ; , 7 / , w ) , and such that S8 = X8 Π P 5 (x). In par-
ticular (q[,qι,qιf)^(qr,q",q//r) as homogeneous ideals in C[x] = C[xo :- : X4].
Therefore q[,q" and ^{/; are linear combinations of q',q" and q"f. Since the
ideal ( β ; , Q;/, β") of A^ is generated also by any GL(3)-transform of the triple
(QΊ Q", Q'")> w e m a Y assume that q'2 = εfq'9 q'{ = ε"q" and q% = ε"'q"\ where
ε',ε" and ε'" are 0 or 1. The subscheme {SingX%)\Cs cz P 1 is defined by

2 > rank[Vx,wβ7; VXtUQ»; Vx,uQ"% 0)
()

Let FΊ(s) = ε's\q[{s) - ε"sosιq'{(s) - ε"'s2

oq'{'(s).
The Veronese map vs : P 1 —> C5 cz Ag, t s : Λ1 = (ΛΌ : ΛΊ) ι-> (?: 0) states an

isomorphism between P 1 and C5. Just as in (3.5), (*) and (**) imply that either
Fj(s) = 0, and then X% is singular along C5, or / ^ ( J ) # 0, and then the singular
points of Xβ on C5 are the V5-images of the zeros of the homogeneous form F-j(s)
of degree 7. Moreover, for the general linear forms q[(x),qι(x),qϊ'(x) the form
Fj(s) has only simple zeros. Therefore the general X% => Sg has 7 = 12 —
singular points on C5.

Lemma (A) for g — 6,8.

LEMMA 3.7. L ^ Λ > 3, and let G = G(l : n) = G(2,n + 1) cz />»(»+i)/2-i

ίA^ grassmannίan of lines in Pn = P(Cn+x). Let C cz G cz pΦ+O/2-1 ^ α

irreducible curve such that dim Span(C) > 3. Le/ ίAe surface Gr(C) cz P " Z?e ίA^
iiwio/i 0/ toe5 / cz Pn such that I e C cz G = G(\ : n), and let Sc c Span(C) cz
p/i(«+i)/2-i £ e ^ ^ surface swept out by the tangent lines to C (or the tangent scroll
to C—see above).
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Then the tangent scroll Sc to C lies on G = G(l : ή) iff
either all the lines leC have a common point, i.e. Gr(C) is a cone,
Qi there exists an irreducible curve Z a Pn such that all the lines I e C are

tangent lines to Z, i.e. Gr(C) is the tangent scroll to Z.

Proof. For n = 3 this result can be found in [AS]. For n > 3 one can
apply induction, using the fact that projection from a point in Pn induces a
projection from G(2,w+1) onto G(2,«). q.e.d.

LEMMA 3.8. Let Cg c G(2,g/2 + 2) = G(l : P^2+ι) (g = 6,8) be a rational
normal curve such that the tangent scroll Sig-i to Cg is contained in G(2,g/2 + 2).
Then:

(i). If g = 6 then the lines I cz P 4 , I e Cβ sweep out the tangent scroll to a
rational normal curve C4 cz P4.

(ii). If g — 8, and if there exists a Z-fold linear section Xu — G(2,6) Π P9 such
that X\4 => S\4, then the lines {I a P5 : / e C8} sweep out the tangent scroll to a
rational normal curve C5 cz P5.

Proof. Let g = 6,8, let the lines / e Cg sweep out a cone Gr(Cg) c pβ/2+ι —
see Lemma 3.7, and let x be the vertex of Gτ(Cg). Then Cg is contained in the

Schubert #/2-space P9J2 = σg/2,o(x) = U <= P ^ / 2 + 1 : x e / } . Since Q is projec-
tively normal it must span a g-space. Therefore g < g/2 + 1 which contradicts
g = 6,8. Therefore, by Lemma 3.7, the lines I e Cg must sweep out the tangent
scroll to a rational curve Q c p#/ 2 + 1 .

Let gf = 6, and let Q c / > 3 c = P 4 . Then C6c=G(l :P 3 ) = σ n ( P 3 ) c G ( l : P4).
Therefore 6 = dim(5/7α« Cβ) < άim(Span G(l : P3)) = 5—contradiction. There-
fore rf > 4 since Q must span P4, and now it is easy to see that the rational
normal curve Cβ is the curve of tangent lines to Q iff d — 4.

Let 0 = 8, and let Cd c P 4 c P 5 . Then C8 cz G(l : P 4 ) = σ u ( P 4 ) cz
G(l : P 5 ) . Let Po

9 = Span G(l : P 4 ) . Then P 8 = Span C8 cz Po

9. By condition
C8 cz X14 = G(l : P 5 ) Π P 9 . Therefore P 8 cz P 9 Π Po

9 and XH z> Zo := G(l : P 4 )
Π P 8 . Since P 8 cz P9 = 5/?^ G(l : P 4 ) , Z o is at least a hyperplane section of the
6-dimensional grassmannian G(l : P 4 ) . This contradicts X\4 ZD ZO and dimAΉ
= 3. Therefore d > 5 since Span Cd = P 5 , and now it is easy to see that the
rational normal curve C8 is the curve of tangent lines to Q iff d = 5. q.e.d.

Proof of Lemma (A) for g = 6.

3.9. By (3.1) any smooth prime ^io is a complete intersection of three
hyperplanes and a quadric in the cone K.G(2,5) cz P 1 0 . Let o be the vertex of
the cone ^.G(2,5) cz P 1 0 , and let X cz A\G(2,5), be as in (3.1). There are two
kinds of such threefolds X\o (see [II], [Gu]):

(i). g = 6—first kind: o φ Span(X), and then the projection p0 from o sends

X isomorphically to Xxo = G(2, 5) Π P 7 Π Q, where G(2,5) cz P 9 by the Plϋcker

embedding, P 7 cz P 9 and Q is a quadric.
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(ii). g = 6—second kind: o e Span(X), and then π = po\x : X = X(o —> Y$ is
a double covering of a threefold Y5 = G(2,5)ΠP6. In particular, if X{0 is
smooth then the intersection Y5 = G(2,5) Π P 6 is smooth.

g = 6 (first kind)

3.10. Let JSTio = G(2,5) Π P 7 ΓΊ g be a (possibly singular) complete inter-
section as in (3.9)(i), and assume that X\o contains the tangent scroll SΊo to a
rational normal curve Cβ of degree 6. By Lemma 3.8(i) the points of Cβ are
the Plϋcker coordinates Xy(s) of the tangent lines to a rational normal quartic
C4 = xt = j 1 , 0 < / < 4, i.e.

/ 0 1

0

2s

s2

0

3s2

2s3

s4

0

4s3 \

3/

2s5

s6

V 0 )

isTherefore the subspace P 6 = Span(C6) <z P 9

where Ho = *03 — 3xn, H\ = X04 — 2xi3 and H2 = xu

3.11. Introduce in P 6 the coordinates (u) = (vo :
*13 : *23 : *24 : ^34), and let ISl0 c C[ι;] := C[vOi

defined by

= ^14 - 3^23-

= Hι=H2 =

of the tangent scroll SΊ0 <= P b to C6. Let

: ϋ6j = (*oi -̂ 02 ' ^12
be the homogeneous ideal

- XacXbd + XadXbc, 0 <

a < b < c < d <4 : a,b,c,d φk (k e {0,1,2,3,4}) be the 5 Plϋcker quadrics in

the coordinates Xβ. In coordinates (v) of P 6 = P 6(f) the restrictions q^ of P 4 to

P 6 are

q\(v) = v\v6 -

C6 =

q2(v) = v0v6 - 9v2v4 + 2

q4(v) =

In the open subset Uo — {vo = 1}
2 3 4 5

-f

P6(ι;) the curve CO is parameterized by

Now, it is easy to see that the quadric q(v) = 5ϋ2t?4 — 2v\Vs + 3fo^6 vanishes
at the points of the tangent scroll SΊo to Cβ, and the homogeneous ideal Isl0 =
(^0, ,#4,#) c C*[ί;].

Let Jυ = Jv{qo,... ,q4,q) be the Jacobian matrix of (qo,...,#4,#) with respect
to v = (v\,... ,Vβ). The surface S10 <= F5 is singular along C6 since r a n k Λ | ? <
4 = codim^ό S10 for any ? e Cβ. For the special choice (v) of the coordinates this
can be verified directly:

, S 2 V 1 , Ϊ 4 | ? = ( -

9/, 8^3,-9^2,0,1), ^ 9 3 | ? = (-3^,4/,2^3,-6^2,^0),
3 , 6 / , -2^3,^2,0,0), and Vvq\^= (-4s5,5s\θ,5s2, -4s, 3).
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(*). Therefore rankJυ\- — 4 for any seCβ, and the linear 4-space of linear
equations between the gradients Vvqo\^...^Vvq^y and Vvq\j is spanned on the
Pfaίf-equation s~2Vvq^ + s-xVvq\\^Vvq2\^ sVvq^ + s2VvqA\^ = Q and the 3-

space of equations Vυq\s = ao s~2Vvqo\? + a\.s~ιVυq\\ί + a2.Vvq2\t + ̂ ^ V ^ ^ +
a^.s2Vvq^ — 0 where:

(**). flo + 4fl3 + 3̂ 4 = 8, a\ — 3#3 - 2«4 = —4, #2 + 2<?3 -f- α4 = 3.

3.12. In the dual space P9, let G = G(2,5) <= P9 be the grassmannian of
hyperplane equations represented by the skew-symmetric 5 x 5 matrices of rank 2.
It is easy to see that the plane Π = <i/o»#i>#2> <= P9 of hyperplane equations
of P6 = Span Cβ does not intersect G.

Let Λ c Π be any line in Π. In F 9 , the line Λ defines, by duality, the
subspace P 7(Λ) => P6 = SpanC6. It is easy to see that the fourfold W(A) =
GΠP7(A), where G = G(2,5), is smooth. In fact, W{A) will be smooth #f the
line Λ does not intersect G. The last is true since Λ c Π and
Π Π G = 0. Therefore any Zio => 5Ίo is a quadratic section of the smooth 4-fold
W = W(A).

3.13. Let Xιo = G(2,5) ΠPΊΠQ ID Sio, where Q is a quadric. We shall
show that the singularities of X\o on C6 are the zeros of a homogeneous form of
degree 6 on Cβ=Pι. To simplify the notation, we shall show this for one
special choice of the line Λ c Π (see (3.12)); the check for any other Λ c Π i s
similar.

Let Λ = {#2 = 0} c Π. Then, in coordinates (υ) and u = xu — 3x23 in
P 7(Λ), the subspace Pβ(x) = (u = 0). Therefore any quadric Q cz P 7(Λ), such
that β Π Â io = ^lo5 can be written in the form Q = Q(v, u) = cu2 + L(U)M + ̂ (t;)
where c e C and L is a linear form of (v).

Let Qk(v,u) (k = 0 , 1 , . . . ,4) be the restriction of the Pfaίf quadric Pfk
on PΊ(v,u), and let Λ?w = [Vv,uQo'<, ^V,UQA', Vϋ)Mβ] be the Jacobian matrix of

(βθ,. , β 4 , β ) .
The singularities of AΊo on C6 are the points (s: 0) e P7 for which

rankJVίU\(I:ty < 4 = codim^? Zi 0 .
Let li(s) = dQi/du\f, z = 0,.. . ,4. The rows of Λ,M|(?>0) are VM>ι,β/|(?:0) =

(VM^ Iτ, //(?)), / = 0,... ,4 and VM > ! ;β| ( ? : 0 ) - (VW^|?,L(?)). For the special choice
of the line Λ c Π , the linear forms // = //(?) are {hj\,h,h,h) = (s4,0, — 3^2,
-2*,0).

Therefore, in view of (*), Xχ0 will have a singularity at (?,0) e C6 if there
exist constants αo,. . . ,^4 satisfying (**) and such that L(s) = (αo — 3̂ 2 — 2α3)s2

(here ? = ( 1 , 2 J , J 2 , 2 J 3 , 5 4 , 2 J 5 , J 6 ) — s e e above).
By (**) <zo — 3#2 — 2^3 = — 1. Therefore, in homogeneous coordinates

(SQ : S\), S = 5"i/̂ o, the variety Xio will be singular at the point ((?) : 0) e C6 iff
F6(s0 :s\) := L(s$ : 2s%s\ : 4^? : 2^o^i : ^o f̂ : 2ιSo^f 4) + -Φi = °

The Veronese map vβ ' Pι ^ Cβ <^ X\o, v& : (so : s\) \-^ (s : 0) = (SQ : 2SQS\ :
3 ^* 5 Λ f : 0), states an isomorphism between P 1 and Cβ.
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Therefore either Fβ(so : s\) =0, and then X\Q is singular along Cβ, or Fβ(so : s\) ψ
0, and then the singular points of X\§ on Cβ are the vβ-images of the zeros of the
homogeneous form Fβ(so : s\) of degree 6.

The choice of an arbitrary line Λ c Π will only change the homogeneous
sextic forms defined by //(?), / = 0, . . . , 4 . q.e.d.

g = 6 (second kind)

3.14. Let π : X = X(o ^ F 5, I c p\ be a double covering of the Del Pezzo

threefold Y$ — G(2,5) D P 6 branched along the quadratic section B a Y5. Below
we shall identify the branch locus B a Y5 and the ramification divisor R a X^
R^B.

3.15. Assume that X contains the tangent scroll S = S\o to the rational
normal sextic C = Cβ, and let / c S be a general tangent line to C. Then
Nι/χ ^ Θ(l) ® Θ(-2) (see (1.2)), and π(/) c 7 5 also is a line. If Nπ{f),γ5 ^
Θ®Θ then rfπ : 7V//χ —> Nπyyγ5 has one-dimensional kernel along /. In this case
/ is contained in the ramification divisor R of π. The last is possible only for a
finite number of Vs. Therefore, at least for the general tangent line / c S to C,
the line π(/) c π(S) is a ( - 1 , l)-line on r 5 , i.e. Nπ^/Ys ^ ©(-1) Θ ©(1). There-
fore π(S) c F 5 coincides with the surface 5-1,1 c Y5 swept-out by the (—1,1)-
lines on Y5, which in turn is a tangent scroll to a rational normal sextic (see
[FN]). Clearly π : S —> S-\,\ is an isomorphism and 5_i5i is the tangent scroll
to π(C 6).

Assume first that S = R. Then S-^i = π(S) = B ^ R. Therefore X is
singular along Cβ since the branch locus B = S-\,\ of π is singular along Cβ.
In order to prove Lemma (A) for g = 6 (second kind) it rests to see the general
X(o ZD S\o such that S φ R is singular. This will imply that any X(Q a S\o must
be singular—since the property X{0 c S\o to have a singularity is a closed
condition.

Since π : X/Q —> F5 is a 2-sheeted covering with a ramification divisor R, then
i / 0 ( Z 1

/

0 , O ( l ) ) = π * 7 y 0 ( r 5 , O ( l ) ) H - C . ^ where Λ is the hyperplane equation of
R a X[Q. Therefore, since S = π(S) and S φ R, then π(S) is tangent to the
branch locus B of π along a (possibly singular) canonical curve Cf0 = BΠH =
π(S) ΠH for some hyperplane H c P 6 . Since π(S) = 5-1,1 then the general Jf/0

=55 = 5io? S φ R comes from a branch locus B totally tangent to 5_i?i along a
general hyperplane section HΠS-i^. Since // is general then H intersects the
rational normal sextic π(Cβ) at 6 points p\,... ,pβ such that /?,- φ pj for / # 7 . By
Pi e B and the identification B = R, we may cosider /?z as points o n ^ c X(o. We
shall see that

(*) LEMMA. pt e Sing X(o, i= 1,..., 6.

Proof of '(*). Let £/,- c 7 5 be a sufficiently small neighborhood of the point
Pi. Since 7s is smooth, we can identify Ut with a disk in C 3 , and let (w, 1;, w) be
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local coordinates in Uj s.t. pt — (0,0,0). Let/(w, v, w) = 0 be the local equation
of S\o in Ui. Since S\o is the tangent scroll to the smooth rational curve Q, and
Pi e Cβ, one can choose the coordinates w, v, w such that / = w3 — v2 (since the
scroll 5io has a double cusp-singularity along Cβ—see Lemma 2.3). Let q = 0
and h = 0 be the local equations of B and H in £/,-. Since B and S\Q are singular
along Cf0 = BΠ H = S\o OH, h2,f and q are linearly dependent, i.e. ah2 + βf +
γq = 0 for some constants α,/?, 7. Moreover a φ 0 and 7 ^ 0 since π(S) = S and
π(S) Φ B, and one may assume that β Φ 0 (otherwise i? = 2/ί and X(o will be
singular along the surface RrQά ^ 2?red = H). Since />,- 6 H, λ(0,0,0) = 0 and A =
αw + Z>ϋ + cw + o(2), where o(fc) denotes a sum of terms of degree > k.
Therefore the surface B is singular at pt since BΠUi = (q = 0), and the series
expansion

q(u, v, w) = -)ff/y/ - α/yA2 = β/γ(v2 - u3) - oc/γ(au + bv + cw + o(2))2

has no linear term. Since B is the branch locus of π: X{0 —> Γ5, the
threefold X/o will be also singular at pι< e R ^ B, i = 1,..., 6. In addition, the
6 = 12 — g(X{0) singular points p\,... ,/?6 of Z/o lie on the rational normal curve
C6 c jr/o q.e.d.

Proof of Lemma (A) for g = 8.

3.16. The Da Palatini construction (see [Pu]). Let P5 = P(V) where V =
C6, and let F = Homc(K, C) be the dual space of V. The points H e A2V =
Honic(Λ2F, C) can be regarded as skew-symmetric linear maps H : V -* V, and
the hyperplanes (/ί = 0) c= P 1 4 = P(A2V) can be regarded as points of P 1 4 =
P(A2V).

Let Pf = {He A2V) : rank(H) < 4}/C*. Then P/ is the Pfaff cubic hy-
persurface in P 1 4 defined, in coordinates, by vanishing of the cubic Pfaffian of the
skew-symmetric (6 x 6)-matrix H. Let U\o c A2V be a 10-dimensional subspace,
and let

U5 = Uk = {HeA2V = Homc(Λ2F, C) : Jϊ|^ io = 0}.

Let moreover U\o a A2 V be such that rank{H) > 4 for any H e U^, and let
JΓi4 = <?(2,6)nP(E/io) and B3=PfΠP(U5).

The construction "Da Palatini" of G. Fano shows that any hyperplane P 4 c
P( V) defines a birational isomorphism ζ : Xu —>• ^3 which can be described as
follows (see [Pu]):

Identify the point b e B3 and (the projective equivalence class of) the skew-
symmetric 6 x 6 matrix corresponding to b. Since rankb = 4 for any b e B3 the
projective kernel nb of b will be a line in P 5 . Let W := [jbeB3{nb = P(KerZ?)}
c P 5 .

The fourfold W can be described by an alternative way. Identify the point
/ e G(l : 5) and the line / cz P 5 , and let W := (J {/ c P51 / e Z14} cz P 5 . Then
(see [Pu, p. 83]):
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(a), for the general v e W there exists a unique I e X\4 such that v e /;
(b). for the general w eW there exists a unique b e B such that w enb\
(c). W = W.
Let H a P 5 be a general hyperplane. Then, by (a), (b) and (c), the maps

φ : X\4 -+HΓ) V, φ(l) = HΠ/ and ψ : B3 -+HΠ V, φ(b) =HΠnb are birational
isomorphisms. The composition ξ — ξH = ψ~ι o φ : X\4 —» B3 is a birational iso-
morphism, depending on the choice of the hyperplane H c P 5 (see [Pu, p. 85]).

3.17. The dual cubic fourfold of S14. By Lemma 3.8 (ii) the curve Cg is the
Pliicker image of the tangent scroll to a rational normal quintic C$ : (xo : : X5)

= ?=(! s : s
coordinates Xjj(s) of the point se C5:

s5) in P (x). The points of the curve Cg are the Pliicker

/ 0 1

0

2s

s2

0

3s2

2s*

s4

0

4s3

3s4

2s5

s6

0

3/

2s1

0 /

Therefore Su = G(2,6) Π P 8 where P 8 = (Ho = = H5 = 0) c P 1 4 and:

//o = XQ3 "~ 3xj2, ^ 1 — -̂ 04 ~" 2x i3 , H2 = 3XQ5 ~~ 5ΛΓi4,

Let Π 5 := <//o,..., H$} a P 1 4 be the projective linear span of {HQ, ...,

h
and let B3 = Pff) {Ho,... ,Hs}. Introduce projective coordinates (to
Π 5 such that the point (ίo, , ̂ 5) represents the vector
the cubic 4-fold B3 = PfΠP5(t0 : : t5) is defined by B3

2ίfί5 - 2ί 0 ί | + 3t\t3h - 12ίiί2ί4 - 4 5 φ 3 - 9ί 2ί | = 0.
The 6-vector (0 , . . . , 0) is the only value of (to,..., ts

F =

: 5̂) in
Then

where the 15 Pfaffians
vanish. ThereforePfij(to, . , is) of the matrix //(*o,.. ., ts) = toHo H h

rίẑ A: Z? = 4 for any b e B3.
The fourfold #3 = (F — 0) c: Π 5 is singular, and it is not hard to check

that SingB3 = (V(ίo:. .:t5)F = (0, . . . ,0)) c Π 5 is the rational normal quartic curve

Q = {[r] = (1 : 2r : r 2/3 : 8r2/3 : 2r3 : r4) | r e C}; for simplicity we let t0 = 1.

3.18. Now we are ready to prove Lemma (A) for g = %.
Let X\4 = G(2,6)ΠP 9 = P(U\0) be such that Z14 => 5i 4 ? and let 5 3 =

P/ Π P( C/^). Then SH c JST14 - G(2, F) Π P( C/10) 4Φ P 8 = Span Sl4 <= P( C/10) =
SpanX\4 <Φ P(Ujβ) c Π 5 <̂> ̂ 3 c ^ 3 . Since ^3 c ^ 3 then rank(H) = 4 for any
H E B3 (see (3.17)), hence the Da Palatini birationalities ξ : Z14 —» ^3 (see (3.16))
are well-defined.

Assume that X\4 is smooth. Then B3 must be smooth (see above or [Pu,
p. 83]). But B3 must be singular at any of the intersection points of the hyper-
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plane P(U^Q) c Π 5 and the rational quartic curve C4 = SingBs—contradiction (see
the end of (3.17)). Therefore any Xu => Su must be singular. q.e.d.

3.19. Remark. If P(U^) = Span(C$) then £3 is singular along C4, and it
can be seen that then X\4 is singular along C%. Let P(U^) φ Span(C4). Then
the hyperplane P(U^) c Π 5 intersects the rational normal quartic C4 = SingBi
in 4 possibly coincident points ^1,^2,^3,^4. Let, for simplicity b[ be different
from each other. Then one can show that the general Da Palatini birationality
B3 <-> X\4 sends {^1,^2,^3^4} to 4 = 12 — g(Xu) singular points of X\4 which lie
on C8. Let H c P5 be a hyperplane, and let ζj/ : £3 —• Xi4 be the Da Palatini
birationality defined by H. We shall see that for the general H the rational map
ξff1 — φH is regular at a neighborhood of any b^ and ζ~£(pϊ) e Cg. For this, by
the definition of the maps φ and φ, it is necessary to see that the kernel-map
ker : 2?3 —• G(l : 5), b \-^ rib sends the quartic C4 isomorphically to C%.

Let Z> = (by) e #3. Then the Plucker coordinates of the line rib = keτ(b) are
(-\)ι+JPfij(b), where Pfy(b) are the 15 quadratic Pfaffians of the skew-symmetric
matrix b; note that rank(b) — 4 for any b e B3 a B3. Now, it rests only to
replace b by the general point b(t) = Ho + tHλ + t2/l2H2 + 2t2/3H3 + ί 3 / 4 ^4 +
t4/l6H5 E C4, and to see that the Plucker coordinates of &(ί) parameterize the
general point *#(?) of Cs (where s = 2/t)—see (3.17).

Proof of Lemma (A) for g — Ί

3.20. In the proof of Lemma (A) for g — 1 we shall need the known by [12]
description of the projection from a line / on a smooth prime Fano threefold
X2g-2 such that Nι/X = 0(1) Θ Θ(-2).

3.21.
LEMMA (see §1 Proposition 3 in [12]). Let I be a line on the smooth prime

Fano threefold X = X2g-2 c P9+ι such that Nι/X = 0/(-2) θ 0/(1), and let
σ : X1 -> Z fe ίAe Wow ŵ  0/ /. Let Z' = σ~ι(l), let H' - σ*H - Zf be the
proper preimage of the hyperplane section H of X, and let n : X —>• X" cz P 6 ' " 1 ^^
ίΛe projection from I Then:

(i). If g > 5 then the composition φ = no σ : Xf ^ P9~x is a birational
morphism (given by the linear system | // ' | ) , to a threefold X" czPg~ι.

(ii). The restriction to Z' = P(Nηy) = F^ of the linear system \H'\ is the
complete linear system \sf + 3/'|, where s' and f are the classes of the exceptional
section and the fiber of the rational ruled surface Zr.

(iii). The restriction φ\z, of φ to Z' maps Z' to a cone Z" over a twisted cubic
curve, contracting the exceptional section s1 of Z' to the vertex of Z".

(iv). If g >1 then there are only a finite number of lines U^X (i — 1,... ,N)
which intersect L Let l[ aX'ofU (i = 1,..., N) be the proper preimages l[ cz X'
of lι (/ = 1,..., TV). Then the morphism φ : X' —> X" is an isomorphism outside
/[ U U l'N U sf, and φ contracts sf and any of l[ to isolated double points of X".

(v). Let H" = φ(H') be the hyperplane section of X". Then if g>l then

—Kχ» ~ H", i.e. the variety X" — X![, _2\2 <= P9~ι is an anticanonically embedded

Fano threefold with isolated singularities as in (iv).
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3.22. Suppose that there exists a smooth prime X = Xn c P 8 which
contains the tangent scroll Sn to the rational normal curve Cη. Therefore the
general such X is smooth, and we may suppose that X => £12 is general.

Let / c Sn be any of the tangent lines to Cη and let π : X —> X" be the
projection from /. By [12, §1] (see also (1.2)) Nι/X = 0(1) Θ 0(-2) , therefore
Lemma 3.21 (i)-(v) take place.

By Lemma 3.21 (v) the threefold X" = X% a P6 is an anticanonically embedded
Fano threefold of genus 5. Let S" c X" be the proper image of £12, and let
C" a S" a X" be the proper image of Cη. It is easy to see that C" = Cf

5

f is a
rational normal quintic, and S" = S% a X" is the tangent scroll to C".

In order to use the proof of Lemma (A) for g = 5 we have to see
whether X% a P6 is, in fact, a complete intersection of three quadrics. If X"
were nonsingular then the classification of the smooth Fano threefolds will imply
that X" will be a complete intersection of three quadrics. But X" is singular—
see Lemma 3.21 (iv),(v).

However, especially in this case, X" = X% c P6 is still a complete inter-
section of three quadrics (see Theorem 6.1 (vii) in [II]).

Denote by Sing(X) Π C the set of singular points of X — Xn on C, and let
Sing{X") Π C" be the set of singular points of X" on C"'.

3.23. By the proof of Lemma (A) for g = 5, the elements of Sing(X") Π C
are in a (1 : 1) correspondence with the different zeros of a homogeneous form
Fη{so:s\) of degree 7 (see (3.6)). Clearly, the vertex 0 of Z" lies on C".
Moreover, by (3.21)(iv), 0 is a double singularity of X". Since Id SingX = 0,
and since the tangent lines /' φ I to C = Cη do not intersect /, (3.21)(iv) yield
that, set-theoretically: Sing(X)ΠC ^ Sing(Xf/)ΠCff - {o}.

Let Fη(so : si) =0 be as above. Since dim Sing X" = 0, the form Fη does
not vanish on Cη; and we can assume that o = (1 : 0) and Fη(0 : 1) φ 0.
Therefore if s = s\/so and /γ^) = /^(l : s) then deg/7(s) = 7. By the previous
the elements of Sing(X) Π C correspond to the different zeros of the polynomial
s~m.fη(s) — 0, where m = mult o / 7 (^).

By the local definition of m, the integer m = m(o) = m\xlt0 fΊ(s) does not
depend on the genus g > 1 of XiQ-i as well on the choice of the general tangent
line / t o Cg. It can be seen that m = 2, but for the proof it is enough to know
that m < 2.

(*) LEMMA, m < 2.

Proof of (*). By construction X" 3 S " U Z " where S" = S% is the tangent
scroll to the rational normal quintic C" = C5 such that o e C",Z" is a cone over
a twisted cubic, and 0 is the vertex of Z. Moreover Z" is triple tangent to S" at
the tangent line F to C" at o. Indeed S" is a hyperplane section of Z" which
passes through the vertex o of Z. Therefore S^.Z = / i + / 2 +/*3 is a sum of 3
rulings of Z". Since f are rulings of Z, 0 e / for / = 1,2,3. Therefore any f is
a line on the tangent scroll S" to C" which passes through o e C". Therefore
fi = F must be a tangent line to C" at 0, i.e. S".Z" = 3F.
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By Theorem 9.9 in [13], the general complete intersection X% c= P 6 of three
quadrics, containing a cone Z3 over a twisted cubic, is a projection of X\2 from
a line / such that Nι/χX2 = 0(1) ®Θ{—2). The inverse of the projection π/ is
defined by the linear system \H + Z3I, where H is the hyperplane section of X%.

Let X% => Z3 U 5s be as above. Then X\2 will contain a tangent scroll S\2 to
a rational normal curve Cη, and / will be a tangent line to Cη. Therefore any
Xs => Z3 U Sg will be a deformation of a projection of Z12 c Si 2 from a tangent
line to Cη.

It rests to see that m(X%) = mul t o / 7 < 2 for / 7 corresponding, as above, to
some particular such Xs.

Example. Let P5{x) = P5{xo : : X5), and let qo = -X0X4 + 4xiX3 — 3xf,
#1 = -*o*5 + 3xi*4 - 2x2*3, #2 = -*i*5 + 4x2X4 - 3x|. Then S8 = (#0 = q\ =
#2 = 0) c P 5 (x) will be the tangent scroll to the rational normal quintic C5 :

X ι =sl~ιs\ ( 0 < 1 < 5).

Let Z 8 = ( β 0 = βi = β2 = 0) c P 6 (x : w) = P 6 ( x 0 : xi : x2 : x3 : x4 : x5 : «),
where

βθ = ^0 + ^o(^4 *5)W,

βi = qx + (12xi + U(x4 : x + 5))«,

β 2 = ^ 2 + (27/2x2 + ^ 2 (*4 : * 5))κ,

Lo,Li and L2 being linear forms of (X4 1x5). Evidently X% Π (u = 0) = Ss.

Let P4 = P\x0 : xi : x2 : *3 : u) c P 6 , and let Z 3 = Z 8 Π P 4 . Then Z 3 =
(Po = Pi = P 2 = 0) c P 4 , where P o = xix3/3 - x |/4, Pi = xxu - x2x3/6, P 2 =
x2u - xj/9.

Therefore Z3 is a cone with center o = (1 : 0 : : 0) e C$ over the twisted
cubic curve C2> = Z3{~) (x0 = 0), C3 : (xi : x2 : X3 : u) = (^ : 2ίgίi : 3totf : t\). Let
Λ- = s\/so, and we may suppose that the point (0 : : 0 : 1) e C5 is not a singular
point of X%. Then, by (3.6), the equation of (SingX&)\Cs is

f7(s) = s2dQo/du(l :s: -:s5)- sdQλ/du{\ : s : : J 5 ) + 3β2/5w(l : j : : s5)

= s2L0{s\s5) - s{\2s + L I ( J 4 , j 5 )) + (27/2.S2 + L2(s\s4)) = 3/2s2 + o(53),

where o^ 3 ) is a sum of terms of degree > 3. Therefore rn(X%) = mult0 fΊ(s) — 2.
q.e.d.

3.24. Let X = Xn => ̂ 12 be general. Since m < 2 then deg J " ' " / ? ^ ) >7~
2 = 5 = 12 — 0(^12) > 0. In particular g(s) := s~mfη(s) is not a constant. Since
0(0) ^ 0, and since the elements of Sing(X) Π C are in a (1 : 1) correspondence
with the different zeros of g(s) = s~mfi(s) (see above), then X\2 must be singular,
which contradicts the initial assumption. This proves Lemma (A) for g = 7.



4 3 0 ATANAS ILIEV AND CARMEN SCHUHMANN

Proof of Lemma (A) for g = 9.

3.25. Let X\β cz P 1 0 contains the tangent scroll S = S\β to the rational
normal curve C = Cg, and suppose that nevertheless X\β is smooth.

Let L cz Xχ6 be a tangent line to C, and consider the double projection π =
πiL of X from the line L, i.e. π is the rational map on X defined by the non-
complete linear system \Oχ{\ —2L)\. Since X = X\β is assumed to be smooth
then, by §2 in [12]:

(*). π — π1L sends X bίrationally to P3. Moreover, on P3 there exists a
smooth irreducible curve C — C3 of genus 3 and degree 7, which lies on a unique
cubic surface S$ cz P 3

? and such that the inverse to π birational map φ : P3 —> X is
given by the non-complete linear system \ΘP*(Ί — 2C)\.

By (*), the proper image π(H) of any hyperplane section H cz X is an
irreducible component of an effective divisor Sη e \0P3(Ί — 2C)|. If moreover H
contains the line L but H φ \Θx(l - 2L)\ (for example if H = S\6) then π(H) cz
P3 will be a quartic surface containing the curve C = C3 (see the proof of the
Main Theorem in §2 of [12]), and in this case SΊ = π(H) + S3 e 1 ^ ( 7 - 2C)|.

Therefore ^4 := π(S\β) is a quartic surface in P3 containing the curve C =
Cη. Moreover, the double projection π sends the general tangent line L' to Cg
to a tangent line π(L') to the proper image π(Cg); and since Cg ^ Pι then π(Cg)
is rational. Therefore the quartic surface £4 = π(5i6) is the tangent scroll to the
rational curve π(C9) c P3. The last is only possible if π(Cg) = C3 is a twisted
cubic and £4 is the tangent scroll to C3, and we shall see that this is impossible.

The surface S4 <z P3 is the tangent scroll to the twisted cubic C3. Then, by
Lemma 1.6 and p. 498 in [MU], the normalization of S4 is the quadric Pι x P 1 ,
and the map v : Pι x Pι —> ̂ 4 is given by a linear system of bidegree (1,2).

Let Γ c ? 1 x P 1 be the proper transform of C3, and let (a,b) be the bidegree
of Γ. Therefore 7 = deg(C7

3) =2a + b, and 3 = #(C7

3) - g(Γ) = (a- l)(b - 1).
Obviously, these two equations for the integers a and b have no integral solu-
tions—contradiction.

Therefore X\β => Si6 can't be smooth, which proves Lemma (A) in case
g = 9.

This completes the proof of Lemma (A).
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