A HYPERBOLIC HYPERSURFACE OF DEGREE 10

MANABU SHIROSAKI

§1. Introduction

In [K], Kobayashi posed a problem whether all 'generic' hypersurfaces in $P^n(C)$ of degree enough large with respect to n are hyperbolic. For n = 2 this conjecture is true. In fact, a non-singular curve of degree not less than 4 is hyperbolic. However, for $n \ge 3$ it is open. On the other hand, Masuda and Noguchi [MN] defined the number d(n) by the minimum number such that there exists a hyperbolic hypersurface of $P^n(C)$ of each integer not less than it. By Demailly [D], $d(3) \le 11$.

In this paper, we give a hyperbolic hypersurface of degree 10 in $P^{3}(C)$, and hence, $d(3) \leq 10$.

§2. Lemmas

We use the terminology in [S]. Let f_0, \ldots, f_n be entire functions on C such that $f_j \neq 0$ for at least one j $(0 \leq j \leq n)$. Then $\tilde{f} := (f_0, \ldots, f_n)$ becomes a representation of a holomorphic mapping f of C into $P^n(C)$. If $f(z) = (c_0 : \cdots : c_n)$ for all $z \in C - \tilde{f}^{-1}(\mathbf{0})$, where c_0, \ldots, c_n are constants at least one of which are not 0, then we say that f or $(f_0 : \cdots : f_n)$ is constant.

We will need the following:

LEMMA 1 ([S, p. 291]). Let f be a nonconstant meromorphic function on C and a_j $(1 \le j \le q)$ distinct points in $\overline{C} := C \cup \{\infty\}$. If all the zeros of $f - a_j$ have the multiplicities at least m_j for each j, where m_j are arbitrarily fixed positive integers $(1 \le j \le q)$ and $f - \infty$ means 1/f, then

$$\sum_{j=1}^q \left(1 - \frac{1}{m_j}\right) \le 2.$$

Remark. If $f - a_j$ has no zero, then we may consider $1 - 1/m_j$ as 1.

LEMMA 2. Let a, b, c be nonzero constants and $d \ge 3$ an integer. Then, $P(z) = az^d + bz^{d-1} + c$ has at least d - 2 simple zeros.

Received August 23, 1999.

Proof. Let z_0 be a multiple zero of P(z). Then, $P'(z_0) = daz_0^{d-1} + (d-1)bz_0^{d-2} = 0$. Trivially $z_0 \neq 0$ because of $P(0) = c \neq 0$. Hence we have z_0 = -(d-1)b/da and $P''(z_0) = d(d-1)az_0^{d-2} + (d-1)(d-2)bz_0^{d-3} = -(d-1)bz_0^{d-3}$ $\neq 0$. Therefore, P(z) has at most one multiple zero, and its multiplicity is 2. This implies Lemma. Q.E.D.

§3. A hyperbolic hypersurface of degree 10

Now, we prove the following theorem:

THEOREM 3. Let a_1, a_2, a_3 be nonzero constants and $d \ge 5$ an integer. Define the hypersurface X in $P^{3}(C)$ by

$$w_0^{2d} + w_1^{2d} - (a_1 w_1^{d-1} w_2 + a_2 w_2^d + a_3 w_3^d)^2 = 0.$$

Then there exists no nonconstant holomorphic mapping f of C into $P^3(C)$ such that $f(\mathbf{C}) \subset X$, *i.e.*, X is hyperbolic.

Proof. Assume that a holomorphic mapping f of C into $P^3(C)$ with redeuced representation (f_0, f_1, f_2, f_3) satisfies $f(C) \subset X$, *i.e.*,

(1)
$$f_0^{2d} + f_1^{2d} - (a_1 f_1^{d-1} f_2 + a_2 f_2^d + a_3 f_3^d)^2 = 0.$$

(I) The case of $f_0 = 0$. From (1), we have $\varepsilon f_1^d + a_1 f_1^{d-1} f_2 + a_2 f_2^d + a_3 f_3^d$ = 0, where $\varepsilon = \pm 1$. (i) If $f_1 = 0$, then $a_2 f_2^d + a_3 f_3^d = 0$. Trivially $(f_2 : f_3)$ is constant, and hence, f is constant. (ii) If $f_2 = 0$, then $\varepsilon f_1^d + a_3 f_3^d = 0$. Trivially $(f_1: f_3)$ is constant, and hence, f is constant. (iii) If $f_1 \neq 0$, $f_2 \neq 0$, then

(2)
$$\varepsilon g^d + a_1 g^{d-1} + a_2 = -a_3 (f_3/f_2)^d,$$

where $g = f_1/f_2$. By Lemma 2, $\varepsilon z^d + a_1 z^{d-1} + a_2 = 0$ has at least d-2 simple roots $\omega_j (j = 1, ..., d-2)$. For each j = 1, ..., d-2, multiplicities of zeros of $g - \omega_i$ are multiples of d by (2). The inequality (1 - 1/d)(d - 2) = d - 3 + d - 32/d > 2 and Lemma 1 imply that g is constant. Hence f is constant. (II) The case of $f_0 \neq 0$, $f_1 = 0$. From (1), we have $\varepsilon f_0^d + a_2 f_2^d + a_3 f_3^d = 0$,

where $\varepsilon = \pm 1$. In this case, it is obvious that f is constant. (III) The case of $f_0 \neq 0$, $f_1 \neq 0$. From (1), we have $f_0^{2d} + f_1^{2d} = (a_1 f_1^{d-1} f_2 + a_2 f_2^d + a_3 f_3)^2$. As in (I)(iii), we can conclude by $(1 - 1/2) \cdot (2d) = d > 2$ that $(f_0 : f_1)$ is constant. Hence it is possible to write $f_0 = cf_1$ by a nonzero constant c. By substituting this to (1), we get

$$bf_1^d + a_1f_1^{d-1}f_2 + a_2f_2^d + a_3f_3^d = 0,$$

where b is a constant such that $b^2 = c^{2d} + 1$. (i) If $f_2 = 0$, then $bf_1^d + a_3f_3^d = 0$. In this case, if b = 0, then $f_3 = 0$ and f is constant. If $b \neq 0$, then $(f_1: f_3)$ is constant and so is f. (ii) Assume that $f_2 \neq 0$. If $b \neq 0$, then we can conclude as in (I)(iii) that f is constant. If b = 0, then $f_2(a_1f_1^{d-1} + a_2f_2^{d-1}) = -a_3f_3^d$.

MANABU SHIROSAKI

From the inequality (1 - 1/d)d = d - 1 > 2 and Lemma 1 it follows that $(f_1 : f_2)$ is constant, and so is f. O.E.D.

For each $d \ge 11$, Demailly [D] gave a hyperbolic hypersurface of $P^3(C)$ of degree d. Therefore, $d(3) \le 10$ is obtained.

§4. Complements in $P^2(C)$

In this section we give (reducible) hypersurfaces with hyperbolic complements.

THEOREM 4. Let a_0, a_1, a_2 be nonzero constants and $d \ge 4$ an integer. Define a hypersurface X in $P^2(C)$ by

$$w_0^{2d} - (a_0 w_0^{d-1} w_1 + a_1 w_1^d + a_2 w_2^d)^2 = 0.$$

Then there exists no nonconstant holomorphic mapping f of C into $P^2(C)$ such that $f(\boldsymbol{C}) \subset \boldsymbol{P}^2(\boldsymbol{C}) \backslash X.$

Proof. Assume that a holomorphic mapping f of C into $P^2(C)$ with redeuced representation (f_0, f_1, f_2) satisfies $f(\mathbf{C}) \subset \mathbf{P}^2(\mathbf{C}) \setminus X$, *i.e.*,

(3)
$$\alpha^{2d} + f_0^{2d} - (a_0 f_0^{d-1} f_1 + a_1 f_1^d + a_2 f_2^d)^2 = 0,$$

where α is an entire function without zeros.

In the case of $d \ge 5$, it follows from Theorem 3 that f is constant. Hence, it

is enough to consider the case of d = 4, and from now on take d = 4. (I) The case of $f_0 = 0$. From (3), we have $\varepsilon \alpha^4 = a_1 f_1^4 + a_2 f_2^4$, where $\varepsilon = \pm 1$. By the Little Picard Theorem, $(f_1 : f_2)$ is constant, and hence, so is f. (II) The case of $f_0 \neq 0$. From (3), we have $\alpha^8 + f_0^8 = (a_1 f_0^3 f_1 + a_1 f_1^4 + a_2 f_2^4)^2$. By the inequality $(1 - 1/2) \cdot 8 = 4 > 2$ and Lemma 1, we have $(f_0 : \alpha)$ is constant, and we can write $\alpha = cf_0$ by a nonzero constant c. By substituting this into (3),

(4)
$$bf_0^4 + a_0 f_0^3 f_1 + a_1 f_1^4 + a_2 f_2^4 = 0$$

is obtained, where b is a constant such that $b^2 = c^8 + 1$. (i) If $f_1 = 0$, then $bf_0^4 + a_2f_2^4 = 0$. In this case, if b = 0, then $f_2 = 0$; otherwise, $(f_0 : f_2)$ is constant. In any case, f is constant. (ii) The case of $f_1 \neq 0$. If b = 0, then from (4) $f_1(a_0f_0^3 + a_1f_1^3) = -a_2f_2^4$. By the inequality $(1 - 1/4) \cdot 4 = 3 > 2$ and Lemma 1, it is obtained that $(f_0: f_1)$ is constant. Hence f is constant. Consider the case of $b \neq 0$. We rewrite (4) as

$$bf_0^4 + a_0 f_0^3 f_1 + a_1 f_1^4 = -a_2 f_2^4.$$

If $bz^4 + a_0z^3 + a_1 = 0$ has no multiple roots, then we conclude that $(f_0: f_1)$ is constant by Lemma 1 and the inequality $(1 - 1/4) \cdot 4 = 3 > 2$. Hence f is constant. Otherwise, we can factorize

378

A HYPERBOLIC HYPERSURFACE OF DEGREE 10

$$bz^4 + a_0z^3 + a_1 = b(z - \omega_1)(z - \omega_2)(z - \omega_3)^2$$

by Lemma 2, where $\omega_1, \omega_2, \omega_3$ are distinct nonzero constants. Put $g = f_0/f_1$. Then

$$b(g - \omega_1)(g - \omega_2)(g - \omega_3)^2 = -a_2(f_2/f_1)^4.$$

Therefore, multiplicities of zeros of $g - \omega_1$, $g - \omega_2$ and $g - \omega_3$ are multiples of 4,4 and 2, respectively. Moreover, g has no zeros. The inequality 1 + (1 - 1/4) + (1 - 1/4) + (1 - 1/2) = 3 > 2 and Lemma 1 imply that g is constant, and hence f is constant. Q.E.D.

COROLLARY 5. Let X be as in Theorem 4. (i) If $d \ge 5$, then $P^2(C) \setminus X$ is completely hyperbolic and hyperbolically imbeded in $P^2(C)$. (ii) If d = 4 and $\pm 3^3 a_0^4 + 4^4 a_1 \ne 0$, then $P^2(C) \setminus X$ is completely hyperbolic and hyperbolically imbeded in $P^2(C)$.

Proof. (i) In this case the result is obvious by the above two theorems and Brody-Green's theorem.

(ii) The hypersurface X has two irreducible components of degree 4. By the condition $\pm 3^3 a_0^4 + 4^4 a_1 \neq 0$, they are non-singular, and hence, Riemann surfaces of genus 3. Therefore, all holomorphic mappings of C into X are constant. From Theorem 4 and Brody-Green's theorem, the conclusion follows. Q.E.D.

References

- [D] J.-P DEMAILLY, Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Algebraic Geometry held at Santa Cruz, July 1995 (J. Kollár et al eds.), Proc. Sympos. Pure Math., 62-2, Amer. Math. Soc., Providence, 1997, 285–360.
- [K] S. KOBAYASHI, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, 1987
- [MN] K. MASUDA AND J. NOGUCHI, A construction of hyperbolic hypersurface of $P^n(C)$, Math. Ann., 304 (1996), 339–362.
- [S] M. SHIROSAKI, On polynomials which determine holomorphic mappings, J. Math. Soc. Japan, 49 (1997), 289–298.

DEPARTMENT OF MATHMATICAL SCIENCES College of Engineering Osaka Prefecture University Sakai 599-8531, Japan