A HYPERBOLIC HYPERSURFACE OF DEGREE 10

Manabu Shirosaki

§1. Introduction

In [K], Kobayashi posed a problem whether all 'generic' hypersurfaces in $\boldsymbol{P}^{n}(\boldsymbol{C})$ of degree enough large with respect to n are hyperbolic. For $n=2$ this conjecture is true. In fact, a non-singular curve of degree not less than 4 is hyperbolic. However, for $n \geq 3$ it is open. On the other hand, Masuda and Noguchi [MN] defined the number $d(n)$ by the minimum number such that there exists a hyperbolic hypersurface of $\boldsymbol{P}^{n}(\boldsymbol{C})$ of each integer not less than it. By Demailly [D], $d(3) \leq 11$.

In this paper, we give a hyperbolic hypersurface of degree 10 in $\boldsymbol{P}^{3}(\boldsymbol{C})$, and hence, $d(3) \leq 10$.

§2. Lemmas

We use the terminology in $[\mathrm{S}]$. Let f_{0}, \ldots, f_{n} be entire functions on \boldsymbol{C} such that $f_{J} \not \equiv 0$ for at least one $j(0 \leq j \leq n)$. Then $\tilde{f}:=\left(f_{0}, \ldots, f_{n}\right)$ becomes a representation of a holomorphic mapping f of \boldsymbol{C} into $\boldsymbol{P}^{n}(\boldsymbol{C})$. If $f(z)=$ $\left(c_{0}: \cdots: c_{n}\right)$ for all $z \in \boldsymbol{C}-\tilde{f}^{-1}(\mathbf{o})$, where c_{0}, \ldots, c_{n} are constants at least one of which are not 0 , then we say that f or $\left(f_{0}: \cdots: f_{n}\right)$ is constant.

We will need the following:
Lemma 1 ([S, p. 291]). Let f be a nonconstant meromorphic function on \mathbf{C} and $a_{j}(1 \leq j \leq q)$ distinct points in $\overline{\boldsymbol{C}}:=\boldsymbol{C} \cup\{\infty\}$. If all the zeros of $f-a_{j}$ have the multiplicities at least m_{j} for each j, where m_{j} are arbitrarily fixed positive integers $(1 \leq j \leq q)$ and $f-\infty$ means $1 / f$, then

$$
\sum_{j=1}^{q}\left(1-\frac{1}{m_{j}}\right) \leq 2 .
$$

Remark. If $f-a_{j}$ has no zero, then we may consider $1-1 / m_{j}$ as 1 .
Lemma 2. Let a, b, c be nonzero constants and $d \geq 3$ an integer. Then, $P(z)=a z^{d}+b z^{d-1}+c$ has at least $d-2$ simple zeros.

Received August 23, 1999.

Proof. Let z_{0} be a multiple zero of $P(z)$. Then, $P^{\prime}\left(z_{0}\right)=d a z_{0}^{d-1}+$ $(d-1) b z_{0}^{d-2}=0$. Trivially $z_{0} \neq 0$ because of $P(0)=c \neq 0$. Hence we have z_{0} $=-(d-1) b / d a$ and $P^{\prime \prime}\left(z_{0}\right)=d(d-1) a z_{0}^{d-2}+(d-1)(d-2) b z_{0}^{d-3}=-(d-1) b z_{0}^{d-3}$ $\neq 0$. Therefore, $P(z)$ has at most one multiple zero, and its multiplicity is 2 . This implies Lemma.
Q.E.D.

§3. A hyperbolic hypersurface of degree 10

Now, we prove the following theorem:
Theorem 3. Let a_{1}, a_{2}, a_{3} be nonzero constants and $d \geq 5$ an integer. Define the hypersurface X in $\boldsymbol{P}^{3}(\boldsymbol{C})$ by

$$
w_{0}^{2 d}+w_{1}^{2 d}-\left(a_{1} w_{1}^{d-1} w_{2}+a_{2} w_{2}^{d}+a_{3} w_{3}^{d}\right)^{2}=0 .
$$

Then there exists no nonconstant holomorphic mapping f of \boldsymbol{C} into $\boldsymbol{P}^{3}(\boldsymbol{C})$ such that $f(\boldsymbol{C}) \subset X$, i.e., X is hyperbolic.

Proof. Assume that a holomorphic mapping f of \boldsymbol{C} into $\boldsymbol{P}^{3}(\boldsymbol{C})$ with redeuced representation $\left(f_{0}, f_{1}, f_{2}, f_{3}\right)$ satisfies $f(\boldsymbol{C}) \subset X$, i.e.,

$$
\begin{equation*}
f_{0}^{2 d}+f_{1}^{2 d}-\left(a_{1} f_{1}^{d-1} f_{2}+a_{2} f_{2}^{d}+a_{3} f_{3}^{d}\right)^{2}=0 \tag{1}
\end{equation*}
$$

(I) The case of $f_{0}=0$. From (1), we have $\varepsilon f_{1}^{d}+a_{1} f_{1}^{d-1} f_{2}+a_{2} f_{2}^{d}+a_{3} f_{3}^{d}$ $=0$, where $\varepsilon= \pm 1$. (i) If $f_{1}=0$, then $a_{2} f_{2}^{d}+a_{3} f_{3}^{d}=0$. Trivially $\left(f_{2}: f_{3}\right)$ is constant, and hence, f is constant. (ii) If $f_{2}=0$, then $\varepsilon f_{1}^{d}+a_{3} f_{3}^{d}=0$. Trivially ($f_{1}: f_{3}$) is constant, and hence, f is constant. (iii) If $f_{1} \neq 0, f_{2} \neq 0$, then

$$
\begin{equation*}
\varepsilon g^{d}+a_{1} g^{d-1}+a_{2}=-a_{3}\left(f_{3} / f_{2}\right)^{d} \tag{2}
\end{equation*}
$$

where $g=f_{1} / f_{2}$. By Lemma 2, $\varepsilon z^{d}+a_{1} z^{d-1}+a_{2}=0$ has at least $d-2$ simple roots $\omega_{j}(j=1, \ldots, d-2)$. For each $j=1, \ldots, d-2$, multiplicities of zeros of $g-\omega_{j}$ are multiples of d by (2). The inequality $(1-1 / d)(d-2)=d-3+$ $2 / d>2$ and Lemma 1 imply that g is constant. Hence f is constant.
(II) The case of $f_{0} \neq 0, f_{1}=0$. From (1), we have $\varepsilon f_{0}^{d}+a_{2} f_{2}^{d}+a_{3} f_{3}^{d}=0$, where $\varepsilon= \pm 1$. In this case, it is obvious that f is constant.
(III) The case of $f_{0} \neq 0, \quad f_{1} \neq 0$. From (1), we have $f_{0}^{2 d}+f_{1}^{2 d}=$ $\left(a_{1} f_{1}^{d-1} f_{2}+a_{2} f_{2}^{d}+a_{3} f_{3}\right)^{2}$. As in (I)(iii), we can conclude by $(1-1 / 2) \cdot(2 d)=$ $d>2$ that $\left(f_{0}: f_{1}\right)$ is constant. Hence it is possible to write $f_{0}=c f_{1}$ by a nonzero constant c. By substituting this to (1), we get

$$
b f_{1}^{d}+a_{1} f_{1}^{d-1} f_{2}+a_{2} f_{2}^{d}+a_{3} f_{3}^{d}=0
$$

where b is a constant such that $b^{2}=c^{2 d}+1$. (i) If $f_{2}=0$, then $b f_{1}^{d}+a_{3} f_{3}^{d}=0$. In this case, if $b=0$, then $f_{3}=0$ and f is constant. If $b \neq 0$, then $\left(f_{1}: f_{3}\right)$ is constant and so is f. (ii) Assume that $f_{2} \neq 0$. If $b \neq 0$, then we can conclude as in (I)(iii) that f is constant. If $b=0$, then $f_{2}\left(a_{1} f_{1}^{d-1}+a_{2} f_{2}^{d-1}\right)=-a_{3} f_{3}^{d}$.

From the inequality $(1-1 / d) d=d-1>2$ and Lemma 1 it follows that $\left(f_{1}: f_{2}\right)$ is constant, and so is f.
Q.E.D.

For each $d \geq 11$, Demailly [D] gave a hyperbolic hypersurface of $\boldsymbol{P}^{3}(\boldsymbol{C})$ of degree d. Therefore, $d(3) \leq 10$ is obtained.

§4. Complements in $\boldsymbol{P}^{2}(\boldsymbol{C})$

In this section we give (reducible) hypersurfaces with hyperbolic complements.

Theorem 4. Let a_{0}, a_{1}, a_{2} be nonzero constants and $d \geq 4$ an integer. Define a hypersurface X in $\boldsymbol{P}^{2}(\boldsymbol{C})$ by

$$
w_{0}^{2 d}-\left(a_{0} w_{0}^{d-1} w_{1}+a_{1} w_{1}^{d}+a_{2} w_{2}^{d}\right)^{2}=0
$$

Then there exists no nonconstant holomorphic mapping f of \boldsymbol{C} into $\boldsymbol{P}^{2}(\boldsymbol{C})$ such that $f(\boldsymbol{C}) \subset \boldsymbol{P}^{2}(\boldsymbol{C}) \backslash X$.

Proof. Assume that a holomorphic mapping f of \boldsymbol{C} into $\boldsymbol{P}^{2}(\boldsymbol{C})$ with redeuced representation $\left(f_{0}, f_{1}, f_{2}\right)$ satisfies $f(\boldsymbol{C}) \subset \boldsymbol{P}^{2}(\boldsymbol{C}) \backslash X$, i.e.,

$$
\begin{equation*}
\alpha^{2 d}+f_{0}^{2 d}-\left(a_{0} f_{0}^{d-1} f_{1}+a_{1} f_{1}^{d}+a_{2} f_{2}^{d}\right)^{2}=0 \tag{3}
\end{equation*}
$$

where α is an entire function without zeros.
In the case of $d \geq 5$, it follows from Theorem 3 that f is constant. Hence, it is enough to consider the case of $d=4$, and from now on take $d=4$.
(I) The case of $f_{0}=0$. From (3), we have $\varepsilon \alpha^{4}=a_{1} f_{1}^{4}+a_{2} f_{2}^{4}$, where $\varepsilon=$ ± 1. By the Little Picard Theorem, $\left(f_{1}: f_{2}\right)$ is constant, and hence, so is f.
(II) The case of $f_{0} \neq 0$. From (3), we have $\alpha^{8}+f_{0}^{8}=\left(a_{1} f_{0}^{3} f_{1}+a_{1} f_{1}^{4}+\right.$ $\left.a_{2} f_{2}^{4}\right)^{2}$. By the inequality $(1-1 / 2) \cdot 8=4>2$ and Lemma 1, we have $\left(f_{0}: \alpha\right)$ is constant, and we can write $\alpha=c f_{0}$ by a nonzero constant c. By substituting this into (3),

$$
\begin{equation*}
b f_{0}^{4}+a_{0} f_{0}^{3} f_{1}+a_{1} f_{1}^{4}+a_{2} f_{2}^{4}=0 \tag{4}
\end{equation*}
$$

is obtained, where b is a constant such that $b^{2}=c^{8}+1$. (i) If $f_{1}=0$, then $b f_{0}^{4}+$ $a_{2} f_{2}^{4}=0$. In this case, if $b=0$, then $f_{2}=0$; otherwise, $\left(f_{0}: f_{2}\right)$ is constant. In any case, f is constant. (ii) The case of $f_{1} \neq 0$. If $b=0$, then from (4) $f_{1}\left(a_{0} f_{0}^{3}+a_{1} f_{1}^{3}\right)=-a_{2} f_{2}^{4}$. By the inequality $(1-1 / 4) \cdot 4=3>2$ and Lemma 1 , it is obtained that $\left(f_{0}: f_{1}\right)$ is constant. Hence f is constant. Consider the case of $b \neq 0$. We rewrite (4) as

$$
b f_{0}^{4}+a_{0} f_{0}^{3} f_{1}+a_{1} f_{1}^{4}=-a_{2} f_{2}^{4}
$$

If $b z^{4}+a_{0} z^{3}+a_{1}=0$ has no multiple roots, then we conclude that $\left(f_{0}: f_{1}\right)$ is constant by Lemma 1 and the inequality $(1-1 / 4) \cdot 4=3>2$. Hence f is constant. Otherwise, we can factorize

$$
b z^{4}+a_{0} z^{3}+a_{1}=b\left(z-\omega_{1}\right)\left(z-\omega_{2}\right)\left(z-\omega_{3}\right)^{2}
$$

by Lemma 2, where $\omega_{1}, \omega_{2}, \omega_{3}$ are distinct nonzero constants. Put $g=f_{0} / f_{1}$. Then

$$
b\left(g-\omega_{1}\right)\left(g-\omega_{2}\right)\left(g-\omega_{3}\right)^{2}=-a_{2}\left(f_{2} / f_{1}\right)^{4}
$$

Therefore, multiplicities of zeros of $g-\omega_{1}, g-\omega_{2}$ and $g-\omega_{3}$ are multiples of 4,4 and 2 , respectively. Moreover, g has no zeros. The inequality $1+$ $(1-1 / 4)+(1-1 / 4)+(1-1 / 2)=3>2$ and Lemma 1 imply that g is constant, and hence f is constant.
Q.E.D.

Corollary 5. Let X be as in Theorem 4. (i) If $d \geq 5$, then $\boldsymbol{P}^{2}(\boldsymbol{C}) \backslash X$ is completely hyperbolic and hyperbolically imbeded in $\boldsymbol{P}^{2}(\boldsymbol{C})$. (ii) If $d=4$ and $\pm 3^{3} a_{0}^{4}+4^{4} a_{1} \neq 0$, then $\boldsymbol{P}^{2}(\boldsymbol{C}) \backslash X$ is completely hyperbolic and hyperbolically imbeded in $\boldsymbol{P}^{2}(\boldsymbol{C})$.

Proof. (i) In this case the result is obvious by the above two theorems and Brody-Green's theorem.
(ii) The hypersurface X has two irreducible components of degree 4. By the condition $\pm 3^{3} a_{0}^{4}+4^{4} a_{1} \neq 0$, they are non-singular, and hence, Riemann surfaces of genus 3. Therefore, all holomorphic mappings of C into X are constant. From Theorem 4 and Brody-Green's theorem, the conclusion follows. Q.E.D.

References

[D] J.-P Demailly, Algebraic criteria for Kobayashı hyperbolic projective varieties and jet differentrals, Algebracc Geometry held at Santa Cruz, July 1995 (J. Kollár et al eds.), Proc. Sympos. Pure Math., 62-2, Amer. Math. Soc., Providence, 1997, 285-360.
[K] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappıngs, Dekker, 1987
[MN] K. Masuda and J. Noguchi, A construction of hyperbolic hypersurface of $\boldsymbol{P}^{n}(\boldsymbol{C})$, Math. Ann., 304 (1996), 339-362.
[S] M. Shirosaki, On polynomials which determine holomorphic mappings, J. Math. Soc. Japan, 49 (1997), 289-298.

