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SYMMETRIC WEIGHTS AND S-REPRESENTATIONS
SERGIO CONSOLE AND ANNA FINO

Abstract

We study 1wrreducible representations of compact Lie groups relating an algebraic
condition (the highest weight A 1s “symmetric”, 1.e., mn any simple factor all non zero
{A,0) are equal, for any positive root o and any invariant mnner product) with a
geometric one (for all orbits, the d-th osculating space coincides with the representation
space).

We prove that, if d =2 and A 1s symmetric, the irreducible representation with
highest weight A corresponds to the isotropy representation of a symmetric space.

1. Introduction

Let K be a compact Lie group and ¢ a faithful irreducible orthogonal
representation. Qur aim is to investigate the interplay between algebraic pro-
perties of the weight system of ¢ and geometric properties of the representation ¢.

Among orthogonal representations, a crucial réle in submanifold geometry is
played by the isotropy representations of symmetric spaces, called s-representations.
Indeed the principal orbits of s-representations are isoparametric and the singular
ones are their focal manifolds. Moreover all orbits of s-representations are taut

[2].

The s-representations are strictly related tc an another class of orthogonal
representations whose definition is geometrically more appealing: the polar repre-
sentations. A representation of a compact Lie group K on vector space V is
polar if there is a linear subspace £ < V' that meets all orbits of K and every time
it meets an orbit of K, it meets it perpendicularly. It is not difficult to see that
any s-representation is polar. Moreover it is still true that any orbit of a polar
representation is taut, as it follows from results of Conlon [4] together with ones
of Bott and Samelson [2].

On the other hand, Dadok [6] classified all irreducible polar representations
and observed that some of them are s-representations and that, those that are not,
have the same orbits as s-representations. For his classification, Dadok asso-
ciated to any irreducible representation with highest weight A, an integer k().
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He proved that for a polar representation one has the upper bound k(1) < 4, if it
is of real type, and k(1) < 2, otherwise. This result was crucial in his proof since
it reduced considerably the list of possible polar representations.

We will give a geometric interpretation of this upper bound on k(4) for polar
representations. This is done in Section 2, where we consider, like in [5] the class
(02) of orthogonal representations. In general, ¢ belongs to (¢,) if the d-th
osculating space coincides with V. Any irreducible polar representation belongs
to () and we prove that the above upper bound for k(1) holds, more generally,
for irreducible representations of class (0;) (Theorem 2.1).

The next part of our work starts from the observation that, up to a few
exceptions (SU*(2n)/Sp(n) and E¢/F,), the irreducible polar representations that
are s-representations (and not just orbit equivalent to them) and not transi-
tive on the unit sphere are those for which k(1) assumes its maximal value
mentioned above (i.e., k(1) =4 if ¢ is of real type and k(1) =2 otherwise) and
whose highest weight is symmetric, i.e., all nonzero {A,a) are equal for any
positive root « chosen in any simple factor of f, where {,) is any f-invariant
inner product (cf. Theorem 9 (i) and Theorem 10 (ii) in [6]).

Rather than giving a new proof of Dadok’s Theorem (this was done by
Eschenburg and Heintze in [8], using submanifold geometry) we aim to study the
interplay between s-representations and representations with symmetric highest
weight A and for which k(1) assumes the maximal value allowed for the class
(0;). Our main result on one hand generalizes to some extent Theorems 9 and
10 in [6], since we do not assume the representation to be polar; on the other, it
gives an alternative proof of them.

THEOREM 1.1. Let ¢,: K — O(V) be a faithful irreducible complex repre-
sentation of a semisimple, compact, connected Lie group K with highest weight A,
and let {,) be a Y-invariant inner product on .

(@) If ¢, is of real type, k(1) =4 and A is symmetric then ¢f is the isotropy
representation of a compact, simply connected, irreducible symmetric space.

(b) If ¢, is of complex type, k(%) =2 and A is symmetric then (K- U(1),
(¢, ® e®|z) is the isotropy representation of a compact, simply connected, irre-
ducible hermitian symmetric space.

(c) If ¢, is of symplectic type, k(L) = 3 (thus is this case ¢; cannot belong to
(0,)) and A is symmetric then (K -Sp(l),¢, ® v2) is the isotropy representation
of a compact, simply connected, irreducible quaternionic symmetric space.

Note that in case (c) ¢; ® v» is of real type, its highest weight 1’ has
k(X)=4. Thus (c) is a special case of (a).

For the proof we state some properties of irreducible representations whose
highest weight is symmetric and k(1) is maximal for (¢;) (Lemma 3.1 and 3.2).
These properties generalize to the ones for which k(1) is maximal for (¢,).
What turns out to be crucial in the case of class (¢);) is that in this case, up to a
few special cases, 4 is a sum of minuscule weights, each in any simple factor of K.

We wish to thank McKenzie Wang for his helpful comments.
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2. Osculating spaces and weights

In this Section we want to give a geometric proof of the upper bound for
k(2). To this purpose, we first recall some facts from representation theory, then
we give the definition of k(1) and finally we relate k(1) with the decomposition of
the representation space into osculating spaces.

Let ¢ be an irreducible representation of a compact Lie group K on a
complex vector space V. V will be always endowed with a K-invariant inner
product (which is uniquely defined up to a constant factor). Let f€ be the
complexification of the Lie algebra f of K and ¢ the corresponding irreducible
representation of ¥€ on the complex vector space V.

One says that ¢ is of real type if ¢€ comes from a representation of £
on a real vector space W by extension of scalars (i.e., V=W ®gC). This is
equivalent to the existence of an invariant real structure on V, i.e., a conjugate
linear endomorphism ¢ of ¥ such that ¢? =id. The representation ¢ is of
symplectic type if it comes from a quaternionic representation by restriction of
scalars, or equivalently if there exists an invariant symplectic structure, i.e., a
conjugate linear endomorphism of ¥ whose square is minus the identity. One
says that a representation is of complex type if it is neither real nor symplectic.
Note that real and symplectic representations share the property that there exists
a non degenerate invariant bilinear form on V. For this reason they are also
called self dual. On the other hand, an irreducible representation of a complex
Lie algebra € on a real vector space is of complex or symplectic type if it comes
from a complex representation by restriction of scalars. Otherwise it is of real
type.

If $: K— O(V) is of real type we will consider the orthogonal represen-
tation ¢® on the real part V® of V, i.e. the +1-eigenspace of ¢ In the complex
or symplectic case we will regard V" as a real vector space (and when we want to
stress the difference between regarding V" as a complex and a real vector space we
will write [@], in the latter case).

For representations of real type the following lemma [5] describes the real
part of the representation space explicitly

LemmA 2.1. Let ¢, be an irreducible representation of real type of highest
weight 4, {p} the set of its positive weights and let {x,,} be a union over unitary
bases of the weight spaces of the positive weights. Then

{09, = Xp0 + IXp 1, Wp = i(Xp0 — FX,)}

is a basis of VR, the +l-eigenspace of J. Moreover X, ¢ = —¢X_, and
Fvy=v_).

Recall that K is finitely covered by a compact Lie group K = Kj x --- x
K; x T™, where any K, is simple and 7™ is an m-dimensional torus. ¢ induces
a representation ¢ of K having the same orbits as ¢. Thus without loss of
generality we will assume that K =K} x --- x K; x T™,
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If ¢ is of real type then T™ lies in the kernel of ¢. Thus, if ¢ is effective,
then K = K; x --- x K].

If ¢ is of complex or symplectic type, then ¢r» has a one dimensional
kernel. Hence, if ¢ is effective, then K =Ky x --- x Ky x T 1. In this case ¢
is the external tensor product of a representation ¢ of the semisimple K, =
Ki x --- x K; and a one dimensional representation of 7'' given by multiplication
by e (which we will denote by ¢?). Hence ¢ = ¢ ® e and, if ¢ (considered as
a real representation) is irreducible, ¢ is also.

Let t be a Cartan subalgebra of € and denote by <, ) an invariant inner
product of T (note that, on each simple factor of f, by Schur’s Lemma, it coincides
up to a constant with the negative of the Killing form of K). Let X = {«} be the
set of roots of € with respect to t and the coroot H, be given by (H, H)> =
o(H), for any H et.

Recall that there exists a basis of f€, {Hy, Xy Xy}, with

{Xy, X_y>=1 and [X,, X_,] = H,.

We will call such a basis a Chevalley basis.

One can obtain a description of the Lie algebra f of the compact Lie group
K in terms of root vectors. This can be done as follows. Let t, denote the real
subspace of t consisting of the real linear combinations of the coroots H,. The
Lie algebra f of K is then spanned by ity, X, — X_, and i(X, + X_,), where X, €
€ is a (suitable) root vector (see for instance [13]).

Suppose now that ¢ has highest weight 1. In this case we will put an
index A, writing ¢, and ¥, and often will denote the representation as well as
the representation space by ¥;. Moreover we will often write X - v instead of
¢, (X)v, for X ¥, ve V).

Let v; be a highest weight vector of ¢; and let U(£€) denote the universal
enveloping algebra of €. Recall that

Vi=U(C) v, = Un) v,

where n~ is the (nilpotent) subalgebra of € generated by X. _,, 7 €XT (see, e.g. [10]).

We now come to the definition of k(A). Dadok [6, Proposition 7] proved
that there exists a system O = {f,,...,5,} of strongly orthogonal positive roots
such that so = sp, - sp, - - - 53, is the Weyl group element mapping the positive Weyl
chamber into its negative.

Note that so(4) is the smallest weight [1, Remark 2, p. 127]. Moreover if ¢,
is self dual (i.e. either real or symplectic) then soA = —4 [1, Chapitre VIII,
Proposition 12, p. 132].

Let v,,(;) be a weight vector relative to sp(4).

DEFINITION.  k(7) is the smallest integer such that v,z € U¥? (t€) - v; and
V) & U(EC) - vy for any r < k(4).

The system O of strongly orthogonal roots can be used to decide whether ¢,
is of real, symplectic or complex type. Moreover one can give a formula for
k(4). Namely
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ProrosiTioN 2.1. (i) ¢, is complex if and only if A ¢ spang{p,,...,B:},
(ii) @, is of real (resp. symplectic) type, if and only if A € spang{f,,...p;} and
k(1) is an even (resp. odd) integer.

Moreover
, A
M Z<ﬁ’<ﬂ,,/f,so e
and, in case ¢; is real or symplectic,
2B, 4>
@ Z BBy’

where {,) is any Y-invariant inner product on .

Proof. The proof of the property that ¢, is complex if and only if A does
not belong to spang{f,,...,f;} and real or symplectic elsswhere, can be found
in [6, p. 131] (this is actually in the same vein as [1, Chapitre VIII, Proposition
12, p. 132] or [13, p. 142)).

We now prove (1) and (2). Since so = sp, - 5p, ---55 we have that sl =
A=3,bif;. Thus wvg, € UZ:””(fC)~v,1 and that ov,;¢ U'(£€)-v; for any
r <3y, bi. Moreover

t <ﬁi’ﬂi> ’
thus by definition
{Bis 4 — 504>
k(2 )
"= Z B
and if 4 is self dual (2) follows from the fact that sod = —A. q.e.d.

Next we recall some notions of submanifold geometry. Let M be a
submanifold of R". The d-th osculating space of M at p is the space (Od(M)
spanned by the first d derivatives in 0 of curves y: (—¢,¢) —» M with y(O)
Note that (9 (M)=T,M. Now let p: K — O(n) be a representatlon that we
assume to be 1rredu01ble and let M be an orbit of K. Since p is irreducible, for
any p € M there is a natural number /4, called the degree of the orbit, such that

"(M) R". Remark that (Ohg)( )=p(g)(01f’(M), hence if (91,"(M) =R" for
some p € M, then (Oh(M ) = R" for all ge M. Notice also that there is a natural
number d such that COd(M) R"” (pe M) for all orbits M of p, and let d(p)
denote the smallest of such numbers d. In other words d(p) is the smallest
number such that all orbits have degree d(p).

We will denote by (¢;) the class of irreducible orthogonal representations
p such that d(p) =d. Notice that the smallest d for which (¢;) is nonempty is
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d =2. From the point of view of submanifold geometry the complexity of the
orbits of p grows as d(p) gets larger.

The classes of representations we have mentioned in the Introduction (polar,
s-representations, with all orbits taut) all belong to (0,) if we restrict ourselves
to irreducible representations. To see this one has to use the following result of
Kuiper [12, Théoréme 2]. Let M be a taut submanifold in R" that is full in the
sense that it is not contained in any hyperplane. Then there is a point p € M such
that (Oz(M) = R". This is for example true for every point p € M that is the
maximum of a distance function. Thus, in particular, we get that any irreducible
polar representation belongs to (0).

Recall that a properly embedded submanifold M of R" is said to be taut
if for almost all x € R” the distance function dx: M — R; p — d(x, p)* is a Z
perfect Morse function (i.e., the Morse inequalities with respect to Z, are
equalities).

We now consider an irreducible representation ¢, : K — O(V). If ¢, is of
real type we will say that it belongs to (0;) if ¢X does.

The definition of osculating space and a computation shows the following

LemMmA 2.2. Let A be a highest weight, and v, a highest weight vector.
Suppose ¢, is of class (05).

() If V; is of real type, then U2(¥€)-v; + UX(C)-v_; = V.

(i) If Vi is of complex or symplectic type, then U*(X€)-v;, = V.

The proof can be found in [5, Lemma 3]. For representations of real type,
one needs Lemma 2.1.

More in general, if ¢, is of class (¢;), then U4(f€)-v; + U4(¥€) - v_; = V3,
if ¥; is of real type, and U?(f€) - v; = V,, if ¥, is of complex or symplectic type.

Next we use Lemma 2.2 to show the following

THEOREM 2.1. Let ¢, be an irreducible faithful orthogonal representation
belonging to () (e.g. an irreducible polar representation). Then

(i) if ¢, is of real type, k(1) < 4;

(ii) if @, is of complex or symplectic type, k(1) < 2.

Proof. First we give a geometric interpretation of the property expressed
by the Theorem. Recall that, if « is a root, p is a weight, X belongs to the root
space relative to « and v, is a weight vector relative to p, X - v, belongs to the
weight space ¥,.,, if it is not zero. Said in another way, the action of a X in the
root space relative to o can be interpreted as a translation in the weight diagram
shifting each of the dots (corresponding to the weights in the weight diagram)
over by . Hence the geometric meaning of the Theorem is that one can reach
—A from A in at most 4 steps, in the real case (and in 2 steps in the other cases).

We shall now give the proof of (i). The other part is similar and actually
easier. Recall that if ¢, is real, k(4) is even. Thus if at least 6 steps would
be necessary to go from —A to A, by symmetry reasons there would exist a
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weight u lying on the wall of so which is 3 steps far from both —1 and 4. So
any v, € ¥, could not belong to U2(£€) - vy + U%(f€) -v_;. But by Lemma 2.2,

U2(t€) - vy + U(EC) -v_; = V. q.e.d.

Remark. Theorem 2.1 implies that if ¢, : K — O(V) is any representation
of real type belonging to (¢;), then K has at most 4 simple factors and that if
¢, is symplectic or complex, then K has at most 2 simple factors. These results
were proved in [5].

Observe also that Theorem 2.1 generalizes to (irreducible, faithful) ortho-
gonal representations of class (¢;). In that case we have that, if ¢, is of real
type, k(1) < 2d and, if ¢, is of complex or symplectic type, k(1) < d.

3. Symmetric weights

Wang and Ziller found very strong connections between the isotropy rep-
resentations of irreducible symmetric spaces and their highest weights [16], cf.
also [14]. In this Section we want to relate them with the conditions of sym-
metry of the highest weight and with the maximality of k(A).

As a start we give the following

DEFINITION [6, p. 128]. A highest weight A of a simple Lie algebra € is
called symmetric if all non zero {4,a), o € £ are equal. Here {, ) is a (uniquely
defined up to a simple factor) f-invariant inner product on f. A highest weight
of a semisimple f€ is called symmetric if it is symmetric for each of its constant
factors.

Note that, for semisimple € one can rescale on each simple factor a f
invariant inner product {,» on f so that all non zero {i,a), a € X" are equal.

Next, we recall the results in [16] we refer to.

The first establishes a condition for the highest weight of the (complex)
isotropy representation of a compact irreducible symmetric space.

THEOREM 3.1 [16]. Let M = G/K be a compact irreducible symmetric space
with G the identity component of the full isometry group of M and without
euclidean factors. Let B be the negative of the Killing form of G and 4 the highest
weight of its (complex) isotropy representation. Then

(3) B(4,4) = 2B(4, ),
for any positive root o of T such that B(A,a) #0 and 2). — a is not a root.

As a consequence we get that, if 24 — « is not a root for any root « such that
B(4,a) # 0, then the highest weight of an s-representation A is symmetric.

Remark. If ¢ is of real type and k(1) is 4, then 24 — o is never a root,
[6, proof of Lemma 11, p. 1311
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If ¢ is of complex type and k(1) is 2, then A+ 1™ = A — so(4) is never a root.
This follows immediately since 4+ A" = f; + f; for some f;, ; € ¢ and the sum of
two strongly orthogonal roots is never a root.

Wang and Ziller obtained a refinement of the above formula (3) for
Hermitian and quaternionic symmetric spaces. Namely:

(i) If G/H - U(1) is Hermitian symmetric other than the complex projective
spaces, with isotropy representatlon [‘151] r = ¢y ® e, then B(,A*)=0 and

B, A)+ B, 1) = 2B(A a), where « is any simple root of H with B(A',«) #

(i) If G/H -Sp(1) is quaternionic symmetric other than the quaternlomc
projective spaces, with isotropy representation ¢ ® C b, =0, @v0or g ®C =
$, D¢ =9y ;] @2, then B(X,X) = (3/2)B(¥,a), where o is any simple
root of H with B(l’ ) #

Here and below v, is the two dimensional representation of Sp(1).

Conversely Wang and Ziller proved that the above identities actually
characterize the isotropy representations of irreducible symmetric spaces, among
all irreducible representations of compact Lie groups. Namely

THEOREM 3.2 [16]. Let ¢, : K — O(V) be a faithful irreducible complex
representation of a semisimple, compact, connected Lie group K with highest weight
A, and let {,> be a Y-invariant inner product on .

(@) If ¢, is of real type and {A,Ay = 2{A,a), for every simple root a of K with
{A,a) # 0 then ¢, is the isotropy representation of a compact, simply connected,
irreducible symmetric space, except in the case (G, ¢;), where ¢; is the 7-
dimensional representation of G,.

(b) If ¢, is of complex type (hence ¢, # ¢;) and (A, Ay + (A, A") =24, 0,
for every simple root o of K with {l,ay #0 then (K-U(1),[¢, ® e?]y) is the
isotropy representation of a compact, simply connected, irreducible hermitian
symmetric space.

(¢) If ¢, is of symplectic type and {A,A) = 3/2{A,a), for every simple root «
of K with (A,a) #0 then (K-Sp(1),¢, ®v;) is the isotropy representation of a
compact, simply connected, irreducible quaternionic symmetric space.

We suppose now that A is symmetric and k(1) assumes the maximal value
for representations of class (0).

The following Lemma, together with Theorem 3.2 above, yields a first proof
of Theorem 1.1.

LemMa 3.1. Let ¢, be in the same hypothesis as in Theorem 3.2.

(@) If ¢, is of real type, k(1) = 4 and A is symmetric then {(1,1) = 2{4, o), for
every positive root o of K with {i,a) # 0.

(b) If ¢, is of complex type, k(1) =2 and A is symmetric then {A,A) + {A,A*)
= 2{A,a), for every positive root o« of K with {(i,a) # 0.

() If ¢, is of symplectic type, k(1) =3 (thus in this case ¢, ¢ (02)") and A is
symmetric then {A,A) = 3/2{A,a), for every positive root o. of K with {A,a) # 0.
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Note that in case (c) ¢, ® v, is of real type, its highest weight A’ has
k(X)=4. Thus (c) is a special case of (a).

Remark. We have the following generalization of Lemma 3.1. If ¢, is
of real type, k(1) =2d and 1 is symmetric then {1, 1) = d<{4,a), for every posi-
tive root a of K with {1,0> #0. If ¢, is of complex type, k(1) =d and A is
symmetric then {A,A)> + {4, A*> =d<{J,a), for every positive root o of K with
Ay o) # 0.

Proof. (a) If k(1) =4, then 24 =B, + B, + B3 + B4, for B; € O not neces-
sarily distinct. If A is symmetric, then {(1,a) = <{4,f;> for any positive root o
such that (1,a)> #0 and any i=1,...,4 fixed. Then

(o2 = 34k B> = 20, = 20,2,

(b) We remark first that A* = —so(4) [1, Chapitre VIII, Proposition 11, p. 13].
Thus, if k(A) =2, then A+ 1" =1 —s55(4) =B, + B, for ;€ © not necessarily
distinct. Thus, since A is symmetric,

A Ay + <A = KA+ A%, 0> = G, By + By = 244, B1) = 2{4, ),

for any positive o with {4,a) # 0.
(c) If k(A) =3, 24 = B + B, + B3, for B; € O not necessarily distinct. If 1 is
symmetric, then

1 3 3
<A.,j.> - §3</‘L?ﬁz> - -2—<l7ﬂl> - §</1,0(>,
for any positive a with <{4,a) # 0. q.e.d.

Observe that in case (a) the highest weight u of the representation ¢, of G,
has k(1) =2. Hence the conditions of Theorem 1.1 do not hold.

Thus Lemma 3.1 gives a proof of Theorem 1.1, using the results in [16].
However the proof in [16], when ¢, is orthogonal and K is not simple, is case
by case and uses the classification of symmetric spaces. Thus we will give a
conceptual proof for this case. If ¢, is complex, we will show that K is simple.
Thus we will use Theorem 4.6 in [16] which has a conceptual proof (cf. also [9]).

As a start, we prove the following

LeMMmA 3.2.  Let ¢, be an irreducible representation, not of symplectic type, of
a semisimple compact Lie algebra ¥ with A symmetric. Assume that k(1) =4, if ¢,
is of real type and k() =2, if ¢, is of complex type. Then

(a) for any simple factor ¥, of T there exists a unique simple root o which is
not orthogonal to 1,

(b) any positive root of 1, has either 0 or 1 as coefficient of o, in its expression
as a linear combination of simple roots;

(c) if A is the highest weight of ¢, then 1, is an integral multiple of a
minuscule weight of §,. Moreover the coefficient of proportionality equals A(Ha;).
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Remark. More in general the present Lemma holds if k(1) = 2d and ¢, is
of real type or k(1) =d and ¢, is of complex type.

Proof. (a) Let « and f be simple roots (chosen in the same simple factor)
such that {4,a) #0 and <{4,> #0. Then, by [7, p. 266] there exists a mini-
mal chain of simple roots o; = a,a,...,a, = f connecting a and f. Let y=
oy +---+a, Then y is a root of T and {1,y) #0. In the real case we have
that, since A is symmetric

A A0 =24, 0) = 244, ).

On the other hand, (4,1 =2, y> =24, )>+ - +2{4, 0> = 2{A, 0> +
2{A, B> = 2{4,A), which is clearly a contradiction.

In the complex case one gets similarly a contradiction from {1+ A*,1) =
200+ A%, 4.

(b) We know by (a) that for any simple factor f, of f there exists a unique
simple root o not orthogonal to A. On the other hand, if we denote by
= aroy tl/1e maximal root of ¥, we have

Aoy > =2¢4, Ay = {4, a').

Then a' has coefficient 1 in o in its expression as a linear combination of simple
roots. But, in general, for any root of f,, ' =" broy, we have by < ay, thus we
get (b).

(c) By (a) A4, =mw;, where m; is an integer and w; is the fundamental
weight of f, correspondmg to the 51mple root ;. On the other hand, by (b) the
maximal root &' has coefficient 1 in o). Thus by [, Chapltre VIII, Proposition
8, p. 128] w;, is a minuscule weight. Moreover /1(Haj’_) Ai(Hy, }_l_) =m;. q.e.d.

NortatioN. In any simple factor f, the system of simple roots will be
denoted by of,...,o;, with /; the rank of f,, The unique simple root not or-
thogonal to 4 w111 be denoted by o

Observe that k(4,) = mik(w;,).

Next we deal with the case of representations of real type.

If k(A) =4, A(H, ) <4 and 4, is a sum of k(4,) strongly orthogonal positive
roots, so we have the following cases:

(1) mi=1 for any i=1,...,1. Then Ais a sum of minuscule weights (each
for any simple factor).

(2) m; =2 for one i. Then if k(w;) =2, t is simple of types B; or D; (and
A = 2cwy; here and below we use the notation of [1] for the fundamental weights).
If k(wj,) =1, then, if f has 2 simple factors, t is of type 4, + B; or 4; + D; and
A =2w; + wy, if t has 3 simple factors it is of type 4; + 4 + 41 and 1 = 2w, +
w1 + 0.

(3) m; =3 for one i. Then k(w;)=1 and f is of type A1+ 4; with A=
3wy + wy.

(4) m; =4 for a (unique) i. Then I is simple and of type A4;, 1 = 4w;.



276 SERGIO CONSOLE AND ANNA FINO

Like in [16], we give the following decomposition of the second exterior power
of ¢;:
A2¢l = adf @ X5

where y is the isotropy representation of SO(V;)/¢,(K). We will compute the
irreducible components of y (with respect to K).

Our goal is to prove that there exists a non trivial f-invariant curvature
tensor R on ¥, with values in ¢,(f) = so(¥;) = A’V;. Then, as we will ex-
plain below, the classical Cartan’s construction yields a conceptual proof of
Theorem 1.1.

By a f-invariant curvature tensor R on ¥; we mean a (4,0) tensor on ¥}
which is invariant by the naturally induced action of f on the space of (4,0)
tensors and has the same algebraic properties as the Riemannian curvature
tensor. It can be easily seen that such an object identifies with a f-invariant
element of the second symmetric power of A2V, S?A?V,. More precisely, if #
denotes the space of such curvature tensors we have the decomposition

SNV, =AY @ 2,

with # the space of f-invariant curvature tensors.

The Cartan’s construction can be summarized as follows (cf. [16, Lemma
4.1)). Let R be a non trivial ¥-invariant curvature tensor with values in ¢,(f)
s0(V;) = A’V,. Then the vector space g =@ V; can be made into a Lie algebra
by defining

[X,v] = —[v,X] = $2(X)(v), Xefvel,
[o,w]| =Y et, where ¢,(Y)=—R(v,w), uvel].

Our strategy is then to show that our strong assumptions on 4 (i.e. 4 symmetric
and k(1) =4) imply that there exists such a curvature tensor. To do this we
deduce from the decomposition of A2V, into irreducible summands, the di-
mensions of the space of f-invariant elements in SN2V, = A1V, @ &. Roughly,
we show that dim £ is big enough so that a linear combination of -invariant
curvature tensors yields a non trivial one having values in ¢,(¥).

This technique was first used by Kostant if the space of f-invariant tensors
in A*V;, (A*1;), vanishes [11], and in case y is irreducible in [16].

The following lemma gives the decomposition of A’¢, into irreducible
components, by describing the highest weights of the irreducible components of .

Lemma 3.3. The highest weights of the irreducible components of y are
20 — o, where a; is the unique simple root in the simple factor ¥, which is not
orthogonal to A.

Note that, as a consequence, we have that, if  has / < 4 simple factors then
ady has [ irreducible components and y has / irreducible components.
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Proof. If A is not a sum of minuscule weights (each for any simple factor),
one can check the Lemma directly. This corresponds to the few cases mentioned
above ((2), (3) and (4)).

Next we consider the case of A sum of minuscule weights. Recall that this
implies that, for any simple factor i, the weights of ¢, are a single orbit of the
Weyl group of f,. In particular, all weights have multiplicity one and have the
same length.

If (A,a>#0, then A—oa is a weight and {},A) =<4 —a,A—0a). Thus
{4, Ay =<a,a)y. Moreover A — 2a is never a weight. If, in addition, 1 — o — f is
a weight with « # f in the same simple factor, « + f not a root and {4,a) =
{4, B> # 0, then an easy computation shows that <{a, > =0, i.e., that « and f are
strongly orthogonal. So we may assume that «,f € 0.

Hence, if 24 = f; + B, + B3 + B4, the possible highest weights of y can be of
the types

20—ay;, 24-B,, 24-p, P,
On the other hand, 24 — «; has clearly multiplicity one in y. We are thus
left to show that for f,,f, both in f, 24— f, and 21 — 5, — f5; belong to the

wrreducible component V,;_ 2t of y having 24 — o! as hlghest welght But this is
clear, since they have the sime multiplicity in A? ¢, and in V,;_ ! q.e.d.

Next we observe that since ady @ y has 2/ irreducible components, by Schur’s
lemma, the space of f-invariant tensors on S2AV; = S%(ad; @ x) has dimension
21, i.e.

dim(S?(ady @ x))" = 21.

Thus a f-invariant curvature tensor R € %' can be written as a matrix of the
following form with respect to the decomposition of A%V; = adi @ x into irre-
ducible summands

a11 0

(B) R= o

0 b1
where the a; are in the adi component and the b; in the y component. (Actually,
we identify an element of S?A?V; with the corresponding symmetric endo-
morphism of A?V;.)
Hence, in order to have a non trivial invariant curvature tensor with values
in ¥ we need to have at least / + 1 independent invariant curvature tensors in %,
i.e., we have to prove

dm#' >1+1 or dim(A*V)' </i-1.
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To this purpose we proceed like in [16, pp. 308-309]. We choose in each simple
factor a Chevalley basis, take weight vectors v; and v_; such that {v;,v_;)> =1

and set
¢/'L( —ac )U,{, v ‘_A = ¢/'L(X I)Ul.
Then (by [16, p. 308]) we have <Ul—a » Vg .',~1> = —(4,a;>. We denote by pri(prs)

the orthogonal projection from Azl/jl to f(f,) via the embeddlng ¢,. As in [16]
one can prove that

pry(va A v_y) = Hj,
Pri(va—g A Vg _3) = A0 X g,
prf,(lil A Ua,"—}.) = _<}" OC;, >sz.‘4a

Ji Ji
prf,(vi—uj'i A U_j,) = <)'1 a]l, >X—aj”_7

pri,(vx A vl_a}) =0.
i

Let 7€ (A*1;)), then it can be written as a matrix in the same form as (R).
Since # is a 4-form we have that the quantities

n(vl’ U},—aj'iy V-3, vaj"_—l) = _bi<}'7 d{ >a
”(vb vaj{i—,l, vl——ajfi, U—A) al<j' a >2 + b <}“7 j,>(1 + <)' OC >)
”(vla U_p, vaj’i—b Ui—a}i) = ; a]'<H}{’ Hl—uj'i ><Aa ‘x;,>

are all equal. The equality between the first and the second gives rise to the
equations

bi = ailhyoly — b1+ Cha), i=1,...,1

i.e.,, to / independent equations.

The equality between the second and the third ylelds at least one more
linearly independent condition. This proves that dim(A* V,{) <I/-1

Now we deal with the case of representations of complex type.

Let ¢, be an irreducible representation of complex type of a compact
semisimple Lie algebra f. Consider the splitting

$:,®@¢; =1@adi @,

where 1 is the trivial representation and y is the isotropy representation of the
homogeneous space SU(V;)/¢,(K).

LemMA 3.4. Let ¢, be an irreducible representation of complex type of a
compact semisimple Lie algebra ¥ with A symmetric and k(1) =2. Then

(a) either ¥ is simple or T=su(m)® su(m’) and ¢, is the external tensor
product of the standard representatzon of su(m) on C™ and the dual of the standard
representation of su(m’) on C™;
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(b) if t is simple, then y = ¢, ;- (in particular, y is irreducible), A*¢, = P23,
(with a; is the unique simple root not orthogonal to 1).

Proof. (a) We already know that either f is simple or it has two simple
factors. In the latter case, ¢, is the external tensor product of two repre-
sentations ¢, of the two simple factors f; and f,, with k(4,) =1, 4, symmetric
and A+ A" =B, + B,. Thus, by the classification of simple Lie algebras, we must
have , of type A,.

(b) By Lemma 3.2 (c), if f is simple, then A = m;w; is a integral multiple of
the minuscule weight w; corresponding to the unique simple root «; not ortho-
gonal to A. Moreover m; = A(H,,) = 1. Indeed, if A —20; would be a weight
we would have that 4 + A" = 2o; and thus the only possibility would be that f is
of type 4, and A = 2w, but in this case ¢, is not of complex type. Thus 1 = w;
and all weights have multiplicity one and the same length.

If {A,a>#0, then A —a is a weight and {1,A> =<{A—a,A—a). Thus
A+ 2%, Ay =<a,a). Moreover A—2a is never a weight. If in addition, A —
o —f is a weight with « + f not a root and {i,a) = {4,B> # 0, then an easy
computation shows that <{a,f)> =0, i.e., that « and f are strongly orthogonal.
So we may assume that «,f € 0.

Then if A+ A" =, + B,, the possible highest weights of ¢, ® ¢; are of the
form

A+A" or A+A"—B, or A+A" =B, —B,.

On the other hand 1 + A" is a highest weight of y with multiplicity one in ¢; ® ¢;
and we have that A+ A" —f;, =f, and A+ A" — B, — f, = 0 are highest weights
of ¢, ® ¢; which belong to adr and 1 respectively. Then, proceeding like in the
proof of Lemma 3.3 it is possible to prove that y is irreducible with highest
weight 1+ A",

The highest weight 24 — o; has multiplicity one in A*$,. Hence, like in the
proof of Lemma 3.3, one gets that A%¢, = $23—a,- q.e.d.

We can now apply Theorem 4.6 in [16]. This completes our proof of
Theorem 1.1.

Final remark. As already observed many properties of irreducible represent-
ations with A symmetric and k(1) = 24, in the real case and k(1) = d otherwise,
are similar to the ones in the special case d =2 (Lemma 3.1 and 3.2). It would
be interesting to give a geometric characterization of these representations in the
general case.
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