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SYMMETRIC WEIGHTS AND S-REPRESENTATIONS

SERGIO CONSOLE AND ANNA FINO

Abstract

We study irreducible representations of compact Lie groups relating an algebraic

condition (the highest weight λ is "symmetric", i.e., in any simple factor all non zero

ζλ, oC) are equal, for any positive root α and any invariant inner product) with a

geometnc one (for all orbits, the d-Xh osculating space coincides with the representation

space).

We prove that, if d — 2 and λ is symmetric, the irreducible representation with

highest weight λ corresponds to the isotropy representation of a symmetric space.

1. Introduction

Let K be a compact Lie group and φ a faithful irreducible orthogonal
representation. Our aim is to investigate the interplay between algebraic pro-
perties of the weight system of φ and geometric properties of the representation φ.

Among orthogonal representations, a crucial role in submanifold geometry is
played by the isotropy representations of symmetric spaces, called s-representatίons.
Indeed the principal orbits of s-representations are isoparametric and the singular
ones are their focal manifolds. Moreover all orbits of s-representations are taut

[2]
The s-representations are strictly related to an another class of orthogonal

representations whose definition is geometrically more appealing: the polar repre-
sentations. A representation of a compact Lie group K on vector space V is
polar if there is a linear subspace Σ c F that meets all orbits of K and every time
it meets an orbit of K, it meets it perpendicularly. It is not difficult to see that
any s-representation is polar. Moreover it is still true that any orbit of a polar
representation is taut, as it follows from results of Conlon [4] together with ones
of Bott and Samelson [2].

On the other hand, Dadok [6] classified all irreducible polar representations
and observed that some of them are s-representations and that, those that are not,
have the same orbits as s-representations. For his classification, Dadok asso-
ciated to any irreducible representation with highest weight A, an integer k(λ).

1991 Mathematics Subject Classification: 53C30, 53C35.

Research partially supported by MURST and CNR of Italy.

Received May 24, 1999.

266



SYMMETRIC WEIGHTS AND S-REPRESENTATIONS 267

He proved that for a polar representation one has the upper bound k(λ) < 4, if it
is of real type, and k(λ) < 2, otherwise. This result was crucial in his proof since
it reduced considerably the list of possible polar representations.

We will give a geometric interpretation of this upper bound on k(λ) for polar
representations. This is done in Section 2, where we consider, like in [5] the class
(<%) of orthogonal representations. In general, φ belongs to (β^) if the d-th
osculating space coincides with V. Any irreducible polar representation belongs
to (Θ2) and we prove that the above upper bound for k(λ) holds, more generally,
for irreducible representations of class ($2) (Theorem 2.1).

The next part of our work starts from the observation that, up to a few
exceptions (SU*(2n)/Sp(n) and E^JFΔ), the irreducible polar representations that
are s-representations (and not just orbit equivalent to them) and not transi-
tive on the unit sphere are those for which k(λ) assumes its maximal value
mentioned above (i.e., k(λ) = 4 if φ is of real type and k(λ) — 2 otherwise) and
whose highest weight is symmetric, i.e., all nonzero <A, α> are equal for any
positive root α chosen in any simple factor of ϊ, where <, > is any ϊ-invariant
inner product (cf. Theorem 9 (ii) and Theorem 10 (ii) in [6]).

Rather than giving a new proof of Dadok's Theorem (this was done by
Eschenburg and Heintze in [8], using submanifold geometry) we aim to study the
interplay between s-representations and representations with symmetric highest
weight λ and for which k(λ) assumes the maximal value allowed for the class
(Θ2). Our main result on one hand generalizes to some extent Theorems 9 and
10 in [6], since we do not assume the representation to be polar; on the other, it
gives an alternative proof of them.

THEOREM 1.1. Let φλ : K —> O(V) be a faithful irreducible complex repre-
sentation of a semisimple, compact, connected Lie group K with highest weight λ,
and let <, > be a t-ίnυariant inner product on I.

(a) If φλ is of real type, k(λ) = 4 and λ is symmetric then φf is the isotropy
representation of a compact, simply connected, irreducible symmetric space.

(b) If φλ is of complex type, k(λ) —2 and λ is symmetric then (K £7(1),
[Φλ ® CIΘ]R) is the isotropy representation of a compact, simply connected, irre-
ducible hermitian symmetric space.

(c) If φx is of symplectίc type, k(λ) = 3 {thus is this case φλ cannot belong to
(#2)) and λ is symmetric then (K Sp(l),φλ ® v2) is the isotropy representation
of a compact, simply connected, irreducible quaternionίc symmetric space.

Note that in case (c) φλ ® V2 is of real type, its highest weight λ' has
k(λf) = 4. Thus (c) is a special case of (a).

For the proof we state some properties of irreducible representations whose
highest weight is symmetric and k(λ) is maximal for ($2) (Lemma 3.1 and 3.2).
These properties generalize to the ones for which k(λ) is maximal for (Θd).
What turns out to be crucial in the case of class (Θ2) is that in this case, up to a
few special cases, λ is a sum of minuscule weights, each in any simple factor of K.

We wish to thank McKenzie Wang for his helpful comments.
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2. Osculating spaces and weights

In this Section we want to give a geometric proof of the upper bound for
k(λ). To this purpose, we first recall some facts from representation theory, then
we give the definition of k(λ) and finally we relate k(λ) with the decomposition of
the representation space into osculating spaces.

Let φ be an irreducible representation of a compact Lie group ^ o n a
complex vector space V. V will be always endowed with a JC-invariant inner
product (which is uniquely defined up to a constant factor). Let ϊ c be the
complexification of the Lie algebra I of K and φc the corresponding irreducible
representation of I c on the complex vector space V.

One says that φ is of real type if φc comes from a representation of ϊ c

on a real vector space W by extension of scalars (i.e., V — W ®R C). This is
equivalent to the existence of an invariant real structure on V, i.e., a conjugate
linear endomorphism β of V such that c / 2 = id. The representation φ is of
symplectic type if it comes from a quaternionic representation by restriction of
scalars, or equivalently if there exists an invariant symplectic structure, i.e., a
conjugate linear endomorphism of V whose square is minus the identity. One
says that a representation is of complex type if it is neither real nor symplectic.
Note that real and symplectic representations share the property that there exists
a non degenerate invariant bilinear form on V. For this reason they are also
called self dual. On the other hand, an irreducible representation of a complex
Lie algebra I c on a real vector space is of complex or symplectic type if it comes
from a complex representation by restriction of scalars. Otherwise it is of real
type.

If φ : K —> O( V) is of real type we will consider the orthogonal represen-
tation φR on the real part VR of V, i.e. the + l-eigenspace of /. In the complex
or symplectic case we will regard V as a real vector space (and when we want to
stress the difference between regarding V as a complex and a real vector space we
will write [φ]R in the latter case).

For representations of real type the following lemma [5] describes the real
part of the representation space explicitly

LEMMA 2.1. Let φλ be an irreducible representation of real type of highest
weight λ, {p} the set of its positive weights and let {xp,ι} be a union over unitary
bases of the weight spaces of the positive weights. Then

{Vp,t = Xp,t + /*/>,!, W/M = KXP,ι - fXP,ι)}

is a basis of VR, the -\-l-eigenspace of β. Moreover X^β = —/X_aί and

Recall that K is finitely covered by a compact Lie group K = K\ x --x
Kι x Tm, where any Kx is simple and Tm is an ra-dimensional torus, φ induces
a representation φ of K having the same orbits as φ. Thus without loss of
generality we will assume that K = K\ x x Kι x Tm.
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If φ is of real type then Tm lies in the kernel of φ. Thus, if φ is effective,
then K = K\X'"XKι.

If φ is of complex or symplectic type, then φ\τm has a one dimensional
kernel. Hence, if φ is effective, then K = K\ x •• x_Kι x Tι. In this case φ
is the external tensor product of a representation φ of the semisimple Ks =
K\ x " - x Kι and a one dimensional representation of Tι given by multiplication
by eιθ (which we will denote by eιθ). Hence φ — φ® eιθ and, if φ (considered as
a real representation) is irreducible, φ is also.

Let t be a Cartan subalgebra of fc and denote by <, > an invariant inner
product of ϊ (note that, on each simple factor of I, by Schur's Lemma, it coincides
up to a constant with the negative of the Killing form of K). Let Σ = {α} be the
set of roots of ϊ c with respect to t and the coroot Ha be given by <i/α,i/> =
(x(H), for any H e t

Recall that there exists a basis of ϊ c , {//α, Xα,Z_α}, with

<Xα,X_α> = l and [XaiX^}=Ha.

We will call such a basis a Chevalley basis.
One can obtain a description of the Lie algebra ϊ of the compact Lie group

K in terms of root vectors. This can be done as follows. Let to denote the real
subspace of t consisting of the real linear combinations of the coroots Ha. The
Lie algebra ϊ of K is then spanned by /to, Xa — X-a and i(Xa + X-a), where Xa e
t c is a (suitable) root vector (see for instance [13]).

Suppose now that φ has highest weight λ. In this case we will put an
index λ, writing φλ and Vχ and often will denote the representation as well as
the representation space by Vχ. Moreover we will often write X v instead of
φλ(X)v9 for Xel ve Vχ.

Let vχ be a highest weight vector of φλ and let U(lc) denote the universal
enveloping algebra of lc. Recall that

Vλ = U(tc) υλ = £/(n") υλ,

where n~ is the (nilpotent) subalgebra of l c generated by X-γ, γ e Σ + (see, e.g. [10]).
We now come to the definition of k(λ). Dadok [6, Proposition 7] proved

that there exists a system (9 — {βx,... ,/?7} of strongly orthogonal positive roots
such that so — Sβλ Sβ2 Sβι is the Weyl group element mapping the positive Weyl
chamber into its negative.

Note that so(λ) is the smallest weight [1, Remark 2, p. 127]. Moreover if φλ

is self dual (i.e. either real or symplectic) then s$λ = — λ [1, Chapitre VIII,
Proposition 12, p. 132].

Let ι?Joμ) be a weight vector relative to so(λ).

DEFINITION. k(λ) is the smallest integer such that vSQ^ e Uk^(tc) vλ and
vSo(λ) Φ Ur(tc) vλ for any r < k(λ).

The system Θ of strongly orthogonal roots can be used to decide whether φλ

is of real, symplectic or complex type. Moreover one can give a formula for
k(λ). Namely
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PROPOSITION 2.1. (i) φλ is complex if and only if λ φ
(ii) φλ is of real (resp. symplectίc) type, if and only if λe span^l/^,.../?/} and

k(λ) is an even (resp. odd) integer.
Moreover

and, in case φλ is real or symplectic,

where <, > is any t-invariant inner product on I.

Proof The proof of the property that φλ is complex if and only if λ does
not belong to span^/Jj , . . . ,β{\ and real or symplectic elsewhere, can be found
in [6, p. 131] (this is actually in the same vein as [1, Chapitre VIII, Proposition
12, p. 132] or [13, p. 142]).

We now prove (1) and (2). Since so = Sβx •Sβ2" Sβι we have that soλ =

* - Σ A A τ h u s vSQλeU^bί(lc) vλ and that υ^φ Ur(lc)-υλ for any

r < Σι bi. Moreover

bi~ <A,A>
thus by definition

and if λ is self dual (2) follows from the fact that so^ = —λ. q.e.d.

Next we recall some notions of submanifold geometry. Let M be a
submanifold of Rn. The d-th osculating space of M at p is the space Θp{M)
spanned by the first d derivatives in 0 of curves γ : (—ε,β) —> M with y(O) = p.
Note that ί^(Af) = TPM. Now let p : K -> O(Λ) be a representation that we
assume to be irreducible and let M be an orbit of K. Since p is irreducible, for
any p e M there is a natural number h, called the degree of the orbit, such that
Θ^(M)=Rn. Remark that %\g)(M) - p(g)Θ£(M), hence if Θ*(M)=Rn for
some p e M, then ΘJ}(M) = 1?" for all qe M. Notice also that there is a natural
number d such that θf(M) = Rn (p e M) for all orbits M of />, and let d(ρ)
denote the smallest of such numbers d. In other words d(ρ) is the smallest
number such that all orbits have degree d(p).

We will denote by (Θj) the class of irreducible orthogonal representations
p such that d(p) = d. Notice that the smallest d for which {Go) is nonempty is
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d = 2. From the point of view of submanifold geometry the complexity of the
orbits of p grows as d(p) gets larger.

The classes of representations we have mentioned in the Introduction (polar,
s-representations, with all orbits taut) all belong to (Θ2) if we restrict ourselves
to irreducible representations. To see this one has to use the following result of
Kuiper [12, Theoreme 2]. Let M be a taut submanifold in Rn that is full in the
sense that it is not contained in any hyperplane. Then there is a point p e M such
that Θp(M) = Rn. This is for example true for every point p e M that is the
maximum of a distance function. Thus, in particular, we get that any irreducible
polar representation belongs to ($2).

Recall that a properly embedded submanifold M of Rn is said to be taut
if for almost all x e Rn the distance function dx : M —> R; p —> d(x,p)2 is a Z2
perfect Morse function (i.e., the Morse inequalities with respect to Z2 are
equalities).

We now consider an irreducible representation φλ: K —> O(V). If φλ is of
real type we will say that it belongs to (Θ2) if φf does.

The definition of osculating space and a computation shows the following

LEMMA 2.2. Let λ be a highest weight, and vχ a highest weight vector.
Suppose φλ is of class ($2)-

(i) If Vχ is of real type, then U2(lc) vλ + U2(lc) υ.λ = Vχ.

(ii) If Vχ is of complex or symplectic type, then U2(tc) vχ = Vχ.

The proof can be found in [5, Lemma 3]. For representations of real type,
one needs Lemma 2.1.

More in general, if φλ is of class (Θd), then Ud(ΐc) vλ + Ud{tc) v.λ = Vχ,
if Vχ is of real type, and Ud(lc) vχ — Vχ, if Vχ is of complex or symplectic type.

Next we use Lemma 2.2 to show the following

THEOREM 2.1. Let φλ be an irreducible faithful orthogonal representation
belonging to (Θ2) (e.g. an irreducible polar representation). Then

(i) if φλ is of real type, k(λ) < 4;
(ii) if φλ is of complex or symplectic type, k(λ) < 2.

Proof First we give a geometric interpretation of the property expressed
by the Theorem. Recall that, if α is a root, p is a weight, X belongs to the root
space relative to α and vp is a weight vector relative to p, X vp belongs to the
weight space Va+P, if it is not zero. Said in another way, the action of a X in the
root space relative to α can be interpreted as a translation in the weight diagram
shifting each of the dots (corresponding to the weights in the weight diagram)
over by α. Hence the geometric meaning of the Theorem is that one can reach
—λ from λ in at most 4 steps, in the real case (and in 2 steps in the other cases).

We shall now give the proof of (i). The other part is similar and actually
easier. Recall that if φλ is real, k(λ) is even. Thus if at least 6 steps would
be necessary to go from - 1 to 1, by symmetry reasons there would exist a
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weight μ lying on the wall of so which is 3 steps far from both —λ and λ. So

any vμeVμ could not belong to U2(tc) vλ + U2(ΐc) v-χ. But by Lemma 2.2,

U2(tc) vλ + *72(ϊC) ϋ_λ - Vλ. q.e.d.

Remark. Theorem 2.1 implies that if φλ : K —• O(F) is any representation
of real type belonging to (©2)5 then AT has at most 4 simple factors and that if
φλ is symplectic or complex, then K has at most 2 simple factors. These results
were proved in [5].

Observe also that Theorem 2.1 generalizes to (irreducible, faithful) ortho-
gonal representations of class (Θd). In that case we have that, if φλ is of real
type, k(λ) < Id and, if φλ is of complex or symplectic type, k(λ) < d.

3. Symmetric weights

Wang and Ziller found very strong connections between the isotropy rep-
resentations of irreducible symmetric spaces and their highest weights [16], cf.
also [14]. In this Section we want to relate them with the conditions of sym-
metry of the highest weight and with the maximality of k(λ).

As a start we give the following

DEFINITION [6, p. 128]. A highest weight λ of a simple Lie algebra ϊ c is
called symmetric if all non zero </l, α>, α e Σ + are equal. Here <, > is a (uniquely
defined up to a simple factor) I-invariant inner product on ί. A highest weight
of a semisimple I c is called symmetric if it is symmetric for each of its constant
factors.

Note that, for semisimple ίc one can rescale on each simple factor a !
invariant inner product <, > on I so that all non zero <λ, α>, α e Σ + are equal.

Next, we recall the results in [16] we refer to.
The first establishes a condition for the highest weight of the (complex)

isotropy representation of a compact irreducible symmetric space.

THEOREM 3.1 [16]. Let M = G/K be a compact irreducible symmetric space
with G the identity component of the full isometry group of M and without
euclidean factors. Let B be the negative of the Killing form of G and λ the highest
weight of its (complex) isotropy representation. Then

(3) B(λ,λ) = 2B(λ,aι),

for any positive root α of I such that B(λ, α) φ 0 and 2λ — α is not a root.

As a consequence we get that, if 2λ — α is not a root for any root α such that
B(λ, α) φ 0, then the highest weight of an s-representation λ is symmetric.

Remark. If φ is of real type and k(λ) is 4, then 2λ — α is never a root,
[6, proof of Lemma 11, p. 1311.
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If φ is of complex type and k(λ) is 2, then λ + λ* — λ — so(λ) is never a root.
This follows immediately since λ + λ* = βt + βj for some βhβj e Θ and the sum of
two strongly orthogonal roots is never a root.

Wang and Ziller obtained a refinement of the above formula (3) for
Hermitian and quaternionic symmetric spaces. Namely:

(i) If G/H £7(1) is Hermitian symmetric other than the complex projective
spaces, with isotropy representation [φχ]R = [φχ> ® CIΘ\R> t n e n B(λ,λ*)=0 and
B(λ', λ') + B(λ', λ'*) = 2B(λf, α), where α is any simple root of H with B(λ\ oc) # 0.

(ii) If G/H - Sp{\) is quaternionic symmetric other than the quaternionic
projective spaces, with isotropy representation φ ® C = φλ = φλ> ® V2 or φ (x) C =
^ © ^* = [^, 0 φ*,] (g) v2, then B(λ',λf) = (3/2)B(λ',0L)9 where α is any simple
root of if with £ ( / , α) φ 0.

Here and below vι is the two dimensional representation of Sp{\).
Conversely Wang and Ziller proved that the above identities actually

characterize the isotropy representations of irreducible symmetric spaces, among
all irreducible representations of compact Lie groups. Namely

THEOREM 3.2 [16]. Let φλ:K^O(V) be a faithful irreducible complex
representation of a semisimple, compact, connected Lie group K with highest weight
λ, and let <(,) be a l-invarίant inner product on I.

(a) If φχ is of real type and <(/l, λy = 2<A, α), for every simple root α of K with
ff

A, α) φ 0 then φf is the isotropy representation of a compact, simply connected,
irreducible symmetric space, except in the case ((72,^7), where φΊ is the 7-
dimensίonal representation of G2.

(b) If φλ is of complex type {hence φλ φ φ*λ) and (λ,λ) + CM*> = 2<λ,α>,
for every simple root α of K with <A,α> φO then (K U(\),[φλ® eiθ]R) is the
isotropy representation of a compact, simply connected, irreducible hermitian
symmetric space.

(c) If φλ is of symplectic type and <A, λ} = 3/2<Λ, α>, for every simple root α
of K with <A, α> ΦO then (K Sp(l),φλ ® V2) is the isotropy representation of a
compact, simply connected, irreducible quaternionic symmetric space.

We suppose now that λ is symmetric and k(λ) assumes the maximal value
for representations of class (Θ2).

The following Lemma, together with Theorem 3.2 above, yields a first proof
of Theorem 1.1.

LEMMA 3.1. Let φλ be in the same hypothesis as in Theorem 3.2.
(a) If φλ is of real type, k(λ) = 4 and λ is symmetric then <λ, λ} = 2<A, α>, for

every positive root oc of K with <A, α> φ 0.
(b) If φχ is of complex type, k(λ) = 2 and λ is symmetric then <A, A) + <λ, A*>

= 2<A, α), for every positive root oc of K with <A, α) Φ 0.
(c) If φχ is of symplectic type, k(λ) = 3 (thus in this case φλ φ (^2)!) and λ is

symmetric then (λ,λ} = 3/2<A, α>, for every positive root oc of K with </l, α> ^ 0.
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Note that in case (c) φλ ® V2 is of real type, its highest weight λf has
k(λf) = 4. Thus (c) is a special case of (a).

Remark. We have the following generalization of Lemma 3.1. If φλ is
of real type, k(λ) = Id and λ is symmetric then <A, λ} = d(λ, α>, for every posi-
tive root α of K with <Λ, α> φ 0. If φλ is of complex type, k(λ) = d and λ is
symmetric then </l, λ} + <λ, Λ*> = </<λ, α>, for every positive root α of AT with

α,α>#o.
Proof, (a) If &(/ί) = 4, then 2/1 = βι+β2+β3 + β 4 , for β e © not neces-

sarily distinct. If λ is symmetric, then <λ, α> = <λ,/?z > for any positive root α
such that <A, α> # 0 and any i — 1,..., 4 fixed. Then

(b) We remark first that λ* = -so(λ) [1, Chapitre VIII, Proposition 11, p. 13].
Thus, if k(λ) = 2, then λ + λ* = λ - so(λ) = βx + β2 for β e Θ not necessarily
distinct. Thus, since λ is symmetric,

α, A> + α v > = <A+r,λ> = <λj{ +^2> - 2α,^> = 2<λ,α>,

for any positive α with <A, α> 7̂  0.
(c) If k(λ) = 3,2λ = βx+β2+ β3, for βt e Θ not necessarily distinct. If λ is

symmetric, then

for any positive α with <A, α) φ 0. q.e.d.

Observe that in case (a) the highest weight μ of the representation φΊ of G2
has k(λ) = 2. Hence the conditions of Theorem 1.1 do not hold.

Thus Lemma 3.1 gives a proof of Theorem 1.1, using the results in [16].
However the proof in [16], when φλ is orthogonal and K is not simple, is case
by case and uses the classification of symmetric spaces. Thus we will give a
conceptual proof for this case. If φλ is complex, we will show that K is simple.
Thus we will use Theorem 4.6 in [16] which has a conceptual proof (cf. also [9]).

As a start, we prove the following

LEMMA 3.2. Let φλ be an irreducible representation, not of symplectίc type, of
a semisimple compact Lie algebra I with λ symmetric. Assume that k(λ) = 4, if φλ

is of real type and k(λ) = 2, // φλ is of complex type. Then
(a) for any simple factor Iz of ϊ there exists a unique simple root on1 which is

not orthogonal to λ;
(b) any positive root of% has either 0 or 1 as coefficient of' aι

h in its expression
as a linear combination of simple roots;

(c) // λι is the highest weight of φλ^ then λt is an integral multiple of a
minuscule weight of%. Moreover the coefficient of proportionality equals λ(Ha,).
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Remark. More in general the present Lemma holds if k(λ) = Id and φλ is
of real type or k(λ) = d and φλ is of complex type.

Proof, (a) Let α and β be simple roots (chosen in the same simple factor)
such that </l, α> φθ and <Λ,/?> ^ 0. Then, by [7, p. 266] there exists a mini-
mal chain of simple roots αi = α,α2,... ,α r =/? connecting α and /?. Let 7 =
α H hα r. Then y is a root of ! and <λ, y> φ 0. In the real case we have
that, since λ is symmetric

On the other hand, <λ,λ> = 2<λ,y> = 2<λ,αi> + ••+ 2<λ,αr> > 2<λ,α> +
2</l,y?> = 2<Λ, Λ>, which is clearly a contradiction.

In the complex case one gets similarly a contradiction from (λ + λ*,λ} =

(b) We know by (a) that for any simple factor % of f there exists a unique
simple root ocj. not orthogonal to 1. On the other hand, if we denote by
0Lι = ΣakV-k tne maximal root of fz, we have

Then α1 has coefficient 1 in ocj. in its expression as a linear combination of simple
roots. But, in general, for any root of lt, β

1 — J2^k^ι

k we have b^ < α&, thus we
get (b).

(c) By (a) λt = miWjn where m\ is an integer and ωji is the fundamental
weight of tt corresponding to the simple root aι

jr On the other hand, by (b) the
maximal root ccι has coefficient 1 in α1.. Thus by [1, Chapitre VIII, Proposition
8, p. 128] coj. is a minuscule weight. Moreover λ(Ha,) = λi{HΛι) = m/. q.e.d.

NOTATION. In any simple factor ϊ; the system of simple roots will be
denoted by α{,...,α/., with /z the rank of lt. The unique simple root not or-
thogonal to λ will be denoted by oίι

jr

Observe that k(λt) = mI fc(ω//).
Next we deal with the case of representations of real type.

If k(λ) = 4, λ(Ha,) < 4 and λι is a sum of k(λt) strongly orthogonal positive

roots, so we have the following cases:
(1) mι = 1 for any i = 1,...,/. Then λ is a sum of minuscule weights (each

for any simple factor).
(2) πii = 2 for one ί. Then if k(ωj.) — 2, ϊ is simple of types 2?/ or Dι (and

λ — 2co\; here and below we use the notation of [1] for the fundamental weights).
If k(μ>j.) = 1, then, if ϊ has 2 simple factors, f is of type A\ + Bι or A\ + Dι and
λ = 2ωi + ωi, if ϊ has 3 simple factors it is of type A\ + A\ + ̂ 4i and λ = 2ωi +
ωi + ω i .

(3) Aw, = 3 for one i. Then k(ωJ i) = 1 and ϊ is of type A\ + A\ with λ —
+ ω\.
(4) mz = 4 for a (unique) i. Then ϊ is simple and of type A\, λ = 4ω\.
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Like in [16], we give the following decomposition of the second exterior power
of ψλ:

where χ is the isotropy representation of SO(Vχ)/φλ(K). We will compute the
irreducible components of χ (with respect to K).

Our goal is to prove that there exists a non trivial ϊ-invariant curvature
tensor R on Vχ with values in φλ(t) <= &o(Vχ) = A2Vχ. Then, as we will ex-
plain below, the classical Cartan's construction yields a conceptual proof of
Theorem 1.1.

By a f-invariant curvature tensor Λ on Fi we mean a (4,0) tensor on Vχ
which is invariant by the naturally induced action of f on the space of (4,0)
tensors and has the same algebraic properties as the Riemannian curvature
tensor. It can be easily seen that such an object identifies with a f-invariant
element of the second symmetric power of A2Vχ, S2A2Vχ. More precisely, if &
denotes the space of such curvature tensors we have the decomposition

with M the space of f-invariant curvature tensors.
The Cartan's construction can be summarized as follows (cf. [16, Lemma

4.1]). Let R be a non trivial l-invariant curvature tensor with values in φλ(ΐ) a
so(^i) = A2Vχ. Then the vector space g = f 0 Vχ can be made into a Lie algebra
by defining

, Xel,υeVλ,

[v, w] = Y el, where φλ{ Y) — —R(v, w), w, v e Vχ.

Our strategy is then to show that our strong assumptions on λ (i.e. λ symmetric
and k(λ) = 4) imply that there exists such a curvature tensor. To do this we
deduce from the decomposition of A2Vχ into irreducible summands, the di-
mensions of the space of f-invariant elements in *S2Λ2 Vχ = A4 Vχ © M. Roughly,
we show that d i m ^ is big enough so that a linear combination of f-invariant
curvature tensors yields a non trivial one having values in φχ(ί).

This technique was first used by Kostant if the space of f-invariant tensors

in A4Vχ, (A4Vχγ, vanishes [11], and in case χ is irreducible in [16].
The following lemma gives the decomposition of A2φλ into irreducible

components, by describing the highest weights of the irreducible components of χ.

LEMMA 3.3. The highest weights of the irreducible components of χ are
2λ — αj., where OL1 is the unique simple root in the simple factor tt which is not
orthogonal to λ.

Note that, as a consequence, we have that, if f has / < 4 simple factors then
ad\ has / irreducible components and χ has / irreducible components.
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Proof. If X is not a sum of minuscule weights (each for any simple factor),
one can check the Lemma directly. This corresponds to the few cases mentioned
above ((2), (3) and (4)).

Next we consider the case of X sum of minuscule weights. Recall that this
implies that, for any simple factor ϊz, the weights of φλ^ are a single orbit of the
Weyl group of %. In particular, all weights have multiplicity one and have the
same length.

If </ί, α> Φ 0, then X — oc is a weight and <Λ, X) = (λ — α, λ — α>. Thus
<Λ,5 Xy = <α, α>. Moreover X — 2α is never a weight. If, in addition, X — α - /? is
a weight with a Φ β in the same simple factor, α + β not a root and <A, α> =
<λ,/?> # 0, then an easy computation shows that <α,/?> = 0, i.e., that α and β are
strongly orthogonal. So we may assume that ot,βeΘ.

Hence, if 2X = βλ -I- β2 + y?3 + y54, the possible highest weights of χ can be of
the types

2X-a^ 2X~βn 2X-βr-βs.

On the other hand, 2X — αj has clearly multiplicity one in χ. We are thus
left to show that for βnβs both in ll9 2X-βr and 2X-βr-βs belong to the
irreducible component F2/ί_α/ of χ having 2X — a1 as highest weight. But this is
clear, since they have the same multiplicity in Λ2φλ and in q.e.d.

Next we observe that since ad\ ® χ has 2/ irreducible components, by Schur's
lemma, the space of ϊ-invariant tensors on S2A2Vχ = S2(adχ ®χ) has dimension
2/, i.e.

ά\m{S2{adχ@χ))1 = 21.

Thus a f-invariant curvature tensor R e 0$ can be written as a matrix of the
following form with respect to the decomposition of Λ2 Vχ = ad\ 0 χ into irre-
ducible summands

/a\l \

ail

bil

\ 0

f component and the bj in the χ component. (Actually,
of S2A2Vχ with the corresponding symmetric endo-

where the αz are in the
we identify an element
morphism of A2Vχ.)

Hence, in order to have a non trivial invariant curvature tensor with values
in ϊ we need to have at least / + 1 independent invariant curvature tensors in ^ ,
i.e., we have to prove

> / + 1 or dim(Λ4KA)f < / - 1.
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To this purpose we proceed like in [16, pp. 308-309]. We choose in each simple
factor a Chevalley basis, take weight vectors υχ and v-χ such that (yχ,υ-χ) = 1
and set

)vλ, υa,_λ = φλ(Xaj)υλ.

Then (by [16, p. 308]) we have <vλ_a,, va, _λ) = -<A, α? >. We denote by prt(prti)
j Ji Ji J ι

the orthogonal projection from Λ Vχ to 1(1,) via the embedding φλ. As in [16]
one can prove that

prφx A υ-λ)=Hι

λ,

Fί,(^-αί. Λ Vaj_λ) = -(λ

prφχ A va,_λ) = -{λ.a^y

A v_λ) =

Let η e (A4Vχγ, then it can be written as a matrix in the same form as (R).
Since η is a 4-form we have that the quantities

η(vhυa,_λ, υλ_^, ϋ_λ) = - α , <λ,α^)2 + ftf<λ,α^Xl 4-

y

are all equal. The equality between the first and the second gives rise to the
equations

bi = ai(λ,*ι

J)-bi{\ + (λ,*ι

J)), i = l , . . . , /

i.e., to / independent equations.
The equality between the second and the third yields at least one more

linearly independent condition. This proves that dim(Λ4Ji) f < /— 1.
Now we deal with the case of representations of complex type.
Let φλ be an irreducible representation of complex type of a compact

semisimple Lie algebra ϊ. Consider the splitting

φλ®Φl = l®adχ® χ,

where 1 is the trivial representation and / is the isotropy representation of the
homogeneous space SU(Vχ)/φλ(K).

LEMMA 3.4. Let φλ be an irreducible representation of complex type of a
compact semisimple Lie algebra ϊ with λ symmetric and k(λ) = 2. Then

(a) either I is simple or t = su(m) 0 5u(m;) and φλ is the external tensor
product of the standard representation of%u(m) on Cm and the dual of the standard
representation of δu(mr) on Cm
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(b) ift is simple, then χ — φλ+λ* [in particular, χ is irreducible), A2φλ = φ2λ_aι

(with oίi is the unique simple root not orthogonal to λ).

Proof, (a) We already know that either f is simple or it has two simple
factors. In the latter case, φλ is the external tensor product of two repre-
sentations φλι of the two simple factors Ii and l2, with k(λt) = 1, λι symmetric
and λ + λ* = βλ + β2. Thus, by the classification of simple Lie algebras, we must
have f, of type Aι.

(b) By Lemma 3.2 (c), if ! is simple, then λ = miCύi is a integral multiple of
the minuscule weight ωz corresponding to the unique simple root α, not ortho-
gonal to λ. Moreover w, = λ(Haι) = 1. Indeed, if λ — 2α, would be a weight
we would have that λ + λ* = 2αz and thus the only possibility would be that ϊ is
of type A\ and λ = 2ω\, but in this case φλ is not of complex type. Thus λ = ω,
and all weights have multiplicity one and the same length.

If <A, α> φ 0, then λ - α is a weight and </l, λ} = <A — α, λ — α>. Thus
(λ + λ*,λ} = <α, α>. Moreover λ — 2ct is never a weight. If, in addition, λ —
OL — β is a weight with a + β not a root and <A, α> = (λ,β} Φ 0, then an easy
computation shows that <α,/?> = 0, i.e., that α and /? are strongly orthogonal.
So we may assume that oc.βeΘ.

Then if λ + A* = βι + β2, the possible highest weights of φλ ® φ\ are of the
form

λ + λ* or λ + λ*-βr or λ + λ*-βr-βs.

On the other hand A + λ* is a highest weight of/ with multiplicity one in φλ (x) ^
and we have that λ + A* — β{ = β2 and λ + λ* — βx — β2 = 0 are highest weights
of ^ (x) ̂ ^ which belong to ad\ and 1 respectively. Then, proceeding like in the
proof of Lemma 3.3 it is possible to prove that χ is irreducible with highest
weight λ + λ*.

The highest weight 2λ — oci has multiplicity one in A2φλ. Hence, like in the
proof of Lemma 3.3, one gets that A2φλ = φ2χ_0Lr q.e.d.

We can now apply Theorem 4.6 in [16]. This completes our proof of
Theorem 1.1.

Final remark. As already observed many properties of irreducible represent-
ations with λ symmetric and k(λ) = 2d, in the real case and k(λ) = d otherwise,
are similar to the ones in the special case d — 2 (Lemma 3.1 and 3.2). It would
be interesting to give a geometric characterization of these representations in the
general case.
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