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ON RECURRENCE FOR SELF-SIMILAR ADDITIVE PROCESSES
Kouit YAMAMURO

1. Introduction

In our paper a stochastic process is called an additive process if it is a
stochastically continuous process with independent increments and has right-
continuous sample functions with left limits a.s. Self-similar additive processes
constitute an important class of additive processes which are not assumed to be
time-homogeneous. But they have not been studied except in some papers,
e.g. [2], [3], [4], and [5]. We investigated their transience and recurrence in [3]
and [5]. The dichotomy of recurrence and transience for this class of processes is
known (see [3]). But a criterion for recurrence and transience has not been
found. As an important example, there is a strictly stable process on R?, which
is a self-similar Lévy process, that is, a self-similar time-homogeneous additive
process. It is recurrent if its index « satisfies max{l,d} <o <2, where its
exponent is o~! if we regard it as a self-similar additive process (see the definition
below). So we attempted to find a new method to prove recurrence for strictly
stable processes with index max{l,d} < a <2 without using time-homogeneity.
We succeeded in our attempt and we could find recurrence conditions showing
great differences between self-similar additive processes and Lévy processes. We
note that this problem cannot be solved by using the existing methods because of
the difficulty caused by the fact that the expected occupation times on open sets
containing 0 cannot determine recurrence (see [3]).

A self-similar additive process is defined by the following.

DEFINITION. A stochastic process {X; : ¢ > 0} on R?, which is defined on a
probability space (Q, %, P), is called a self-similar additive process, or a process
of class L, with exponent H > 0 if it satisfies the following conditions:

(i) {X.} and {c¥X,} have the same finite-dimensional distributions for every
c>0,

(i) X, — X4, Xy, — Xyy,..., X, — X,,_, are independent for any » and any
choice of 0 <ty <t <t < - <ty

(iii) almost surely X, is right-continuous in ¢ > 0 and has left limits in ¢ > 0.

Throughout this paper let {X;} be a self-similar additive process on RY with
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exponent A. Note that it is stochastically continuous and Xy =0 a.s. Let D =
{xeR?:|x| <1}, S={xeR?:|x| =1}, and 1p(x) be the indicator function of
D. Then {X,} has the following characteristic function:

Eeia X — gtz Xi)
= exp [ — 17V Az, 2> + it (y, 2>

k0,

0

+J a(dé) r(e“’”“”@ — 1 —it"{z,rE1p(r))
S

for ze R%, where A is a symmetric and nonnegative matrix, yeRY, o is a
probability measure on S, kz(r) is nonnegative, nonincreasing right continuous in
r and Borel measurable in £ and

J a(dé&) ro min{r, 7 }ke(r) dr < .
N 0

For any random variable Z we denote by P the distribution of Z, and by P(z)
the characteristic function of Pz. We have the following main results.

THEOREM 1.1. Let d = 1. The process {X,} is recurrent if it satisfies one of
the following:

(i) 4+#0,

(i) k(r) —@(1/r) is nonnegative and nonincreasing on (0,¢) for some & >0,
where k(r) =k (r) +k_1(r) and ¢(r) is a nonnegative strictly increasing convex
Sfunction on (1/¢, o).

THEOREM 1.2. Let d = 2. If the rank of the matrix A is 2, then the process
{X:} is recurrent.

Remark. When d = 2, there is a transient self-similar additive process such
that the matrix 4 has rank 1. For example, {X,} is transient if X; is full and
has the following characteristic function: Suppose that

J o(dE)ke (0+) < oo

S

Pa(z) = exp [—2-‘<Az, i) + | ode) jw<e’<zﬂrf> D&
S 0

where y, = (ym)’ c1,62€R, and 4= <c1y01 Czym). In fact {IIRX,} is
Y02 C1%02  €2Y02
transient according to Theorem 1.1 in [5], where the 1 x 2-matrix IT is equal to
(1 0) and R is a rotation matrix such that the first coordinate of Ry, is 0.
Our theorems show differences between a self-similar addititve process and a
Lévy process, that is, when the two processes have the same distribution at time
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1, there is a case where one of them is recurrent and the other is transient. For
example, let {B,} be a d-dimensional Brownian motion and let y #0. If d <2,
then {B; ++/ty}, which is a self-similar additive process with exponent 27!, is
recurrent by the above theorems. On the other hand we know that the Lévy
process {B;+ ty} is transient (see [1]).

2. Proofs
Let

d
£(x) = [ [ max{1 - |x},0}.
=1
Then ’
| reoax=1,
Rd

and the Fourier transform of f is

jo = e reax=] (5 _2_”/)2.

J=1

We note that
1

~ 2n)?

Sf(x) JRd e OO (2) dz.

Define ., .,
an ="y kM W,=a' " f(X).
k=1 k=1

We will show two facts:

(2.1) lim EW, >0,
n—oo
(2.2) sup E[W?] < oo,

for some H with 0 < Hd < 1. Then the recurrence of {X;} is shown in the
following way. As (2.2) implies the uniform integrability of {W,}, we have

E[Iim sup W,,] > lim EW, > 0.
n—o0 =0

Hence we have

P(}L@O if(Xk) = oo) >0
k=1

and {X;} is not transient. Therefore it is recurrent by Theorem 3.2 in [3].
The proof of (2.1) and (2.2) will be complete in Lemma 2.3.
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LemMa 2.1. Let 0<f < 1.
(@) I v>B >0, then we have lim,_.., 1, j7(3"_ i)~ =0.

(ii) We have sup,>,> i<, <p<n i Ga - jx)_ﬁ(27=1 JP < oo
Proof is omitted.
LemMma 2.2. Let Hi<1. If

Ld |2| |Px, (2)| dz < oo,

then we have

1 .
lim Ean—J Py, (z)dz > 0.
n—coo (27‘[)d RY X ( )
Proof. Let c¢y= fRd Py, (z)dz. We have c¢o>0. Indeed, the
support of Py, is R!, because fo r)dr > fo (1/r)dr = oo and it is shown from

the general theory of infinitely d1v151ble dlstrlbutxons (see [1]) under the as-
sumption of Theorem 1.1(ii), and because Py, is the convolution of a Gaussian
distribution and some distribution under the other conditions. Hence, since Py,
is unimodal by Yamazato’s theorem [6], its density is positive on R!.

We have

|EW, — co| < Zk"”" \KHEf(Xy) — col = Jn,  (say).
Z k—Hd =
k=1

Since

KHEf(X,) = kﬁdj f(x)dx
Rd

. 1
- (2n)?

1 -z, x> P

J S dxf €O Py (2) s,
R R

we obtain that

1 " 1 . )
Jn < n J. X dxj e—l(z»k xy _ 1P (= dz
S k—Hd £ kHa (2m)? Rdf( ) Rdl [|Px, (2)]
k=1
1 " 1 o
< dJ df(x)de dlz]k x| | Py, (z)| dz
R R

Xn: J—Hd k=1 kHd(2n)
k=1

n n
= const. x Z kH@+) <Z k*Hd)
= =

Hence, from Lemma 2.1(i), we have lim,_ J, = 0. O

-1
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LemMa 2.3. If H = 27! under the assumption of Theorem 1.1(i) or Theorem
1.2, or if H =1 under the assumption of Theorem 1.1(ii), then we have (2.1) and
(2.2).

Proof. Under the assumption of the lemma we have [ga |z||Px, (z)| dz < oo,
which is proved even under the assumption of Theorem 1.1(ii) in the same way
as in the proof of the inequality (2.3) shown later. Hence we obtain (2.1) from
Lemma 2.2.

Let j, > j,. Using the Fourier inverse transformation of f, we have

Ef(X,)f(X,) = E[f (X, )ELf (X, — X, + %)y |
——1 £ D ~ -
= 20 JRdf(Z)PX,Z—XJ, (z)dz JRdf(y)PXn (y+2)dy

1
S —_—
ji (2m)*

Here we have used self-similarity.
Therefore, in order to show (2.2), it suffices to prove boundedness of

n n -2
L= Ef*(X,) (Z jr”")
n=1 n=1

[ 1Py, Gz | 1Bs ()]
R R

and
. -2
= > jl_HdJ dIPXQ—X,l(Z)le< JTHd> :
1<,<j,n R =l

Since 0 < f < 1, we have limsup,_, I, =0 in view of Lemma 2.2. Hence
sup, I, < co.

Now we shall show boundedness of J,. First we shall consider the case that
the rank of matrix 4 is d. Let H=2"!. We have

-2
n
J, < Z jl—z—ld JR,, =2 Az g, <Z j1_2-1d>

1<) <p=n n=1

-2
_ 1 274y, y) - ._2-1g
= Z T JR" 4 777 dy Z J1 .

2-ld . . \271d
1<j<j<n Ji (J2 —]1) n=1

Hence, from Lemma 2.1(ii), we have sup,J, < 0.
Next we shall consider the case of Theorem 1.1(ii). It suffices only to
consider the case that 4 =0. Let H=1. Now we have

Z .lJRl leJz_Xn (Z)IdZ < Z 'inRI ‘Psz/Jl"Xl (z)[dz.

1<j1<p2<n J1 1<)<j<n J1
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We divide the last integral into two parts according as |z| <1 or |z| > 1.
Suppose that |z] < 1. We have

0
el = e 1 - costen D a] < i
0
Here the constant C; does not depend on z. Since ¢(r) = ¢;¥ — ¢; on (1 /g, 0)

for some constants ¢; >0, ¢; € R!, and 0 < ¢ < ¢, then we have k(r) > c3/r on
(0,&) for some constants ¢; >0 and 0 < & < ¢. Hence we obtain that

|Px,, (2)| = ex J cos(zr) _((jlr/h)r) dr]
e2(52/j1) ;
(2.3) < exp J (cos(zr) — )r; j—? dr]

‘ (2/7)e2lz|
LT
J1 Jo

du
(cosu — l)u—z}.

Since lPX/z/n _x(2)] = |PX2/J. (2)|/|Px, (z)] and |z| j’gz'z' —cosu)u~2du ~ K|z| as
|z| — oo with some positive constant K, we obtain that

I .
2 TiJ]zl<1 Py ()] 42

1<)1<pp<n Ji

C &|z| di
< Z — IJ exp[cslz|J (cosu—l)—g dz
1<) <)p<n J172 iz <pa /i 0 u

1
< const. X -_—.

1<) <pp<n JiJ2
Next Suppose that |z| > 1. Then, since ¢(j,/(j;r)) — o(1/r) = ca(jp/jy — Dr !

on (0,¢3) for some constants ¢4 >0 and 0 < &3 < ¢, letting § = min{es, 1}, we
have

|PX,2/,I—X. (2)| = exp -r)(cos(zr) _ 1)k((f|/jz)rr) — k(r) dr]

< exp -6‘4 J:/IZI(cos(zr) -1) (J_l - 1) 1 dr]

r2

i oo/l
<exp —K1|2|21—2j /1 Jo dr]
1

— exp|~Kolz| J—TL]
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with some positive constants K; and K;. Hence we have

1 .
> 5 j Py, x,(2)|dz
1

1<j<np<n J
1 . _ .
I
1<ji<p<n J1 Y221 J1

Z — .1 - J e Klel gy
J1U2 = J1) e

I<j<p<n

IA

IA

Hence, from Lemma 2.1(ii), we have sup,J, < co. This completes the proof of
Lemma 2.3. O

Example 2.4. Let {X,} be strictly stable with index o satisfying 1 < o < 2.
Letting ¢(r) = cr* for some ¢ > 0, we obtain that {X,} is recurrent from Theorem
1.1(ii).

The following example is pointed out by K. Sato.

Example 2.5. Let ¢(r) = cr* (logr)?, where three constants c¢,«, and B
satisfy one of the following conditions:

(i) ¢c>0,1<a<?2 and feR',

(i) ¢>0, =1, and >0,

(iii) ¢ >0, a=2, and f < —1.
Then, if k(r) =¢(1/r) on (0,¢) for small enough & then k(r) satisfies the
condition of Theorem 1.1(ii).
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