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GEOMETRIC PROBABILITIES CONCERNING LARGE RANDOM
TRIANGLES IN THE HYPERBOLIC PLANE

YUKINAO IsokAwA

Abstract

Concerning a random triangle on a disk Dg of radius R 1n the hyperbolic plane,
the following four geometric probabilities are studied: (i) the probability p,(R) that a
random triangle 1s acute; (ii) the probability p,(R) that a random triangle has the
orthocenter; (iii) the probability p,(R) that a random triangle has at least one of the
three excenters; and (iv) the probability p.(R) that a random triangle has the cir-
cumcenter. It 1s shown that, as R tends to the infimty, both the probability p,(R) and
2,(R) tend to one, whereas the probability p,(R) tends to zero. Moreover it 1s shown
that the probability p.(R) tends to a limit p,, which can be expressed as a certain
expectation concerning a random tniangle in the Euclidean plane. To evaluate this
expectation numerically, we obtan 0.45962039 as an estimate for p,.

1. Introduction

The first problem concerning random triangles in the Euclidean plane is
perhaps the problem “what is the probability that a random triangle is acute?”.
This problem was proposed by [11], and as an answer to the problem, it gave the
probability 4/72 — 1/8, assuming that three vertices of a random triangle are
distributed independently and uniformly in the unit disk. Since that time various
studies have been made on this problem. In [5] five different solutions to
the problem are given. Whereas differences of these solutions reflect those of
meanings on random triangles, they lead to the common probability 1/4. In [10]
one more solution to the problem is given, where three vertices are assumed to
be distributed according as a Gaussian distribution. The answer is again 1/4.
These results are extended in [6] and [3] to the corresponding problem for random
triangles in higher-dimensional Euclidean spaces.

Another problem oncerning random triangles, which has been extensively
studied, is to find the distribution of the area of a random triangle whose three
vertices are uniformly distributed in a given domain of Euclidean spaces. In
(1], for the case that a domain is a triangle in the Euclidean plane, explicit
expressions for all the moments of the area are given. In [2] these results are
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partially extended to the case that a domain is a simplex in higher-dimensional
Euclidean spaces.

Moreover, in the field of random triangles in Euclidean spaces, many other
directions of investigations have been successfully performed (for example, see [7],
(8], and [9]). On the other hand, as long as the present author searches existing
literatures, there seem to be little research on random triangles in the hyperbolic
plane.

In the hyperbolic plane, triangles have somewhat mysterious properties which
those in the Euclidean plane do not have (see [4]). Whereas they always have
centroids and incenters, they do not always have circumcenters, orthocenters
and excenters. Hence a problem arises: with what probabilities does a random
triangle in the hyperbolic plane has these “geometric” centers? This is the
problem which we investigate in this paper.

In Section 2 we consider a random triangle ABC on a disk of radius R and
centered at the origin of the hyperbolic plane, and study probability distribution
of lengths of three sides of the random triangle. We prove that this probability
distribution converges to a limit distribution as R tends to the infinity, and that
the limit distribution has a probability density which can be expressed as a double
integral. In Section 3, we consider the following geometric probabilities:

1. The probability p,(R) that a random triangle ABC is acute,

2. The probability p,(R) that a random triangle ABC has the orthocenter,

3. The probability p,(R) that a random triangle ABC has at least one of the
three excenters,

4. The probability p.(R) that a random triangle ABC has the circumcenter.

About these geometric probabilities, we first show that, as R tends to the infinity,
both p,(R) and p,(R) tend to one, p,(R) tends to zero, whereas p.(R) converges
to a limit p, such that 0 < p, < 1. Moreover we prove that the limit probability
D, can be expressed as a certain expectation concerning a random triangle in the
Euclidean plane. In Section 4 we evaluate this expectation numerically. Our
estimate for p, is about 0.45962039. Roughly speaking, we may say that the
majority of large random triangles in the hyperbolic plane are acute, have the
orthocenters, but have no excenters, and that about 46% of large random tri-
angles have the circumcenters.

2. Limit probability distribution of lengths of three sides of a random
triangle

We begin by clarifying a concept of a random point. Let H?> be a
hyperbolic plane whose metric ds is given by polar coordinate as ds* = dr® +
sinh?rdf, and Dy a disk of radius R centered at the origin O of H2. We say
that P is a random point on the disk Dg when P is uniformly distributed on the
disk. To state precisely, let us denote a polar coordinate of P by (rp,6p).
Then we say that P is a random point on the disk Dr when rp is distributed
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according to a probability density sinhrdr/L on an interval (0, R), where L =
coshR — 1, and 6p is uniformly distributed on an interval [0,2x).

Now we consider a triangle ABC whose three vertices A, B, and C are
mutually independent random points on the disk Dg. To state explicitly, de-
noting polar coordinates of three points A, B, and C by (ra,04), (rs,08), and
(rc,0c) respectively, we assume that

1. ra,0a,r8,08,rc,0c are mutually independent.

2. ra,rB,rc have a common probability density sinhrdr/L.

3. 0a,08,0c have the uniform distribution on an interval [0,27).

In this section we investigate a probability distribution of lengths of three sides
of a “large” random triangle. To state precisely, for a random triangle ABC on
the disk Dg, let us denote lengths of its three sides by a,b,c, and introduce

X __cosha __coshb coshe
L= =T AsT

We study the limit probability distribution of (X, Y, Z;) when L tends to the
infinity. For this purpose, we define the characteristic function of (X, Yy, Z1),

fL(tl, 1y, l3) = E[exp(i(thL +6Yr + t3ZL))].
Then we obtain the following lemma.
LemMa 1. The limit characteristic function

f(t,t, 1) = lim f;(t1, 82, 13)
L—oo

exists and it can be expressed as

@) f(t,0,0) =‘%J2ﬂrnd¢d¢J1J1J1dudvdw

o Jo 0JoJo
-explity (1 — A)ow + itz (1 — pw)ywu + itz (1 — v)uv).

Proof. Without loss of generality, we may assume that the vertex A lies on
the x-axis. We denote the angles which the line segments OB and OC make with
the x-axis by ¢ and  respectively. Then, by hyperbolic trigonometry, we have

L? . X; = cosha = cosh rg cosh rc — sinh rg sinh r¢c cos(y — ¢)
(2.2) L?. Y, = coshb = coshrccoshra — sinh rc sinh 4 cos
L? . Z; = cosh¢ = coshra cosh rg — sinh r sinh rg cos 0.
At this point it is convenient to introduce the following variables:
(2.3) A=cos(Y — @), =cosy,v=cos¢g
and

u=coshra/L,v=coshrg/L,w = coshrc/L.
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Then X, Y;,Z; can be written as

;
/ 1 1

XL=UW—/1 Uz—ﬁ WZ—E
1

1

Yszu—ﬂ\/W2—ﬁ uz—ﬁ

1 1
kZL=uu—V\/uz—ﬁ\/vz—l—z.

Moreover, it is easy to see that all u,v, and w have simply the uniform dis-
tribution on an interval (1/L,1+ 1/L). Consequently, noting that both ¢ and ¥
have the uniform distribution on an interval (0,27), we have

1 (27 (2 1+1/L p1+1/L pl1+1/L
fultstayt) =gz [ [ tbag [ [ dudoat
7= Jo Jo 1/L 1/L 1/L

-exp{in(vw—l\/ﬁ—%\/wZ_l%)
. ) 1 2 1

+ it | wu — [ w Iz u I

+it3<uv—V\/uT—%\/02—%)}

Then, using the bounded convergence theorem, we obtain the lemma.

Let p(x, y,z) denote the probability density corresponding to the charac-
teristic function f(#1,t,#3). From Lemma 1 we can derive the following ex-
pression for p(x, y,z).

LEMMA 2.

24) Jzn Jzn dpdy

Ic(9, )
R A/ e gy

where A,u,v are defined by (2.3) and Ic denotes the indicator function of the set

(2.5) c:{(¢,l/,) :¥<(1—_1,u)_(1/1;v_),§< (1=n0=8 (1—1)(1_,,)}_

1
p(x,y,2) = 82 e

y 1 —u z l—v

Proof. Consider a characteristic function corresponding to the probability
density (2.4):
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5 00 (OO OO )
[l 6) = J J J p(x, y, 2)e X262 dxdydy.
0 Jo Jo

Note that if (¢,y)e C, we can derive x<1—-4, y<l—pu, z<1l—-v. In
particular we have x < 2, y <2, z < 2, which assures existence of f.
Now we change variables

x=1-Du, y=01-pow, z=(1-v)wu
Then we can see that the Jacobian

g—g—vy% =2(1 = A)(1 = @)(1 — V)uow,
and that the condition (¢,y) € C is equivalent to the condition
u<l, v<l, w<l

Accordingly we obtain

~ 1 (> 11 gl

f(h,tr,t3) = WL JO dody L JO JO dudvdw

-expliti (1 — D)vw + ity (1 — wywu + itr3(1 — v)u].

Thus f is identical to f and the proof is completed.

From Lemma 1 and Lemma 2 follows the following theorem.

THEOREM 1. Appropriately normalized lengths of three sides of a random
triangle, (X1, Yr,Z1), have the limit probability distribution as the radius R of
the disk Dg, or equivalently L = cosh R — 1, tends to the infinity. Furthermore its
probability density is given by (2.4).

3. Geometric probabilities concerning a large random triangle

In this section we study geometric probabilities p,(R), p,(R), p.(R) and
p.(R) when R tends to the infinity. Let us denote three sides and three angles of
a triangle ABC by

a=BC, b=CA, c¢=AB,
a=/CAB, p=/ABC, y=/BCA,

and we put x =cosha, y =coshb, z = coshc.

LemMma 3. (i) A triangle ABC is acute if and only if
yz>x, zx>y, Xy>z
(i) A4 triangle ABC has the orthocenter if and only if
3x2y?2? — 2x3yz — 2xp3z — 2xyz% + Y222 + 22X + X2 y? > 0.
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(i) A triangle ABC has the excenter beyond the side BC if and only if
22X/ y2 — IVz22 =1 =2pVz2 — 1Vx2 — 1

—22Vx2 =12 =1+ X2+ y*+ 22 -3 <0.
(iv) A4 triangle ABC has the circumcenter if and only if

X2+ y 422 —2yz —2zx — 2xp + 2x+ 2y +2z—-3>0.

Proof. The assertion (i) is an easy consequence from the cosine formula of
hyperbolic trigonometry. Now we prove (ii). To use the notations used in [4],
as is shown in p. 121 and p. 131 of Chapter 6 of [4], a triangle ABC has the
orthocenter if and only if

(2cosacosBcosy + 1)am? < sin’ o sin? Bsin? y,
where

am? = —16sin2% sin? g cos? %

.o . B y .a . f y
—l—4(sm2+sm2 0082>< sm2+sm2+cosz)

in® _ sin? + cos? ) (sin® + sin® + cos?.
(sm 3 sin 2+cos 2) (sm 2—l—sm 2—I—cos 2).

Then, by a lengthy but elementary calculation, we can show that the right hand
side subtracted by the left hand side in the above inequality is equivalent to

(x? 4+ y* + 22 = 2xpz — 1)?
-(3x2y%2? — 2x3yz — 2xp3z — 2xy2d + Y22 4 22x% 4 x2)P)
/(=1 -1 -1)%) >0,

Thus the assertion (ii) is proved.
Next we prove (iii). As is shown in p. 121 of [4], a triangle ABC has the
excenter beyond the side BC if and only if

LBy o
sm2+s1n2>cosz.

Then, by a similar calculation to that in the proof of (ii), we can show that the
above inequality is equivalent to

xyz+1—x* = y? — 2?)
C(@2xV/y -2 -1 -2V - 1Vx2 - 1
—22Vx2 — 1y/y2 = 1+ + y* + 2% - 3)
H(x* =12 =1)(2-1)) > 0.
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Now, noting that |b—c| < a < b+ ¢, we can easily see that
2xyz+1—x*—y?—z2>0.
Accordingly (iii) is obtained.

Finally we prove (iv). As is stated in p. 118 of [4], a triangle ABC has the
circumcenter if and only if the following three inequalities hold:

..a .. b . .c¢ . b .. ¢ ..a .. .c ..a .. b

smhz < s1nh§ + smhi , smh§ < smhz + smhi , smh§ < smhi + smhz.
Obviously it is impossible that more than one of the above inequalities hold
simultaneously. Now, by doing an elementary calculation again, we get

..a .. b | . ¢ ..a .. .b . ¢
(—smh§+smh§+smh§) (smhz—smhi—i-smhz)
(sinh® + sinh2 — sinh &) (‘sinh & + sinh2 + sinh &
g TSmhy TSIy 2 2 2
1
=—Z(x2+y2+22—2yz—2zx—2xy+2x+2y+2z—3).

Hence immediately follows (iv).

Using the above Lemma 3 and Theorem 1, we obtain the following theorem.

THEOREM 2.
(1) lim p,(R) =1.
R—o0
(ii) lim p,(R) = 1.
R—o0
(iii) lim p,(R) =0.
R— 0

Proof. Since proofs of (i) and (ii) can be carried out in similar ways to that
of (iii), we will prove only (iii). Let p,(R) stand for the probability that a
random triangle ABC has the excenter beyond the side BC. In order to prove
(iii), it suffices to prove that
lim p, ((R) =0
R—ow™ 7
because p,(R) <3p, ;(R).
Now, recalling (2.2), we replace x,y,z in (i) of Lemma 3 by
L?X;,L?Y;,L*Z; respectively. Then we have

Pe1(R) = P{(XL, Y1, Z1) € 4},

where ¢ denotes for 1/L? and
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= {(x,y,z) eR?: x\/y2 —2Vz2 — &2 — yVz2 —e2V/x2 — 2

—zVx2 — g2 y2—82+§(x2+y2+22)—%e3 >O}.

Since

xV/y2 —e2Vz2 — g2 — yVz2 — 2Vx2 — 2 — zVx2 — g2/ y? — &2
<xyz—y(z—e)(x—¢&)—z(x—¢)(y —¢)
< —xyz+ &(xy + 2yz + zx),

we have A4, c A,, where

A, = {(x,y,z) eR: —xpz+s

5 (4 y? 428 4 2xp + 4yz + 22x) >0}~

Hence .
pe,l(R) < P{(XL, YL,ZL) GAE}.

Now let us take an arbitary positive number &. Then, noting that 4, < 4, for
any ¢ such that ¢ < ¢, and using Theorem 1, we get

lim P{(Xy,Y.,Z1) € A} < lim P{(Xy,Y1,Z;) € 45}
R— o0 R— 0

JJJ p(x,y,z) dxdydz.

A‘O
Letting ¢ tend to zero in the above integral, we can see that this integral will
vanish. Therefore the assertion (iii) is confirmed.
As for the probability p,.(R), we have the following Lemma 4. To state the
lemma, we introduce a quadratic form
(3.1 0(x, y,2) = x* + y* 4+ 22 — 2yz — 2zx — 2xy,

and an integral

(3.2) I(a,b,c) = ”J @2’%2_
{(e,3,2):0( z

x,,2)>0,x>a,y>b,z>c} x2 y

Furthermore, assuming existence of limg_,, p.(R), we denote it by p,.

LemmA 4. The limit probability p, exists and

_L 2n p2n d¢dlp
lw"’0_47r2Jo L VA =T = @)1 =)

I 1-24 1—v
(=PI 1—v1— -Ai-m)

(3.3)
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Proof. Replacing x,y,z in (iv) of Lemma 3 by L2X;,L*Y;,L*Z; re-
spectively, we have

P(R) = P{(X1,Y1,Z1) € 4.},
where ¢ denotes for 1/L? and
A, ={(x,y,2) e R®: Q(x, »,2) + 2e(x+ y + z) — 3e* < 0}.

Now we introduce

A ={(x,9,2) e R*: Q(x, y,z) — 3¢* < 0}

A ={(x,9,2) e R*: Q(x, y,z) + 2e(x+ y + z) < 0}.
Then, for any & such that & < g, we have

A, cA;c A, < A, < A,

Consequently Theorem 1 implies that
JJJ p(x, y,z) dxdydz = Rlim P{(XL, YL, ZL) € 4}
Ay —o0

< an_l_ P{(XLa YL7ZL) € Ab’}

R—

< lim P{(Xz, Yr,Z1) € 4.}
R—

IA

fim P(CX Y Ze) ) = || ptxy.2) dsay:
— 00

g

Hence follows the existence of the limit p, and

=] p(x, y,2) dudyd.
{(%, y,2):0(x,y,2)<0}

Thus, using Lemma 2, we have

- _LJJJ dxdydz
Pe =822 )]} gtupa0) V32

2n (27 d¢d([/
L Jo IC(¢’¢)\(F—A)(1—N)(1—V)'

Now we change variables

11
x—EZ’y_E’Z_E;-
Then, since
a(x, y,z) 2
a&EmY  End
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and
0 3,%) = 73 06,0
we obtain (3.3). Thus the proof is completed.
The triple integral (3.2) can be evaluate as follows.

LEMMA 5. Assume that

Va<vVb++e, Vb<e++a, +Je<+a+Vb.
Then

1 1 1 1 1 1
lab) =g+ it et oot aat

1 1 1 1 1 1
B 2(a5/2¢5 a5 t Jren T cia ﬁaw)

2 1 1 1
(34) 3 <a3/2b3/2 T pran T c3/2a3/2>

+2<Z}3‘+513’> 1og(—‘/5+7f13) + 2(;)13+cl—3> log<%>

ol B)m(55)

Proof. Without loss of generality we may assume that a > b > ¢. We first

consider an integral

dz

K(x,y)= J -
{2:0(x,5,2)>0,2>¢} Z

It is easy to see that Q(x,y,z) > 0 if and only if

2> (VX+7)? or z<(VX- )P
Thus, if (v/x— \/?)2 > ¢,

® Va=vP*\ gz
K(x,y)=<J 2+J )7
Vaty»)? e z

1 1 1
VEry) ¢ WE—i)
On the other hand, if (vx —,/7)* <c¢,
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@ dz 1
K(x,y) = AT T e —a
WE'E (VX D)

Next we consider an integral

[e¢]
d
I = | K%
Noting that

(Vx—+/3)?>cif and only if y> (vVx+c¢)? or y < (vVx—c)?,
we have

e 1 1 1 dy
J(x) = L 24
) J(ﬁ+¢z>2{(\/)_c+ N AR \/?)2} I
(Vx-ve)? 1 1 1 dy
+J(\/J7+~/E)2 1 dy
max(b, (vF-va)) (VX + v/7) V2
Hence, if /x > Vb + +/c,

I R S S AR S B Y.
J(x)_Jb VErvm R <J(\/E+\/?)2+Jb )(c (V¥ —ﬁf) vy

which we denote by J;(x).
On the other hand, if /x < Vb + /c,

@ 1 dy (® 1 1 dy
109=| | )
b (Vx+y3)T Y s ¢ (V=) Y
which we denote by Jy(x).
Using Jj(x) and J>(x), we can write

® dx [*® dx (VB dx
. I = — =
(3.5) (a,b,c) J J(x) e J(\/E+\/E)2 Ji( )x2 J Ja(x)

F .
a a
Now, by an elementary calculation, we can evaluate J;(x) and J,(x) as follows:

B 8 4 4v/b 8y/c 4
Six) =4~ NSENG L + x3/2(x — b) * B(x—c) Veyx(x—c)

+%(log(\/)_c+ Vb) — log(v/x — Vb))

+;65(1og(x/?c+ Ve) — log(vx = v/e))
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and
1 4 2 2

bx  Vpx32 Jex32 T x32(x + Vb)
B 4 n x—c
X2(Vx+e)  ex(vx + e)?
- % (logVb + logV'b) + 6 (log(v/x + Vb) + log(v/x + /<))

x2

Jo(x) =

Substituting these into (3.5) we can obtain (3.4).

At this point let us consider a random triangle in the Euclidean plane, not in
the hyperbolic plane. Let ABC be a triangle whose three vertices are mutually
independent and uniformly distributed on the unit circle centered at the origin
of the Euclidean plane. In the below we will consider a certain expectation
concerning a random triangle ABC. For this purpose, without loss of generality,
we may assume that the vertex A lies on the x-axis. We denote the angles which
the line segments OB and OC make with the x-axis by ¢ and y respectively.
Furthermore we denote X = BC, Y = CA and Z = AB. Then we have

X=1200-7%), Y=2(1—p), Z=+20-v),

A=cos(y — @), u=cosy, v=cosg.
Using X, Y,Z, we define
Y? x* 7?2 y* x? ZZ)

where

etttz

Y2z YZ* Z:x ZX?* X’y XY?
ittty Tt s
2(22 X2 Y2) (Y222 ZZX2)1 X+Y
3

k(X,Y,Z) = (

-2

+

XY YZ' ZX X* Y4 Z
Z2x? x?*y? Y+Z

2( XX )1 *
X2y? y?z? Z+X

+2( 2 )1 X

Then we obtain the following theorem.

THEOREM 3. The limit probability p, is given by an expectation concerning a
random triangle in the Euclidean plane,

(3.7 p.=1-Ek(X,Y,Z).
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Proof. If we put

PR SR el S SR ey DU N Sk S
(1=md—v) 1=y =2 (1= =p)
the assumption stated in Lemma 5 is equivalent to the condition that
X<Y+Z, Y<Z+X, Z<X+Y,

which are obviously satisfied. Therefore Lemma 4 and Lemma 5 establish the
theorem.

4. Numerical evaluation of the probability p,

In order to find the value p, by (3.7) in Theorem 3, it suffices to evaluate the
integral
1
(41) el | AL

where the domain of integration is

and the integrand is f(¢,V¥) = k(x, y,z) with

x=1+/2(1—-cos( — @), y=+/2(1—cosy), z=+/2(1—cos¢).
However, regretfully, it seems that we can not evaluate this integral analytically.
Thus, in the below, we carry out an integration of (4.1) numerically.

For this purpose we first investigate properties of the function f. Denote the
vertices of T by

Vy=(0,0), V,=(0,2n), V3= 2n,7).

Then we can see the following lemma by an elementary calculus.

LemMA 6. (i) In the interior of T, f is a C*® function.

(ii) On T, f is bounded: 0 < f < 1.

(iti) When (¢,V) approaches to any point on the boundary of T except Vi,V;
and V3, [ converges to 1.

Thus, except neighbourhoods of Vi,V, and Vj, the function f behaves
mildly. However, to compute values of f, we need some care. If we compute
values of f using (3.6) near the boundary of T (outside neighbourhoods of V;,V;
and V3), we may have unreliable values because one of x, y,z is small. To get
reliable values, we use the fact that k is a symmetric function of (x, y,z) and is
invariant under multiplication by any constant, i.e., k(ox,0y,0z) = k(x, y,z) for
any o > 0. Thus, supposing that x > y > z, we introduce variables
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s=y/x and t=z/y.
Then k(x, y,z), or equivalently f(¢,y), can be written as

1 1 1
2 2 2,2
(s +§5+t +t_2+SI +s27)
s268 s

2( , 1 s 4o 1 1+
—= —+- =1
3<st +Szt+t)+2(st +s2 og—

ot 1 1
—2(s3t+s3t2+—s—+g+——+ )
4.2)

21 42 1 1+ st
+2<S—2+W) log(s(l+t))+2(st +W> log ——.

Now, since x, y,z stand for lengths of three sides of a triangle, we must
have x < y + z, from which follows s(1+¢) > 1. In particular s > 1/2 and only
t may be small.

For small ¢, considering (4.2) as a function of ¢ and expanding it as

1+s4_8(1+s5)t
2s 552

+ {2(s4 +§15) log1 +s—4s*logs
—%(1 + 65 — 352 + 25° — 35* + 65° +s6)}12

- 2(s4 + s%) logt +S£2t2 log(1 + ¢) + 2s*#* log(1 + st)

2 = (_l)n—l ny\ ;n—4
+s—2; (s,

we will compute values of f using this expansion.
Now we explain a procedure for integrating J. Choose a large integer » and
put  =2n/n. We divide the domain of integration 7 into small trianglular

regions,
n n | n—-1 n )
T=(uuz§>)u(u 01
1=1y=1 1=1 j=1+1

T ={(¥): (i-1)0<p<id, $+(j—i)<y<jo},
TP ={(pW): (i-1)0<gp<is, (j—10<y<p+(j—i)d}

Our idea for integrating J is simply to approximate the function f by a linear

where
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function in each triangular region Ti(.l) and Tij(z), except three triangular regions

containing Vi,V, and V3. To state the procedure in detail, we put
Ji = f(id, jo),
f;'j(l) = max{f;j?f;—l,]?ﬁ—l,]—l}’ f;’j(l) = min{ﬁj?ﬁ—l,]’ﬁ—l,]—l}?

f_;’j(Z) = max{f;'jaf;,]—lvfz-—l,j—l}a _&(2) = min{ﬁj?ﬁ,]—l’ﬂ—l,j—l}?
= 1 = 1
fl:]'(l) = §(f;f + f;—l,j + fz——l,]—l)» fij(Z) = § (f;/ +f1,_1—1 + f;—],_}—l)’

Then we compute

2
T = % (Z(l) 17’7(1) + 2(2) Tij(z) + 3>,
2
5=5 (S50 + £ 4%)

2
.']; =%(Z(l)ﬁj(l) +Z(2) ﬁ;(z))’

where the summation (") is taken over
(G j):i=land 2<<n—-13U{(,j):1<i<n-1,i<j<n}
and Z(z) taken over
{G,):1<i<n-li+1<j<n}

Note that the addition by 3 in J, is due to overestimating f in the three triangular
regions containing V;,V, and V;. Since f behaves mildly outside neighbour-
hoods of V;,V, and V3, we may reasonably expect that J, < J < J, for large n
and J, is nearly equal to J.

Now we give results of numerical integration in Table 1 below.

TaBLE 1. Results of numerical mtegration.

n ﬁ In Jn

10000 0.4594403380 0.4597998565 0.4596201032
20000 0.4595303987 0.4597101697 0.4596202857
30000 0.4595603966 0.4596802464 0.4596203221
40000 0.4595753909 0.4596652793 0.4596203355
50000 0.4595843860 0.4596562972 0.4596203418
60000 0.4595903821 0.4596503083 0.4596203454
70000 0.4595946646 0.4596460302 0.4596203475
80000 0.4595978764 0.4596428213 0.4596203490
90000 0.4596003743 0.4596403254 0.4596203499
100000 0.4596023726 0.4596383286 0.4596203507
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TABLE 2. Estimates and standard errors for parameters.

parameters estimates standard errors
Pe 0.4596203893 7.23269 x 10~°
P. 0.4596203967 8.85162 x 10~°
De 0.4596203921 7.83131 x 10~
m —1.800335448 0.000183724
m +1.794814854 0.000224848
m —0.0026965198 0.000198930

To these data we fit linear functions of 1/n,
1 — _  _ 1 ~ 1
£=&+ME, anpc-}-m-;, anpc-i-m‘;,

in the simple least square sence.

Estimates and standard errors for parameters in

the above linear functions are given in Table 2. From these results, we conclude
that p, is nearly equal to 0.45962039.

(3]

(8]
(9]
(10]

(11]
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