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GEOMETRIC PROBABILITIES CONCERNING LARGE RANDOM

TRIANGLES IN THE HYPERBOLIC PLANE

YUKINAO ISOKAWA

Abstract

Concerning a random triangle on a disk DR of radius R in the hyperbolic plane,

the following four geometric probabilities are studied: (i) the probability pa(R) that a

random triangle is acute; (ii) the probability po(R) that a random triangle has the

orthocenter; (iii) the probability pe{R) that a random triangle has at least one of the

three excenters; and (iv) the probability pc{R) that a random triangle has the cir-

cumcenter. It is shown that, as R tends to the infinity, both the probability pa(R) and

po(R) tend to one, whereas the probability pe{R) tends to zero. Moreover it is shown

that the probability pc(R) tends to a limit pc, which can be expressed as a certain

expectation concerning a random triangle in the Euclidean plane. To evaluate this

expectation numerically, we obtain 0.45962039 as an estimate for pc.

1. Introduction

The first problem concerning random triangles in the Euclidean plane is
perhaps the problem "what is the probability that a random triangle is acute?".
This problem was proposed by [11], and as an answer to the problem, it gave the
probability 4/π 2 — 1/8, assuming that three vertices of a random triangle are
distributed independently and uniformly in the unit disk. Since that time various
studies have been made on this problem. In [5] five different solutions to
the problem are given. Whereas differences of these solutions reflect those of
meanings on random triangles, they lead to the common probability 1/4. In [10]
one more solution to the problem is given, where three vertices are assumed to
be distributed according as a Gaussian distribution. The answer is again 1/4.
These results are extended in [6] and [3] to the corresponding problem for random
triangles in higher-dimensional Euclidean spaces.

Another problem oncerning random triangles, which has been extensively
studied, is to find the distribution of the area of a random triangle whose three
vertices are uniformly distributed in a given domain of Euclidean spaces. In
[1], for the case that a domain is a triangle in the Euclidean plane, explicit
expressions for all the moments of the area are given. In [2] these results are
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partially extended to the case that a domain is a simplex in higher-dimensional
Euclidean spaces.

Moreover, in the field of random triangles in Euclidean spaces, many other
directions of investigations have been successfully performed (for example, see [7],
[8], and [9]). On the other hand, as long as the present author searches existing
literatures, there seem to be little research on random triangles in the hyperbolic
plane.

In the hyperbolic plane, triangles have somewhat mysterious properties which
those in the Euclidean plane do not have (see [4]). Whereas they always have
centroids and incenters, they do not always have circumcenters, orthocenters
and excenters. Hence a problem arises: with what probabilities does a random
triangle in the hyperbolic plane has these "geometric" centers? This is the
problem which we investigate in this paper.

In Section 2 we consider a random triangle ABC on a disk of radius R and
centered at the origin of the hyperbolic plane, and study probability distribution
of lengths of three sides of the random triangle. We prove that this probability
distribution converges to a limit distribution as R tends to the infinity, and that
the limit distribution has a probability density which can be expressed as a double
integral. In Section 3, we consider the following geometric probabilities:

1. The probability pa(R) that a random triangle ABC is acute,
2. The probability po(R) that a random triangle ABC has the orthocenter,
3. The probability pe{R) that a random triangle ABC has at least one of the

three excenters,
4. The probability pc{R) that a random triangle ABC has the circumcenter.

About these geometric probabilities, we first show that, as R tends to the infinity,
both pa(R) and po(R) tend to one, pe(R) tends to zero, whereas pc{R) converges
to a limit pc such that 0 < pc < 1. Moreover we prove that the limit probability
pc can be expressed as a certain expectation concerning a random triangle in the
Euclidean plane. In Section 4 we evaluate this expectation numerically. Our
estimate for pc is about 0.45962039. Roughly speaking, we may say that the
majority of large random triangles in the hyperbolic plane are acute, have the
orthocenters, but have no excenters, and that about 46% of large random tri-
angles have the circumcenters.

2. Limit probability distribution of lengths of three sides of a random
triangle

We begin by clarifying a concept of a random point. Let H2 be a
hyperbolic plane whose metric ds is given by polar coordinate as ds2 = dr2 +
sinh2 rdθ, and DR a disk of radius R centered at the origin O of H2. We say
that P is a random point on the disk DR when P is uniformly distributed on the
disk. To state precisely, let us denote a polar coordinate of P by (rp,0p).
Then we say that P is a random point on the disk DR when rp is distributed
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according to a probability density sinh rdr/L on an interval (0,R), where L =
cosh/ΐ— 1, and #p is uniformly distributed on an interval [0,2π).

Now we consider a triangle ABC whose three vertices A, B, and C are
mutually independent random points on the disk DR. To state explicitly, de-
noting polar coordinates of three points A, B, and C by (ΓA,0A)> (/B,#B), and
(/c,#c) respectively, we assume that

l 7*A,̂ A,7*B,#B,fc,#c are mutually independent.
2. ΓA,rB,rc have a common probability density sinh rdr/L.
3. #A,#B,#C have the uniform distribution on an interval [0,2π).
In this section we investigate a probability distribution of lengths of three sides

of a "large" random triangle. To state precisely, for a random triangle ABC on
the disk DR, let us denote lengths of its three sides by α, b, c, and introduce

coshα coshfc coshc

We study the limit probability distribution of {XL, YL,ZL) when L tends to the
infinity. For this purpose, we define the characteristic function of (XL, YL,ZL),

fL(tut2, t3) = E[exp(i(tiXL + t2YL + hZL))].

Then we obtain the following lemma.

LEMMA 1. The limit characteristic function

f(tu t2,t3) = lim fL(tut2,t3)
L—>oo

exists and it can be expressed as

1 f2π r2π f1 f1 f1

(2.1) / ( ί l , ί 2 , ί 3 ) = _ dφdψl dudvdw
4 π z Jo Jo Jo Jo Jo

• exp[/ϊi(l — λ)vw + zY2 (1 — μ)wu + it$(\ — v)uv\.

Proof. Without loss of generality, we may assume that the vertex A lies on
the x-axis. We denote the angles which the line segments OB and OC make with
the x-axis by φ and φ respectively. Then, by hyperbolic trigonometry, we have

{ L2 - XL — cosh a — cosh ΓB cosh re — sinh ΓB sinh re cos(t/f — φ)

L2 YL = cosh b = cosh re cosh rA — sinh re sinh rA cos φ

L2 - ZL = cosh c = cosh rA cosh rβ — sinh rA sinh rβ cos φ.

At this point it is convenient to introduce the following variables:

(2.3) λ = cos(φ — φ),μ = cosφ.v = cosφ

and

u = coshrA/L, v = cosh rβ/L, w = coshrc/L.



174 YUKINAO ISOKAWA

Then XL, YL,ZL can be written as

ZT = UV — V\ / Ul — —x \ / V1 —

Moreover, it is easy to see that all w, v, and w have simply the uniform dis-
tribution on an interval (1/L, 1 + l/L). Consequently, noting that both φ and ψ
have the uniform distribution on an interval (0,2π), we have

fάtuh, h) = -^ f π f π dφdφ \ + f + f + d^^H;
4π z J 0 Jo h/L h/L h/L

• exp

Then, using the bounded convergence theorem, we obtain the lemma.

Let p(x,y,z) denote the probability density corresponding to the charac-
teristic function f{t\,t2,h). From Lemma 1 we can derive the following ex-
pression for p(x,y,z).

LEMMA 2.

(2.4) ί
2π o2π

o Jo

dφdψ

λ,μ, v are defined by (2.3) and Ic denotes the indicator function of the set

(2.5, C H ( « ) = 2 < .f < ,f < •}•

Proof Consider a characteristic function corresponding to the probability
density (2.4):
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f(tut2,t3)= Γ Γ Γ
Jo Jo Jo

Note that if (^, ι̂ ) e C, we can derive x < I — λ, y <\ — μ, z < 1 — v. In
particular we have x < 2, y < 2, z < 2, which assures existence of / .

Now we change variables

x = (1 — λ)uv, y = (1 — μ)ι;w, z = (1 — v)wu.

Then we can see that the Jacobian

3ϊM_ 2(1-«(!-,)(!-.)»,,

and that the condition (φ, φ) e C is equivalent to the condition

w < 1, v < 1, w < 1.

Accordingly we obtain

1 f2π f2π f1 f1 r1

4π z Jo Jo Jo Jo Jo

• exp[zYi(l — λ)vw + //2 (1 — μ)ww + /^(l — v)wf].

Thus / is identical to / and the proof is completed.

From Lemma 1 and Lemma 2 follows the following theorem.

THEOREM 1. Appropriately normalized lengths of three sides of a random
triangle, (XL, YL,ZL), have the limit probability distribution as the radius R of
the disk DR, or equivalently L = coshi^ — 1, tends to the infinity. Furthermore its
probability density is given by (2.4).

3. Geometric probabilities concerning a large random triangle

In this section we study geometric probabilities pa(R),po(R),pe(R) and
pc(R) when R tends to the infinity. Let us denote three sides and three angles of
a triangle ABC by

a = BC, b = CA, c = AB,

α = ZCAB, β= I ABC, γ = ί BCA,

and we put x = coshα, y = cosh b, z = coshc.

LEMMA 3. (i) A triangle ABC is acute if and only if

yz > x, zx > y, xy > z.

(ii) A triangle ABC has the orthocenter if and only if

3x2y2z2 - 2x3yz - 2xy3z - 2xyz3 + y2z2 + z2x2 + x2y2 > 0.
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(iii) A triangle ABC has the excenter beyond the side BC if and only if

2χyjy2 -Wz2-l - 2yVz2 - Wx2 - 1

- 2zVx2-lλ/y2- 1 + x2 + / + z2 - 3 < 0.

(iv) A triangle ABC to ί/*e circumcenter if and only if

x2 z2 - 2yz - 2zx - 2xy + 2x + 2y + 2z - 3 > 0.

Proof The assertion (i) is an easy consequence from the cosine formula of
hyperbolic trigonometry. Now we prove (ii). To use the notations used in [4],
as is shown in p. 121 and p. 131 of Chapter 6 of [4], a triangle ABC has the
orthocenter if and only if

(2 cos α cos β cos γ + 1 )am2 < sin2 α sin2 β sin2 γ,

where

2 ΛS 2 α 2 β 2 7

= —16 sin - sin - cos -

7 . α . β y
4- 41 sin- + sin^ - cos^

• « . β γ
sm- - sin^ -f cos^

-sin- + sm^ + cos ^

sin- -I- sm^

Then, by a lengthy but elementary calculation, we can show that the right hand
side subtracted by the left hand side in the above inequality is equivalent to

{x2 + y2+z2 -2xyz-\)2

• (3x2^2z2 - 2x3yz - 2xy3z - 2xyz3 + V + z2x2 + x2y2)

/((x2 - \)2{y2 - l)2(z2 - I)2) > 0.

Thus the assertion (ii) is proved.
Next we prove (iii). As is shown in p. 121 of [4], a triangle ABC has the

excenter beyond the side BC if and only if

. β . γ α
sin-+ sin- > cos-.

Then, by a similar calculation to that in the proof of (ii), we can show that the
above inequality is equivalent to

(2JCJ;Z + 1 - x2 - y2 - z1)

• (2x^/y2- Wz2-l - 2yVz2-Wx2- 1

- 2zVχ 2- l v V - 1 + χ2 + y1 + z2 - 3)
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Now, noting that \b — c\ < a < b + c, we can easily see that

2xyz + 1 - x2 - y2 - z2 > 0.

Accordingly (iii) is obtained.
Finally we prove (iv). As is stated in p. 118 of [4], a triangle ABC has the

circumcenter if and only if the following three inequalities hold:

. Λ a . Λb . Λ c . , b . Λ c . Λ a . Λ c . Λ a . J
smh- < sinh- + sinh-, sinh- < sinh- + sinh-, sinh- < smh- + smh-.

Obviously it is impossible that more than one of the above inequalities hold
simultaneously. Now, by doing an elementary calculation again, we get

. Λ a . J . Λ c\ ( . Λ a . J . t c
—sinh- + sinh- + sinh- 1 I sinh- — sinh- + sinh-

. Λ a . Λ b . Λ c\ ( . Λ a . J . Λ c
smh- + sinh- — sinh- 1 I sinh- + sinh- + smh-

- - (x2 y1 + z2 - 2yz - 2zx - 2xy + 2x + 2y+ 2z - 3).

Hence immediately follows (iv).

Using the above Lemma 3 and Theorem 1, we obtain the following theorem.

THEOREM 2.

(i) hmpa(R) = l.
R—>oo

(ii) lim Po(R) = 1.
K—»oo

(iii) lim Pe(R) = 0.
R—>oo

Proof. Since proofs of (i) and (ii) can be carried out in similar ways to that
of (iii), we will prove only (iii). Let pe^\{R) stand for the probability that a
random triangle ABC has the excenter beyond the side BC. In order to prove
(iii), it suffices to prove that

because pe(R) < 3peΛ(R).
Now, recalling (2.2), we replace x,y,z in (iii) of Lemma 3 by

L2XL,L2YL,L2ZL respectively. Then we have

where ε denotes for 1/L2 and
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Aε = I (x,y,z) eR3 :

Since

< xyz — y(z — ε)(x — ε) — z(x — ε)(y — ε)

< -xyz + ε(xy + 2yz + zx),

we have Aε a Aε, where

Ae = Ux,y,z) e m i -

nence

peΛ(R)<P{{XL,YL,ZL)eAε}.

Now let us take an arbitary positive number εo Then, noting that Aε <= Aεo for
any ε such that ε < εo, and using Theorem 1, we get

j 2 + z2

0>.

, YL,ZL) e Aε} < Jim
K—^o

,YL,ZL)eAεo}

= I I I _ p(x,y,z)dxdydz.

K—>co

Letting ε0 tend to zero in the above integral, we can see that this integral will
vanish. Therefore the assertion (iii) is confirmed.

As for the probability pc{R), we have the following Lemma 4. To state the
lemma, we introduce a quadratic form

(3.1) β(jc, y,z) = x2 + y2 + z2 - 2yz - 2zx - 2xy,

and an integral

(3.2) I{a,b,c) = 2 2 2 .
J J J{(x,y,z):Q(x,y,z)>O,x>a,y>b,z>c} X y %

Furthermore, assuming existence of lim^oo pc(R), we denote it by pc.

LEMMA 4. The limit probability pc exists and

dφdφ

(3.3)
o Jo ^(l-λ)(l-μ)(l-v)

I
l-λ l-μ

(1 -μ)(l-vyV(l - v ) ( l - λY V( l-A)( l -μ) I

1-v
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Proof. Replacing x, y,z in (iv) of Lemma 3 by L2XL,L2YL,L2ZL re-
spectively, we have

Pc(R)=P{(XL,YL,ZL)eAε},

where ε denotes for 1/L2 and

Aε = {(*, y, z) e R3 : Q(x, y, z) + 2ε(x + y + z) - 3s2 < 0}.

Now we introduce

Λ = {(*, ̂ , z) e fl3 : g(x, j ; , z) - 3β2 < 0}

Aε = {(x, y, z)eR3 : β(x, j ; , z) + 2ε(x + 7 + z) < 0}.

Then, for any ε such that ε < £0, we have

dε0 ^ Aε^AεaAε aAεo.

Consequently Theorem 1 implies that

p(x, y,z) dxdydz = Jim P{{XLi YL,ZL) e Aεo}

< \jmP{(XL, YL,ZL)eAε}
R-+00

< ϊhnP{(XL,YL,ZL)eAε}
R-+00

< lim P{(XL, YL, ZL) E Aεo} = f f ί p(x, y, z) dxdydz

Hence follows the existence of the limit pc and

/?c= p(x,y,z) dxdydz.
JJJ{(x,yiz):Q(x,y,z)<0}

Thus, using Lemma 2, we have

i _ n - L
1 re — %π2JJJ{Q(x,y,z)>0}

φ) dφd*\\πic{Φ,

Jo Jo

Now we change variables

_\_ _ ] _ _\_

Then, since

d(x,y,z)= 2

d(ξ,η,Q ξ3ηK3
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and

Q(χ,y,z)=-±-ϊQ(ξ,η,ζ),

we obtain (3.3). Thus the proof is completed.

The triple integral (3.2) can be evaluate as follows.

LEMMA 5. Assume that

Then

1 1 1 1 1

\a2b ab2 b2c be2 c2a ca

. 1 1 1 1 1 1

2 / 1 1 1
(3.4) ~ 3 lΛ3/2£3/2 + £3/2c3/2 + c3/2α3/2

-r + - ^ ) l o g I * — τ — +2 - 3 + 3 log

Proof. Without loss of generality we may assume that a>b>c. We first
consider an integral

){z:Q(x,y,z)>0,z>c} <

It is easy to see that Q(x, y, z) > 0 if and only if

z > (y/x + ->/y) or

Thus, if

K(χ,y)=
)

c

On the other hand, if (y/x — y/y)2 < c,
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dz 1
K(x,y) =

Next we consider an integral

J{x)=Γ K{x,y)%.
Jb y

Noting that

(y/x — Vy)2 > c if and only if y > (y/x + c)2 or y < (y/x — c) 2,

we have

if \ Γ ί ι i i 1 dy

1 \__ 1

Hence, if φc > \fb + sjc,

1 dy ίr HA-yΐ)2\ Λ I \dy_ f 0 0

which we denote by J\(x).
On the other hand, if y/x < y/b + y/c,

dy

(y/x+y/y) y h^+V-c)2\c (yfi-

which we denote by Ji(x).
Using J\(x) and ^W? we c a n write

Γ00 Jx

xz

Now, by an elementary calculation, we can evaluate J\(x) and /2W as follows:

4
be jb~xV2 y^χ3/2 χ3/2( χ _ 6 ) X3/2(X _ c ) ^ ^ ( x - c)

4 - Vb))

- y/c))

4
X
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and

(x) 1

1 j bx

4

Vfct3/2

4

YUKINAO

2

ISOKAWA

2

— c

4 4 + Vb)
Substituting these into (3.5) we can obtain (3.4).

At this point let us consider a random triangle in the Euclidean plane, not in
the hyperbolic plane. Let ABC be a triangle whose three vertices are mutually
independent and uniformly distributed on the unit circle centered at the origin
of the Euclidean plane. In the below we will consider a certain expectation
concerning a random triangle ABC. For this purpose, without loss of generality,
we may assume that the vertex A lies on the x-axis. We denote the angles which
the line segments OB and OC make with the x-axis by φ and ψ respectively.
Furthermore we denote X = BC, Y = CA and Z = AB. Then we have

-λ), Y=y/2(\-μ), Z=J2(l-v),

where
λ = cos(ι/^ — ̂ ), // = cos i/̂ ,

Using X, y, Z, we define

n X2 Z2 Y2 X2 Z2

( 3 6 )

χγ2\

X+Y

Z2X2 X2Y2\ Y + Z

z*
Y2Z2

Then we obtain the following theorem.

THEOREM 3. The limit probability pc is given by an expectation concerning a
random triangle in the Euclidean plane,

(3.7) pc = l-E(k(X,Y,Z)).
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Proof. If we put

a= \\— — r, b=\l— — rv, c =
— A)

the assumption stated in Lemma 5 is equivalent to the condition that

Y <r Y 4- y Y <r Z 4- V Z <r Y 4- V

which are obviously satisfied. Therefore Lemma 4 and Lemma 5 establish the
theorem.

4. Numerical evaluation of the probability pc

In order to find the value pc by (3.7) in Theorem 3, it suffices to evaluate the
integral

1 r c

,φ)dφdφ,

where the domain of integration is

T = {(φ, φ) : 0 < φ < 2π, φ < φ < 2π}

and the integrand is f(φ, φ) = k(x, y, z) with

x = y/2(l-cos(ψ-φ)), y = ^(l-cosiA), z =

However, regretfully, it seems that we can not evaluate this integral analytically.
Thus, in the below, we carry out an integration of (4.1) numerically.

For this purpose we first investigate properties of the function /. Denote the
vertices of T by

V! = (0,0), V2 = (0,2π), V3 = (2π,π).

Then we can see the following lemma by an elementary calculus.

LEMMA 6. (i) In the interior of T, f is a C 0 0 function.
(ii) On T, f is bounded: 0 < / < 1.
(iii) When (φ, φ) approaches to any point on the boundary of T except Vi, V2

and V3, / converges to 1.

Thus, except neighbourhoods of Vi,V2 and V3, the function / behaves
mildly. However, to compute values of /, we need some care. If we compute
values of/using (3.6) near the boundary of T (outside neighbourhoods of Vi,V2
and V3), we may have unreliable values because one of x,y,z is small. To get
reliable values, we use the fact that k is a symmetric function of (x, y, z) and is
invariant under multiplication by any constant, i.e., k(σx, σy, σz) = k(x, y, z) for
any σ > 0. Thus, supposing that x > y > z, we introduce variables
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s = y/x and t = z/y.

Then k(x,y,z), or equivalently f(φ,ψ), can be written as

sΔ + — + t2 + -^ + s2t2 + - ^

^ t2 t 1 1

51 ^ P Jί
(4-2) 2 *

2

Now, since x, y, z stand for lengths of three sides of a triangle, we must
have x < y + z, from which follows s(\ + t) > 1. In particular s > 1/2 and only
t may be small.

For small t, considering (4.2) as a function of t and expanding it as
4 8(1+5 s)1 + J 4 8(1+5

+ J2 ί ί4 + ̂  J log 1 + s - 4s4 logs

- - ^ ( 1 + 6s - 3s2 + 2s3 - 3s4 + 6s5 + s6)\t2

isΔ )

-l(s4 + ̂ \ t2 log t +1 t2 log( 1 + 0 + 2/ί2 log( 1 + st)

we will compute values of / using this expansion.
Now we explain a procedure for integrating /. Choose a large integer n and

put δ = 2π/n. We divide the domain of integration T into small trianglular
regions,

r=(ύUτfWu U τf\
\ι=lj= ) \/=ly=ί+l /

where
if = {(φ, φ) :(i-l)δ<φ<iδ, φ+ (j - i)δ <φ< jδ},

if = {(Φ, Φ) • (i -i)δ<Φ<iδ, (j-l)δ<φ<φ+ (j - i)δ}.

Our idea for integrating / is simply to approximate the function / by a linear
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function in each triangular region τ\j and τ\f\ except three triangular regions
containing Vi,V2 and V3. To state the procedure in detail, we put

fy=f(iS,jδ),

fy{2) =

Then we compute

(2) =\Λ ( 2 ) =

where the summation Σ^ is taken over

{(ij):i=ί a n d 2 < j < n - 1} U {{ij) : 1 <i <n- l , i < j <n)

and ^^2^ taken over

{(ij): 1 < / < « - l , / - h l <j<n).

Note that the addition by 3 in /„ is due to overestimating/in the three triangular
regions containing Vi,V2 and V3. Since / behaves mildly outside neighbour-
hoods^ of Vi,V2 and V3, we may reasonably expect that JIL< J < Jn for large n
and /„ is nearly equal to /.

Now we give results of numerical integration in Table 1 below.

TABLE 1. Results of numerical integration.

n

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Jn

0.4594403380

0.4595303987

0.4595603966

0.4595753909

0.4595843860

0.4595903821

0.4595946646

0.4595978764

0.4596003743

0.4596023726

Jn

0.4597998565

0.4597101697

0.4596802464

0.4596652793

0.4596562972

0.4596503083

0.4596460302

0.4596428213

0.4596403254

0.4596383286

Jn

0.4596201032

0.4596202857

0.4596203221

0.4596203355

0.4596203418

0.4596203454

0.4596203475

0.4596203490

0.4596203499

0.4596203507
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TABLE 2. Estimates and standard errors for parameters.

parameters

Pc

Tc

Pc

m

m

fh

estimates

0.4596203893

0.4596203967

0.4596203921

-1.800335448

+1.794814854

-0.0026965198

standard errors

7.23269 x 10-9

8.85162 x 10-9

7.83131 x 10~9

0.000183724

0.000224848

0.000198930

To these data we fit linear functions of \/n,

1 -7- — - 1 r ~ ~ 1
Jn= Pc+rH'-, Jn= Pc + m--, Jn = p c + ΪYl - ,
— — n n n

in the simple least square sence. Estimates and standard errors for parameters in
the above linear functions are given in Table 2. From these results, we conclude
that pc is nearly equal to 0.45962039.
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