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ON SECTIONAL GENUS OF QUASI-POLARIZED MANIFOLDS WITH
NON-NEGATIVE KODAIRA DIMENSION, II

YosHiakl Fukuma

Abstract

Let (X,L) be a quasi-polarized manifold over the complex number field with
dimX =7 and k(X) = 0. If n=2,xk(X) =0, and h°(L) = dim H°(L) > 2, then m our
previous paper we studied a lower bound for sectional genus g(L). In this paper, we
mainly consider the case in which n=3, x(X) >0, and A°(L) > 3, and we obtam a
lower bound for g(L) which 1s a generalization of the result of our previous paper.

0. Introduction

Let X be a smooth projective manifold over the complex number field C
with dim X =# and let L be a Cartier divisor on X. Then (X,L) is called a
polarized (resp. quasi-polarized) manifold if L is ample (resp. nef and big). The
sectional genus is defined by the following formula:

o) =1+ % (Kx + (n— DL)L™,

where Ky is the canonical divisor of X.

A classification of (X, L) with small value of sectional genus was obtained
by several authors. On the other hand, Fujita proved the following Theorem
(see Theorem (2.13.1) in [Fj0]).

THEOREM 0.1. Let (X, L) be a polarized manifold. Then for any fixed n and
g(L) there are only finitely many deformation type of (X,L) unless (X,L) is a
scroll over a smooth curve.

(For a definition of the deformation type of (X, L), see §13 of Chapter II
in [Fj0].) By this theorem, Fujita proposed the following Conjecture; which is
interesting but difficult.

1991 Mathematics Subject Classification. Primary 14C20.
Key words and phrases. Quasi-polarized manifold, Kodaira dimension, sectional genus.
Received April 9, 1999; revised August 23, 1999. :

136



SECTIONAL GENUS II 137

CONIECTURE. Let (X, L) be a quasi-polarized manifold. Then g(L) > q(X),
where q(X) = dim H'(Ox) is the irregularity of X.

If dim X = 2 and 4°(L) > 0, then we can easily prove the above Conjecture.
In [Fk4], we proved that the above Conjecture is true if dim X = 3 and h%(L) >
2. In [Fk3], we improved the above inequality if the Kodaira dimension x(X)
of X is non-negative and A°(L) > 2, that is,

THEOREM 0.2. Let (X,L) be a quasi-polarized surface with k(X) >0 and
h°(L) > 2. Then we get g(L) > 2q(X) — 1 unless the rational map defined by |L|
is of special type.

(In detail, see Theorem 3.1 in [Fk3].)

In this paper, we consider the 3-dimensional version of Theorem 0.2, that is,
we improve a lower bound for g(L) if dim X = 3, A%(L) > 3, and x(X) > 0. The
main result, which is a generalization of Theorem 0.2, is the following:

THEOREM 2.2. Let (X,L) be a quasi-polarized 3-fold with k(X) >0 and
h°(L) = 3. We use Notation 2.1. Then (X,L) satisfies one of the following:

(1) g(L) = 2¢(X) — 1.

(2) dim W =2, M3 is not big, g(L) > q(W,) +2g(Fy) > q(X) + g(Fy), and
(W, A,) is a scroll over a curve with q(W,) = 2, where we take W, as a minimal
resolution of W.

(3) dim W =1, M3 is not big, g(B,) >3, and g(L) > g(B,) +2q(F,) + 1>
q(X) +q(F.) + 1.

Here we should mention that at present we do not know whether there exists
an example of the cases (2) and (3) in Theorem 2.2 or not.

The main theorem seems to enables us to study (X,L) with dimX =3,
k(X) >0 and h°(L) >3 in detail. If n=2, then in [Fk5] we obtained some
results about a lower bound of KyL by using the result of [Fk3]. So if n =3,
we expect that we can get a result about a lower bound of KyL? by using the
result of this paper. We use the customary notations in algebraic geometry.

The author would like to thank the referee for giving him some useful
comments and suggestions.

1. Preliminaries

DerINITION 1.1. Let X be a smooth projective variety with dim X >
dim Y > 1. Then a morphism f:X — Y is a fiber space if f is surjective with
connected fibers. Let L be a Cartier divisor on X. Then (f, X, Y, L) is called a
quasi-polarized (resp. polarized) fiber space if f : X — Y is a fiber space and L is
nef and big (resp. ample).
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DeriNITION 1.2. Let X and Y be projective varieties with dimX = » and
dimY =m, and let L be a line bundle on X. Then we say that (X,L) is a
scroll over Y if there exists a fiber space #: X — Y such that any fiber of = is
isomorphic to P"™ and L|r = Opr-n(1), where 1 <m <n. A quasi-polarized
fiber space (f,X,Y,L) is called a scroll if (F,Lr) = (P"™™, Op»n(1)) for any
fiber F of f, where dmX =n>m=dimY > 1.

DerintTion 1.3, (1) Let (X7,L;) and (X2, L;) be quasi-polarized manifolds
where X, may have singularities for 1 =1,2. Then (X;,L;) and (X3,L,) are
said to be birationally equivalent if there is another variety G with birational
morphisms ¢, : G — X, (i =1,2) such that g{L, = g;L,.

(2) Let (f1,X1,Y,L)) and (f5,X2,Y,L;) be quasi-polarized fiber spaces,
where X, may have singularities for i = 1,2. Then (f},X1,Y,L;) and (f;, X3,
Y,L,) are said to be birationally equivalent if there is another variety G with
birational morphisms g; : G — X, (i = 1,2) such that g{L; = g;L, and fjog; =
fr092.

THEOREM 1.4. Let (X,L) be a quasi-polarized 3-fold. Then there exists
a quasi-polarized variety (X',L') which is birationally equivalent to (X,L) and
satisfies one of the following conditions:

(1) Ky + 2L’ is nef for the canonical Q-bundle Ky,

(2) A(L") =0;

(3) (X',L') is a scroll over a curve,
where X' is a normal projectwe variety with only Q-factorial terminal singularities.

Proof. See Theorem 4.2 in [Fjl]. O

Remark 1.5. Theorem 1.4 is true for dim X = n if the Flip Conjecture (see
[KMM)]) is true for dimX = n.

THEOREM 1.6. Let (f,X,C,L) be a quasi-polarized fiber space with dim X =
3 and dim C = 1. Then there exists a quasi-polarized fiber space (f',X',C,L")
which is birationally equivalent to (f,X,C, L) such that (f', X', C,L’) satisfies one
of the following conditions:

(1) KXI/C—FZLl is nef;

(2) (f',X',C,L") is a scroll,
where X' is a normal projective variety with only Q-factorial terminal singularities
and Kxjc = Kx' — (f')"Ke.

Proof. See Lemma 0.2 and Theorem 1.3 in [Fk2]. Here we show the
outline of proof. We can prove the following by a method similar to the proof
of Theorem 4.2 in [Fjl]:

There exists a quasi-polarized fiber space (f’, X', C,L’) which is birationally
equivalent to (f,X,C,L) such that (f',X’,C, L") satisfies one of the following
conditions:
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(1) Kxiyc +2L" is f'-nef;

) (f',X',C,L") is a scroll,
where X’ is a normal projective variety with only Q-factorial terminal singu-
larities and Ky//c = Ky — (f')"Kc. Next we can prove that Ky.c + 2L’ is nef
if Ky//c+2L" is f'-nef by the same argument as in the proof of Theorem 1.1.2
in [Fk1]. O

THEOREM 1.7. Let (X,L) be a quasi-polarized manifold with dim X > 2.
Assume that L is spanned by global sections. Then g(L) > q(X).

Proof. See Theorem 7.2.10 in [BS]. O

THEOREM 1.8. Let (X,L) be a quasi-polarized manifold with dim X > 2 and
kK(X) =0 such that L is spanned by global sections. Then g(L) = 2q(X) — 1.

Proof. See Corollary 3.2 and Corollary 3.3 in [Fk3]. O

DerINITION 1.9, Let (X, L) be a quasi-polarized manifold with A%(L) > 2.
Let X’ be a smooth projective manifold and let u: X’ — X be a birational
morphism such that Bs|M'| = ¢, where |M’| is the movable part of |u*(L)|.
Then we define dimg;(X) as dim g, (X').

DeriniTioN 1.10. Let D; and D, be divisors on a smooth projective
manifold X. We denote D; > D, if D; — D, is linearly equivalent to an effective
divisor on X.

DErINITION 1.11 (See [FkO] and [Fk3]). (1) Let (X,L) be a quasi-polarized
surface. Then (X, L) is called L-minimal if LE > 0 for any (—1)-curve E on X.

(2) For any quasi-polarized surface (X, L), there is a quasi-polarized surface
(X1,L,) and a birational morphism x:X — X; such that L= u*(L,) and
(X1,Ly) is Li-minimal. Then we call (X;,L;) an L-minimalization of (X,L).

(3) Let (f,X,C,L) be a quasi-polarized fiber space with dimX =2 and
dimC=1. Then (f,X,C,L) is said to be relatively L-minimal if LE > 0 for
any (—1)-curve E on X which is contained in a fiber of f.

(4) For any quasi-polarized fiber space (f,X,C,L) with dimX =2 and
dim C = 1, there exist a quasi-polarized fiber space (f;, X7, C,L;) and a birational
morphism g: X — X; such that f = fiou, L=u*(L), and (f},X1,C,Ly) is
relatively L;-minimal. Then we call (f}, X, C, L) a relative L-minimalization of
(f,X,C,L).

Lemma 1.12. Let (X,L) be an L-minimal quasi-polarized surface with
k(X)=0. Then Ky + L is nef.

Proof (See Lemma 2.4 in [Fk3]). If Ky + L is not nef, then there is a
(—1)-curve E on X such that (Ky + L)E < 0 since x(X) > 0. Because KyE =
—1, we have LE =0. But this contradicts assumption. O
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LemMa 1.13. Let (f,X,C,L) be a relatively L-minimal quasi-polarized fiber
space with dimX =2 and x(X)>0. Then Ky,c+ L is nef, where Ky;c =
Ky — f*Kc : relative canonical divisor of f.

Proof (See Lemma 2.5 in [Fk3]). Let D be an irreducible reduced curve
on X such that f(D) is not a point. Let u: X — X' be a relatively minimal
model of f:X — C and D’ = u(D). Then Ky,cD > Ky//cD'. On the other
hand Ky/c is nef because x(X) > 0. Hence (Ky;c +L)D >0. Next we prove
that Ky,c + L is fnef. If Ky;c+ L is not f-nef, then there is a (—1)-curve E
on X such that f(E) is a point and (Ky,c + L)E < 0 because x(X) > 0. Since
Ky,cE = —1, we have LE =0. But this contradicts the assumption. O

Lemma 1.14 (G. Xiao). Let (f,X,C) be a fiber space with dimX =2,
K(X)>0and g(C) =0. Then q(X) < (1/2)(g(F) + 1), where F is a general fiber
of f.

Proof. See [X]. O

Lemma 1.15. Let (X,L) be an L-minimal quasi-polarized surface. Assume
that |L| is spanned. Then g(L) =2q(X)—1 unless (X,L) is a scroll over a
smooth curve.

Proof. 1If k(X) = 0, then this is proved by Corollary 3.2 in [Fk3]. So we
assume k(X) = —oo. If g(X) < 1, then this is true. Hence we may assume that
q(X) =2. Then K% <8(1 —¢g(X)). So we obtain

(Kx +L)* = K2 +2(Ky + L)L — L?
<8(1 —q(X))+2(2g(L) —2) — L?
=4(g(L) - 2q(X) + 1) - L*.
If Ky + L is nef, then (Ky + L)? > 0. Therefore g(L) > 2¢(X). If Ky + L is

not nef, then (X, L) is a scroll over a smooth curve since (X, L) is L-minimal and
g(X) =2 (see the proof of Theorem 3.1 in [FkO]). O

2. Main result

Before we prove the main theorem, we fix the notation which are used later.

NortaTion 2.1. (1) Let (X,L) be a quasi-polarized manifold with dim X =
n, k(X) =0, and #A°(L) > 2. We assume that the Flip Conjecture is true. Then
by Theorem 1.4 and Remark 1.5, there exist a quasi-polarized variety (V1,L;), a
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smooth projective variety Y, and birational morphisms #: ¥ — X and %, : ¥ —
V1 such that #*L =#{L; and Ky, + 2L is nef, where ¥ is a normal projective
variety with only Q-factorial terminal singularities. Let 6: 7V, — V; be a
resolution of Vi, that is, 0 is a birational morphism with Vg\ﬁ_'(Sing V) =
V1\Sing V1, where SingV; denotes the singular locus of V. Let L, = 6*(Ly).
Let |M;| be the movable part of |L,| and let Z, be the fixed part of |L,|. We
put V20 = Vs, Lyo=L,, and Mo = M,. By Hironaka Theory, there exist a
sequence of blowing ups: y : V2 — V> x—; along a smooth center Bi_;, and a
non-negative integer ¢ such that Bs|M; | =0 and Bs|M; 1| # 0, where M, is
the movable part of |uf (M -1)|. Let u=pjo0---ou, V3 ="V, L3y =u*(Ly),
and M3 =M,,. Let E; be the y,-exceptional eﬁ'ec’uve divisor. Then there is
a morphism @y, V3 — PV defined by |M;|. Let W = ¢‘M3|(V3) Then, by
takmg Stein factorization, there exist a normal projective variety W, a morphlsm
9:V:— W, and a finite morphism ¢ : W — W such that Pir| = €0 .

(2) Assume that 2<dimW <n—1 and A°(L) >n. Then any general
member S3 of |Mj] is irreducible by Bertini Theorem. Then A%(u*(La)[s,) =
n—1 and (g)s, : S35 = P (S3) is the morphism defined by |Ms|,. Let A4
be a hyperplane bundle 0w (1). Then S3 =g, Ml(A) Let W, be a resolution
r:W,— W, and let 4 =¢*4 and A4, =r*4. Then there exist a smooth _pro-
jective variety V3, a birational morphism v : V3 — V3, and a fiber space Y : Vi —
W, such that gpov=ro. Let F, be a general fiber of y and L3 = v*Ls.

(3) Assume that dim W =1. Let p: X, —» X be a birational morphism
such that the movable part of |p*L| is base point free. Let L, = p*L and let
M, be the movable part of |L,|. Let ¢, : X, — P" be the morphism defined by
|M,|. Then W =g¢,(X,). By taking Stein factorization, there exists a smooth
projective curve B,, a finite morphism w : B, — W, and a fiber space ¥, : X, —
B, such that ¢, =woy,. Let F, be a general fiber of y,.

THEOREM 2.2. Let (X,L) be a quasi-polarized 3-fold with x(X) =0 and
h°(L) > 3. We use Notation 2.1. Then (X,L) satisfies one of the following:

(1) g(L) = 24(X) — 1.

(2) dim W =2, M is not big, g(L) = q(W,) +29(Fy) = q(X) + g(F,), and
(W,, A,) is a scroll over a curve with g(W,) > 2, where we take W, as a minimal
resolution of w.

(3) dim W =1, M; is not big, g(B,) =3, and g(L) > g(B,) +2q(F,) + 1>
q(X) +q(F,) + 1.

Proof. We use Notation 2.1.

(I) The case in which M3 is big.

Then we consider a quasi-polarized 3-fold (73, M3). By Theorem 1.4, there
exist a smooth projective variety U, a quasi-polarized 3-fold (73, M;) and
birational morphlsms g1: U — V3 and 0, : U — V4 such that oy M3 = o5 M3 and
Ky + 2Mj is nef, where V75 is a normal projective variety with dim V' = 3 with

only Q-factorial terminal singularities. Then
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g(L) = g(Ls) = 1 + 5 (Ky, +2L3)L3
> 1+ (Ky, +2M;)L3

=1+ 07 (Ky, + 2M3)(07L3)*

N = N = NI'—‘

1
=1+ 5(KU + 20! M3)(a7 Ls)?

because L3 is nef. Since o{M3 =o;M; and V35 has only Q-factorial terminal
singularities, we obtain

1

g(L) > 1+ (Ky + 207 M3)(07 L3)?

— N

=1+ = (Ky + 20, M3)(07 Ls)?

—_ N

2 1+505(Ky; + 2M}) (0 Ls)?
On the other hand,
73 (Ky; +2M3) (0} (L3))?
= o3 (Ky; +2M3)(07 (M3))*
+ a3 (Ky; +2M53)((o]

o3 (Ky; +2M;) (o7 (M3))
o;(KV; +2M3)(a5 (M ))

(Kyy +2M;)(M3)°
because oy L3 and of M3 are nef. Therefore g(L) > 1+ (1/2)(Ky; + 2M3()(M3’)2 =
g(Mj). Since Bs|Mj|=¢ and V] has only Q-factorial terminal singularities,

any general section S; of |Mj| is smooth by Bertini’s Theorem. Hence g(M3) =
g(M3’[S;) > 2q(S3) — 1 by Theorem 1.8 since x(S}) > 0.

Ls) + (01(M3)))(01Z3)
2

v

Cramm 2.3. ¢(S}) = hl(@V;) = q(X).

Proof. Let A: V35 — Vj be a resolution of V; and Mj = A"(Mj). Then
Bs|M7| = ¢. Since Sj is a general member of |M}|, we may assume that S} =
A*(83) is a smooth projective surface which is a member of [M]|. Then S7 is
birationally equivalent to S; and so ¢(S3) = ¢(S;). Since S} is nef and big on
V3, we obtain that ¢(S}) = q(V3') by Kawamata- Viehweg Vanishing Theorem.
Because ¥ has only rational singularities, we have h! (Oy;) = q(V5') = q(X).
This completes the proof of Claim 2.3.
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Therefore by this Claim, we get g(L) > 2¢(X) — 1.
(II) The case in which M3 is not big.

Then dim W < 2.
(II-1) The case in which dim W = 2.

First we prove the following Claim.

CLamm 2.4. ¢q(S3) = q(V3) = q(X).

Proof. Let A = |Ms| be a linear pencil such that BsA # ¢ and a general
member of A is smooth and irreducible. (We can take this A since dim W = 2.)
Then we make a fiber space defined by A. Let ¢, : V3 — P! be the rational
map defined by A. Let 7: ¥V, — V3 be an elimination of indeterminacy of ¢,.
Then there exists a morphism /: V4 — P!. We remark that A has connected
fibers by the choice of A. Hence g(Fy) = q(Vas) = q(V3), where Fj, is a general
fiber of h. On the other hand, since S; is a general member of |M;|, we may
assume that Fj, is birationally equivalent to S3. Hence ¢(S3) = q(Fy) = q(V3) =
q(X). This completes the proof of Claim 2.4. O

Since Ky, +2L; is nef, we obtain

P

g(L) = g(Ly) = 1 +5 (4" 0 0" (Kp, +2L1))(u" 0 0*(L1))*

- N

>1 +§(ﬂ* 0 0" (Ky, +2L1))(u" 0 0%(L1))Ss

On the other hand, let £ be an effective f-exceptional divisor on V3, then
w(E)(u*00*(L1))S; =0 since O(E) is 0-dimensional. Hence

g(L)>1 +';‘,U*(KV2 +20°Ly) (1" 0 67(L1))Ss
By Claim 2.4 in [Fk4], we have
w(Ky, +20°Ly) (1" 0 07(L1))Ss
> (Ky, + S5+ (" 00" (L)) (" 0 0°(L1))Ss
= (Ks; + Lslg,)(Lals,)-
Therefore g(L) > g(Lsls,)-

Let S; be a general member of |v*M3| such that v(S3) = S3. We consider
~_np|53 S3——>A Then (l//3,S3,A,,L3|S) is a quasi-polarized fiber space.
We put N3 = L3|S We remark that g(N3) = 9(L3|S3) So we obtain g(L) >
g(N3). By construction, v*M3|~ ~ > 1F3 1, Where F3, is a general fiber of !//3
and a is a positive integer. Hence N3 — Z, 1F3 . =>0.

(II-1-1) The case in which g(4,) =0.

Let F; be a general fiber of @;
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CLamM 2.5. ¢g(N3) = g(F).

Proof (See also Theorem 3.1 in [Fk3]). Let f:S3— T be an Ns-
minimalization of (S3,N3) and Ny = §,(N3). Then N3 = f*(Nr) and Kr + Nr
is nef by Lemma 1.12. Let B;: T, — T,,1 be a blowing up at a point of T}41,
=B 10---0By, To=S3 and T, =T. Let My, = (B;_;),(Mr;~1) for j=
1,...,¢ MT,O = Z:l:l F3,,, and M7= MT,,. Then My is nef. Let MTJ =
(B;)"(Mr,11) — nE,, where E, is the (—1)-curve of f; for j=0,...,t—1. Then
we remark that n; > 0 for any j. Then

_1
(Kg; + N3)(N3 — Mr,0) = (Kr + N7)(Nr — M1,/ an
=
Since (Mr, 0)? = =L 12’; =0, we obtain that M2 = E};& njz. Because n; >
0, we obtain that Z_é nj < Zt_é nf Therefore
—1
(Kg + N3)N3 = (Kg, + N3)Mr,0 + (K7 + N7r)(Nr — Mr,1) — >on
7=0
—1
(K~ + N3)MT 0— Zn
J=0

= KS~3MT,0 + NrMp — M%
Since Nr — M7 >0 and My is nef, we obtain that NrMr — M2 > 0. Hence

(Kg; + N3)N3 > Kg Mr,0 > 2g(F3) — 2 since a > 1. Hence g(N3) > g(F3). This
completes the proof of Claim 2.5. |

Hence g(N3) > g(F3). On the other hand, by Lemma 1.14 g(F3) > 2¢(S3) —
1. Therefore g(L) > g(N3) = g(F3) = 2q(S;) —1=2q(S3) -1 >29(X)—1 by
Claim 2.4.

(II-1-2) The case in which g(4,) =

Then a >2. Indeed, if a=1, then RO(v*Ms|g) =1 and h°(v*M3) =2.
But this is a contradiction because h°(L3) RO(Ly) = hO(Ly) = hO(L) > 3.

CLAM 2.6.

9(4,) +29(F3), if NsF;=1,

where f’; is a general fiber of l//3.

Je) {24(53) ~1,  if N3F>2,

Proof. By taking a relative N3-minimalization of (1//3,S3,A,,N3) we may
assume that (x//3,S3,A,,N3) is relatively N3;-minimal (see Definition 1.11). Hence

by Lemma 1.13, Kg 4, + N3 is nef. Since N3 — >, F3,, > 0, we obtain
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=2a(g(F3) — 1)+ Y_ N3F3 ,,
=1

where F3 is a general fiber of l//~3
On the other hand

L (Ke ), + NNy + (NsFs — 1)(g(A,) — 1).

g(N3) = g(Ar) + 2( S3/A,

Hence
9(N3) = g(4,) +a(g(F3) — 1) ZNan, (NsF5 = 1)(g(4,) - 1).

If N3Fs > 2, then p N3F3,, > 2a >4 and we obtain
g(N3) = 2g(4,) — 1 +2g(F3)
=2(g(4,) + g(F3)) — 1

> 2q(S3) - 1
since a > 2.
If N3F3 =1, then there exists a section C3 of ¢3 such that N3 — C3
Yo 1F3 , >0. Since N3 -3 F3, is contained in fibers of 1/13, we obtain

N3C3 > (C3 + Z, 1F3 ,)C3 Hence

(K., + N3)N3 > Z( 54 VB + (Kg,, + N3)Cs
Z( S3/4, +N3)F31+( S/AC3+(C3 +ZF3,C3
—Z( $/a, T N3) F31+ZF31C3
=1
= (Zag(F3) —a)+a.
Hence (K§/A + N3)N3 > 2a(g(F3)) >4g(F3) This completes the proof of
Claim 2.6. O

If N3F;>2, then g(L) > g(N3) >2¢(S3) — 1 =24(S3) — 1 2 2¢(X) — 1 by
Claim 2.4. So we consider the case in which N3F; = 1.
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If (W,,A4,) is not a scroll over a curve, then g(4,) = 2q(W,) —1 by Lemma
1.15. (We remark that (W,,A4,) is A,-minimal because W, is a minimal res-
olution of W.) On the other hand g(F3) = q(Fy). Hence

g(N3) = g(4,) + 29(F3)
>2q(W,) +29(Fy) — 1
>2q(X) - 1.

Hence (W,,4,) is a scroll over a curve if g(L) < 2¢g(X) — 1.
If g(4,) =1, then ¢q(W,) <1 and we obtain

g(L) = 1+ 29(F3)
> 2q(W,) — 1 +2g(Fy)
>2q(X) - 1.

Hence g(4,) > 2 if g(L) < 2¢(X) — 1.

(II-2) The case in which dim W = 1.
Here we use the notation in Notation 2.1 (3). We remark that M, ~
Z,b:l F,, for some positive integer b and a general fiber F,, of ¢,.

(II-2-1) The case in which g(B,) =0.
Then b > 2. Indeed if b = 1, then h°(L,) = h°(M,) < 2. This is a contradiction
since h°(L,) = h°(L) > 3.

By the same argument as the proof of the Case (2) of Theorem 2.1 in [Fk4],

g(L) = g(La)
1
2

1
>1 'f“‘(I(Xal +2L,)L M,

=1+=(Ky, +2Ly)(Ly)?

- N

= 1 + = (KXN + Moz + La)LaMoc

N

b
=1 +§(KF1 + La|F,)(L°<|Fa)’

where F, is a general fiber of ¢,.
Since x(F,) =0 and b > 2, we have

g(L) = 1+ 2g(Lalf,) — 2
=2g(L,|,) — 1.

On the other hand, ¢(F,) > ¢(V,) = q(X) and g(L.|z,) > q(F,) since h°(L,|z) >
1. Therefore
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g(L) = 29(La|f,) — 1
= 2q(F a) -1
> 2¢(X) — 1.
(II-2-2) The case in which g(B,) = 1.

Then we remark that b>3. Indeed if b<?2, then Ah%(L)

147

=h(L,) =

h°(M,) < 2 since g(B,) > 1. But this is a contradiction. We consider the quasi-
polarized fiber space (y,, Xy, By, L,). By the same argument as the proof of the

Case (1) of Theorem 2.1 in [Fk4], we can prove

g(L) = g(L.)
= 9(B.) 3 (K, + 2La) (L + (g(B2) — V(L2 — 1)
2 9(B) + 5 (Ky,js, +2La) LM,
> g(B ) b (KX /B + 2La)LaFu

2

where F, is a general fiber of ¢,.
Since b >3 and «(F,) >0, we obtain that

b
g(L) = g(By) + E(KFa + 2La|F¢)La|F,

3
> g(By) +39(Lalp) — 3+ E(Laln)z'

Since g(L) € Z, we obtain that
9(L) = g(Bx) +39(Lalp,) —3+2
=9(Bx) +29(Lalp,) + 9(Lalp,) — 1.

Because x(F,) >0, we have g(Lyr)>2. Moreover g(L.|f) >
h°(Ly|r,) > 0. Hence

9(L) = g(Ba) +29(Lalf,) + 1
> g(By) +2q(Fy) + 1
>q(X)+q(F,) + 1.
If g(B,) =1 or 2, then
g(L) = 29(By) — 1+ 29(Lslf,)
2q(V,) — 1
=2q(X)—1.

This completes the proof of Theorem 2.2.

Y

q(F,) since
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3. Conjecture

Before we propose the Conjecture, we give the notations used later.

NoratioN 3.1. Let (X, L) be a polarized n-fold with A°(L) > 2. Let |M|
be the movable part of |L|, and let Z be the fixed part of |[L|. We put Xp = X,
Ly=L, and My = M. By Hironaka Theory, there exist a sequence of blowing
ups: iy : Vo g — Va k- along a smooth center Bi_i, and a non-negative integer
t such that Bs|M; =0 and Bs|M;, 1| # 0, where M, is the movable part
of |ui(Mzk-1)|. Let u=pjo---op, X'=X,, and M' =M, Let E be the
1y-exceptional effective divisor and Z’ = u*L — M’. Then there is a morphism
oy X' — PV defined by |M'|. Let W= (p,M,,(f\:’). Then there exist a
normal projective variety W, a morphism ¢: X' — W, and a finite morphism
e: W — W such that ¢, =¢eo0¢. Let r: W, — W be a resolution of W.
Then there exist a smooth projective variety X”, a birational morphism 0’ : X" —
X', and a fiber space f”: X" — W, such that go @ =ro f”. By definition
there exists an ample and spanned line bundle 4 on W such that M’ = ¢}, (4).
Let A=¢*(A) and A, =r*(4). We remark that A4, is nef, big, and spanned.
Let L" = (0')*(L') and let F” be a general fiber of f”.

CONIECTURE 3.2. Let (X,L) be a quasi-polarized manifold with dim X = n,
k(X) =0, and h°(L) > n. We use Notation 3.1. Then (X, L) satisfies one of the
following:

(1) g(L) = 29(X) — 1.

2 2<m=dmW<n-1, M is not big, g(L)=q(W,)+2q(F")+
(n—m—1)>q(X)+q(F")+ (n—m—1), and (W,, A,) is birationally equivalent
to a scroll over a curve with q(W,) >n—m+ 1.

(3) dm W =1, M’ is not big, g(W) =n, and g(L) = g(W,) +2q(F") +
(n-2) 2 (X) + q(F") + (n - 2).
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