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HITTING DISTRIBUTION TO A QUADRANT OF
TWO-DIMENSIONAL RANDOM WALK

YASUNARI FuUkal

Let H;(&,7) be the probability that a two-dimensional simple random walk
starting at & hits the third quadrant L for the first time at #. The main objective
of this paper is to investigate the asymptotic behavior of Hp(&,7). It is es-
pecially proved that there exists a constant Cy such that for £ € Z>\L and /€ N,

|HL(&, (=1,0)) = he (&, (=1,0)] < Coflé + (1,0)[ 7 + &7,

where A7 (&) is the density of the hitting distribution to the third quadrant of
two-dimensional standard Brownian motion starting at &. This estimate is sharp
at least in the sense that the powers —2/3 and —5/3 can not be improved.

1. Introduction and statements of results

Let {S(n)}, be a two-dimensional simple random walk starting at ¢ € Z?,
namely,

S(0)=¢ and S(n)=S(0)+ zn:Xk,
k=1

where Xi, X3,... is a sequence of independent, identically distributed random
variables that take four values (1,0), (—1,0), (0,1), (0, —1) with equal probability.
We denote by P; the probability law of the process {S(n)},-,. For a subset 4
of R? such that ANZ? # ¢, define

ty =inf{n > 1:S(n) € 4},
the hitting time of 4. Since S(n) is recurrent, 74 < oo a.s. The hitting dis-
tribution Hy(&,n) is defined by

Hy(&n) = Pe{S(ta) =1}, ((€Z\A,neANZ?).
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By the definition of simple random walk, this is a probability measure on
(1.1) ANZNA) :={neZ’NA|HNeZ\A:|n-{ =1}

We use complex notation { ={; +i{, € C, i=v—1, instead of { = ({;,{;) € R?
for the sake of convenience: The notations ||, { and arg(¢) are used in the usual
sense. Put

L={({eC:R({) <0 and 3({) <0}
(the third quadrant of C) and
C'={{eC:R({),3() e 2}

(the set of all lattice points of C). Let W(s) be a two-dimensional standard
Brownian motion on a probability space (Q,%#, %) and T, the corresponding
hitting time:

Ty=inf{t >0: W(t) e A}.
Let h4 denote the Brownian analogue of Hy, ie., for x+iye C\L, z > 0,
0
hi(x+iy,—z) = E.@{—Z < W(TL) <0|W(0)=x+iy}.

The objective of this paper is to investigate the asymptotic behavior of H;. The
function A, has an explicit expression by means of a Bessel function, so that fine
bounds for the difference Hy — h; will provide fine estimates of Hy. The main
results are stated as Theorems 1.1 through 1.8 below.

THEOREM 1.1. There exists a constant Cy such that for £€ C*\L and l € N,
(12) |HL(&,=1) = he(&, =D < Co{lg + 117> + g7,

THEOREM 1.2. For any & e C*\L, there exists a positive constant c1(£) such
that for [ € N,

(1.3) Hy (&, -1) = ¢, (&)I7%,

THEOREM 1.3. For 6 € (0,n/2) and [ € N, there exists a positive constant
¢1(0,1) such that for £ € C*\L with —(n/2) +0 < arg(£) < m — 4,

H(&,-1) = &6(0,1)]e7.
Remark 1.1. For x,z e (0,400), we can write

2 x VPP, oz
hL(x, —Z) = g (m) (E) (Slng)M(X, Z),

where M (x,z) is bounded both from above and from below by positive constants
and satisfies



HITTING DISTRIBUTION OF RANDOM WALK 37
M(x,z) —» 1 as (x/z) v (z/x) — 4o

(see (2.12) and (2.13) below), where a v b = max{a,b}. From this, the estimate
of Hy(k,—!) in Theorem 1.1 is seen to be quite sharp when both k and / are large
(in fact the powers —2/3 and —5/3 appearing in (1.2) cannot be improved; see
Remark 1.4). However it does not give the lower bounds of H; as Theorem 1.2
and Theorem 1.3 do.

COROLLARY 1.4. For any J € (0,7/2), there exists a positive constant ¢ such
that for le N and £ e C*\L with —(n/2) +6 < arg(&) < m — 9,

%hL(f, 1) < Hy(& 1) < chy (&, ~1).

By means of Green’s function
e}
Ga(&,n) == P{S(n) =n,74 > n},
n=0

H,4(&,n) can be expressed as

(1.4) Hi&m = > Gu&OPAS(1) =1} (€C\4,neANC?)
teC\4

(see Spitzer [8, §15]). Put

B={{eC:3() <0}.
The reflection principle then shows that for &,7 e C*\B,
(1.5) G(&,m) = a( —7) —a( —n),

where a(£) is the potential function, that is,
a(€) =Y (Po{S(n) = 0} — P{S(n) = 0}).
n=0

It is well known (Spitzer [8, p. 148]) that
a(0) =0,
a(l) = a(-1) = a(i) = a(-i) = 1,

a(2) = a(-2) = a(2i) = a(-2i) =4 — %,

a(k + ik) -izk:-l—
TS 2j—1

Fukai and Uchiyama [2] provided the following asymptotic expansion for

a(é):
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& EN2
(16)  a(e) = |¢|+10g8+2y+61—n-8—(“"%3——1+ o(lE™),

where ¢ = (wf,wz) £/|¢| and y is Euler’s constant, and by using this, the
estimate

(1.7) Hp(ik,1) = hp(ik,1) + O(|ik +1|7?),
where hpg = hp(x +iy,z) is a Brownian analogue of Hp and explicitly given by

y

hB(X + ly, ) p m

The estimate (1.7) will play a crucial role in the proof of Theorem 1.1.

Remark 1.2. Let

B ={{eC:—R() > ()},
V={leC:—R({) < IO}U{le C:RQ) >3O},

(see Figure 1) then the reflection principle gives the relations
(1.8) Gp(&m) = a(l+if) —a(—1n), (&neC\B)
and
Gv(&m) = a(=¢ —in) —a(=E+n) +a(=¢+ i) —a(=¢—n), (&neCT\V).

We can also compute the following estimates. For £ e C*\B’ and /€ Z,

. . 1 &+ &
1. ! — = ’ — - - =
(19)  Hp(&,1—il) = hp (&1 —il) +5- Ry
4G =D+ &)’ 4G -D + G+’
mo|E—1+idl® |-+l

+0(E =1+,

where

Figure 1: The regions V,Bj,B; and Bj.
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l xX+y
T (x-2)"+(y+2)°

hp(x+iy,z—iz) =

For e C*\V and /e N,

(1.10) Hy (& ~1+il) = hy (&, —1+il) + O(|E + 1 — il| ),

where hy(x +iy,—z+iz) = hg(—x —iy,z —iz) — hg(—x — iy, —z + iz).

There is, however, no simple relation between G, and a(¢) as those for G,
Gp and Gyp. To calculate Hy, we derive relations among H;,h;, Hg and hp.
By using (1.7) and an explicit representation of 4, as given later, such relations
lead to the estimate of Theorem 1.1.

Let

B, ={{eC:3({) <0}U{le C:R({) =3},
B, ={(eC:R()<3() <0}

(see Figure 1). The same method as proving Theorem 1.1 can be adapted for
deriving (6.6) in §6 and the following estimates. There exists a constant C such
that for £ e C*\B, and # € 0(C*\B,),

|Hg, (&,1) — hg, (&, m)| < CLUE—nI7> + &7 (nl + D)7PUE A () + 1)),
and for £ e C*\By and 5 € 0(C*\By),

|, (1) = b, (&) < CUIE =l + 17 (il + )77,

where h4(x +iy,-) is the density relative to Lebesgue measure on the boundary of
A of the hitting distribution to 4 of two-dimensional standard Brownian motion
starting at x + iy.

Put

B ={{eC:-R({) <3(}U{leC:3() <0}
(see Figure 1). It is easy to see that for £ € C*\B; and # € d(C*\By),
(1.11) Hp, (&,m) = hy, (&) + O(1E = n|)
from (1.7), (1.9) and the relations
(1.12) Hpg (&, —1+il) = Hp (=& 1 —il) — Hp (¢, -1 +il)
— Hy (=&, - il) + Hy (=&, —1 +il),
Hp, (¢, —1) = Hp(¢,—1) — Hp(S, 1) — Hp(—i&, 1) + Hp(—ig, —1),

that are given by the reflection principle and symmetry of simple random walk.

The estimates (1.10) and (1.11) are sharp at least in the sense that
O(J¢ — 7™*) can not be replaced by o(|¢ —5|™*). For s (0,1) and / > 1/s, we
put & = —I+i[sl], where [a] denotes the greatest integer not greater than a.
Then from (1.9) and (1.12) it is easy to deduce that there exist constants
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so€(0,1), loe N and C > 0 such that for [ > I,
Hp, (&0, =1+ il) — hp, (&0, =1 +il) = C(1 — 50) 173,

Thus O(|¢ — 5|™>) cannot be replaced by o(|¢ —#|™°) in (1.11). The reasoning
for (1.10) is similar.

THEOREM 1.5. For any k € N, the following limit exists
¢* (k) := lim PPPH(k,—-1).
—00

The function c* is characterized as a unique solution to the equation

o0
(1.13) c*(k) =Y _ Hg(ik, j)c*(j), (keN)

=1
with the boundary condition limy_, k=*3c*(k) = co, where cy = (2/37)sin(n/3).

THEOREM 1.6. For any le€ N, the following limit exists

c(l) = lim k*3Hy (k, —1).

The function c. is characterized as a unique solution to the equation

00

(1.14) e(l) = c.()Hs(ij,1), (leN)

J=1

with the boundary condition lim;_,, ['/3¢c,(I) = ¢y, where cy is the same constant as
in Theorem 1.5.  Moreover, limy_,., k/*Hy (k,0) exists and the limit is expressed
by means of c¢. and Hg as

(o]
(1.15) Jim k2P Hy (k,0) =2 (/) Ha(,0).
J=1

Remark 1.3. We can show that for &e C*\L, there exists lim;_ I*/3-
Hp(&,—1). The limit is expressed by means of ¢* and Hp as follows:

0

Z B(&, D), R(E) <3(9)
(1L16)  lim IPHL(E 1) = O:O
> HalE 1) RE) > I

It is related to A,(&,m,7/2) appearing in Kesten [S5, Theorem 1] as follows:

20+n
3 K

(1.17) lim PRHL (& 1) = &P, n/Z)%sin(
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where (||, 6) is the polar coordinate of &, —n/2 < @ < n. Notice that & and i€ are
mirror images of each other with respect to the diagonal {x+ix:xe R}. The
representation (1.16) gives

(1.18) lim 133 Hy (&, —1) = lim I’ Hy (i€, —1).
-0 I— o0

Since lim,_,., I*/*H (&, —1) is quite sensitive to the change of ¢ as realized e.g.,
by the fact that lim; ., [*H, (i, —/) is equal to

1. . .
a {llgg PPPRH (2i,-1) + Jim PRH(1+i,-1) + Jim PRH (-1 41, —1)},

(1.18) may seem strange coincidence. It, however, simply explained by

|Hp(&,—1) — He(i€, —1)] < Hp(&, 1) (if R(E) <3I(&))
(as is seen by reflection with respect to the diagonal R(¢) = J(¢)). Moreover,
we can show that for 6 € [n/4,7n),

w2 du.

1(* sin @
1.19 lim |E|¥PHL(E ~1) = cu(l —J
(1.19) aTgl(@ﬁgiél (& —1) = el) o 0207 (cosf— 1)’

In the particular case when & =ik we have

(1.20) Jlim K*3Hy (i, —1) = c.(]).

Remark 1.4. We shall see in §4 that neither of k=%/3c*(k) and ['/3¢,(l) is
constant, while both x=2/3lim,_, o, z%/3h;(x, —z) and z!/3lim,_, x*/*hr(x, —z) are
constant (= ¢p). This is the reason that the powers —2/3 and —5/3 appearing
(1.2) cannot be improved. By Theorem 1.1,

(DI = ¢g = O(I7*3),
and for £e C*\L,
.
sin((2600 + 7)/3)’

where (|¢],6p) is the polar coordinate of &, —n/2 < 6y < m and C) is a constant
independent of & in particular c*(k)k=2/3 — ¢y = O(k™%/3).

(121) |lim P“HL(é,—l)/gg Py (e, 1)~ 1] < il

Remark 1.5. With the help of invariance principle and a simple estimate of
the difference Hy (&, —1) — Hp (¢, —1 — 1) (see Remark 2.1 in §2), we can readily
deduce from Theorem 1 in Kesten [5] that there exists lim;_, /*/*Hy (&, —1) and
these limits are positive and satisfy (1.17). In Kesten [5], however, it does not
seem to be identified with anything. We also deduce from Theorem 2 in Kesten
[5] that for €€ (0,1/8], there exists a constant K° = K°(¢) < oo and a function
0(e,1) = 0 such that

0(e,1) >0 as Il — oo,
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and for each £e C*\L with |&] < (1 —2¢)l

(I€l/n

IHL(év —l) _hL(é7_l)| SK0{|¢’|_1/3+/)(|§|/1)+(1/1)}1’5/3

where

&) = inf{|{—x|:x<0} if& >0
()_{inf{|é—ix|:x30} if & <0.

Theorem 1.1 is an improvement of this estimate.

For a finite subset 4 of C*, the hitting distribution of 4 by the random walk
starting at infinity may be defined by

()= lim Hy(60) (e d)

(the limit exists and > ,. ,u(¢) = 1, Spitzer [8, §14]). Let
Ln)={-leC*:0<l<n}U{-ileC*:0<]<n}.

Theorem 1.6 is useful for investigating the asymptotic behavior of s, (—/).
THEOREM 1.7. There exists a positive constant o such that
nlLII;lO nZ/SﬂL(n)(_l) = 0Cx (l)v (1 € N)s
where c, is the same function as in Theorem 1.6.

Remark 1.6. The existence of lim, .o, n*/3p;,y(—1) is obtained, as a special
case, by Kesten [5], in which, however, the identification of it as in Theorem 1.7
is not considered.

Remark 1.7. Auer [1], Kesten [4] and Lawler [7, §2.4] provided some bounds
of the hitting probabilities 1. In those papers, Auer, Kesten and Lawler used
the fact that there is a positive constant C such that if a finite connected set
A = C* contains the origin and # € 4 then

1
(1.22) "C:Pn{faazr) <t} < () £ Ch{tocn < 14},

where r=r(A4):=max{|{]|: € 4},C(r)={leC*:|{|<r} and IC(r)=
{€eC"\C(r) |30 e C(r) : |¢={| =1} (as in (1.1)) and computed P,{7sc(2r) < T4}
instead of u,(n). This method is an important tool to compute a bound of w,(#)
but would give no information about ['/?lim,_qn*3u;, (1) except for
boundedness.
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THeorEM 1.8. Let gr be the Green function of L for two-dimensional
standard Brownian motion. Then there exists a constant Cy such that for & ne
C*\L with & #n,

(1.23) 1GL(&,m) = 29.(&,m)| < Cofl& =17 + 1P ml ),

Remark 1.8. From (1.2) in Theorem 1.1, we can show that there exists a
constant C such that for & ne C*\L,

23
v IE — n)2 <] ||
(1.24) Gr(&n) < C{K’l Inl(1 v [E—n))""+ (_mz T |’7|2) }

For &7 e C*\L with & # 15, we write

€] 17 ”
Sy L/ ()

Then M(&,7) is bounded from above by a constant multiple of

1/3 2/3
( 1l |n|2) <|é|2+|'12|2> »
€=l 1€ =]

For ¢ € (0,7/2), we restrict gz, to {(&,7) e C x C: —(n/2) +0 < arg(&),arg(y) <
n —J}, then M(&,7) is bounded from below by a positive constant (depending on
0). With the help of these bounds of g, (1.23) gives the upper bound of G, that
is the same bound as (1.24) and also gives a lower bound of Gir.

2. Preliminary lemmas

In this section we give preliminary lemmas to calculate bounds of Hi; in
particular we introduce relations among H;, Hg, h;, hp, fundamental in our proof
of Theorem 1.1, which connect the discrete object H; with the continuum one
hr. As mentioned in the introduction, the estimate (1.7) plays a crucial role to
obtain a result so sharp as given in Theorem 1.1. To exploit (1.7) effectively, it
is important to suitably define a continuum extension Hg(x,—z) of Hp(k,—I) as
given in the first subsection below.

2.1. Fundamental relations among H, h;, Hp hp and y

The strong Markov property shows that for ¢ e C*\L with 3(£) >0 and
leN,

1) HL (&, 1) = Ha(e, ~1) + 3 Haé, j)HL(j, ~1)
J=1

and that for £ e C*\L with R(¢) >0 and /e N,
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(22) Hi(&,—1) =Y Hg(& i) HL(ij, 1),
=1

where B={{eC":R({) <0}. By these equalities and by symmetry, i.e.,
Hg(k,ij) = Hp(ik, j) = Hp(ik,—j), HL(k,—I) may be written as

(2.3) Hy(k,—1) = H2(ik,I) +ZHB(11< HHL(,—1).

J=1

Here H3(ik,!) and in general HJ(ik,/)n=1,2,... are defined by H}(ik,l) =
HB(ik, l) and

Hp(ik, 1) ZH (ik, j)Hp(ij,1) = > Hp(ik, j)Hp(ij,1).
J=1

Iterating (2.3) we obtain

]

(2.4) Hp(k,~1) =Y H'(ik,1).
n=1

Put
xy=k if k—1/2<x<k+1/2,

and define H2(ix,z), an extension of H} to a function on {(ix,z) : x > 0,z > 0},
by

HA(i{x),<z)), if x>1/2,2>1)2

Ag(ix, ) =
p(ix,2) { 0, f0<x<1/2 or 0<z<1/2.

Then
~ © ~ bad
Hp(ix,z) = J Hpy \(ix, y)Hp(iy,z) dy.
0

Let H; be a similar extension of Hy, or what is the same thing

o0
(2.5) Hy(x,—z) =) Hy'(ix,z).
n=1
Similarly
[ee]
(2.6) ho(x,—z) = h3'(ix,z).
n=1

Here h}(ix,z) is defined by h}(ix,z) = hp(ix,z) and

o0
K, 2) = j 1 (ix, y)hs(iv, 2) dy.
0
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Remark 2.1. It is the following estimate for £e C*\L and /e N
(27) |HL(&,~1) = HL(&,~1 = 1)| < CE+17 v I HL(E 1)

(C is a suitable constant) that is mentioned in Remark 1.5. It is immediate
from (1.7) that |Hp(&, —1) — Hp(&, —1 — 1) is bounded by a constant multiple of
|&+1]""Hpg(&,—1). By (2.4) we have

[oe]
Hy(k,—1) = Hy(ik, 1)+ Hy(k, —j)H(ij, 1)
J=1
which shows that for a constant C

Bk, ~1) ~ Hy (b~ ~ )] < 5 Hy(k, 1),
Combining this inequality with (2.1) and (2.2) yields (2.7).

For measurable functions F; and F, from (0,+0) x (—00,0) to [0,+00), we
define

0
FiF(x, —2) = j Fi(x, —y)Fa(y, —2) dy.
0

When we use this notation, we regard /4y, as the function restricted on (0,+00) x
(=00,0).

Lemma 2.1. For x >0 and z > 0,

(28) (ﬁL - hL)(x, _Z) = (y + yﬁL + hLy + hLyHL) (x> _Z))
(2.9) (f{L —hr)(x,—z) = (y + yhr + FIL)’ + I:ILVhL)(x> ~z),
where

y(x, —2) = Ha(ix, z) — h3(ix, 2).

Proof. Let
yi(x, —2) == Hj(ix,2) and  p(x,—2) = h3(ix, ).

y; and y, are functions from (0,4+00) x (—00,0) to [0,+c0) and satisfy y =
y; — 5. We rewrite (2.5) and (2.6) in the form

f{L('x> ~Z) = yl(x? _Z) + VIHL(X) —Z)a
hL(x1 _Z) = yZ(X’ _Z) + hLyZ(x, _Z)‘
It is immediate to deduce the following three identities
Hy—hy =y +yHL —hoy,,
v Hy =yHp +h Hy — hyy,Hp,



46 YASUNARI FUKAI

and

hry, = —hpy + h Hp —hpy Hp.
Substituting the latter two into the right-hand side of the first, we get (2.8). We
rewrite (2.5) and (2.6) in the form Hp =y, + Hry, and hy =y, + pyh. If we

write down the decompositions of Hyy, and p,h; instead of y, H; and hry, in the
above, we obtain (2.9). The proof of Lemma 2.1 is complete.

2.2. Estimates of 4,
For ¢ € C\L and z >0, h (&, —z) is expressed as

(2.10) hL(g,_z)=i§:(_1)m+1m< ¢z )2

nm:l [C|2+22
1 gz} & gz \
z z
'{E+<lé|2+z2)+,;c (m +22> }

Here v,, =2m/3, c(v,n) = (v+2n—1)(v+2n—2)---(v+n+1)/n! and (|¢|,0) is
the polar coordinate of &, —n/2 < @ < m. This expression is shown by the usual
eigenfunction expansion of a harmonic function. We give a proof of (2.10) in
the appendix. We have the following consequences of this expression.

LeEMMA 2.2. There exist constants c¢; and c3 such that for z > 0 and £ € C\L,

@.11) ho(E,—2) < {1+'é’ *f}aa 2),

and that for z >0 and & e C\L with || € (0,z/2)U (3z/2, o),

2/3
(2.12) hL(é,—z)—coh(|f|,—z)%sin<29;n)’<cah(|f| —z)(m Iél>,

2/3 1/3
X 1
)= () ()

(&1, 8) is the polar coordinate of & and ¢y = (2/3n)sin(n/3) (the same constant as
in Theorem 1.5). Moreover, for each 6 € (0,7/2), there exists a positive constant
c(d) such that if z>0, £e€ C\L and —(n/2) +9J < arg(&) < n — 9, then

(2.13) %h(lfi, —z) < hp (&, —z) < c(0)h(|¢], —2).

where
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Proof. To prove (2.12), we calculate ¢(v,n). By using Stirling’s formula,
we obtain that for v>0 and n > 2,

(o) < ¢ (v+2n)""" 1 1 1
R I e s \/_
= eyl (1= gy PP

\/v+2n\/v-}-n—\/_ﬁ7 T v42n’

where ¢4 is a constant (independent of v and n). The function f(¢) := rlogs+
(1 —1)log(l —¢), 0 <t <1, attains the minimum log(1/2) at t=1/2. Hence

1
(v+n)yn

gz}

z

= C(Iélz +22> EI(]&I,Z),
where

2-2/3 2n-2/3
I(x z)——4— SR +i2“/3 2x2 /
T on f\x2 4 22 x2 422

n=2

KOGl I % 2xz
+ Z (x2 + 22) {a (xz ¥ 22) Zz X2+ Zz

If |¢] € (0,2/2)U (3z/2, ), then 2J&|z/(|&|* + 22) < 12/13, so that I(|¢],z) < C
This gives the asserted bound of /. (&, —z).

From (2.12), it is easy to see that there exists a constant c¢s such that for
z>0 and ¢ e C\L with |£] € (0,z/2)U (3z/2, w0),

(2.14) hr (&, —z2) < esh(|E], —2).

To complete the proof of (2.11), it is sufficient to show (2.11) for z/2 < |¢] <
3z/2. Assume & e C\L with R(&) < J(¢&). By the strong Markov property, we
obtain that

c(v,n) <2"*2¢cy x

This inequality implies that

e, =2) = coh(¢],—2) zsin(25F)

(2.15) he (&, —z) = hp(&,—z) + J;O hs(&, )he(y, —z) dy.

It is clear that hp(£,—z) is bounded by |&|/(n|¢ +2|?). We decompose the
second term on the right-hand side above into two parts, one the integral of
hg(&, y)he(y, —z) over (0,z/2)U(3z/2,+00) with respect to y and the other that
over [z/2,3z/2]. (2.14) implies that the former is at most the integral of
cshp(&, y)h(y, —z) over (0,4+00). This is bounded by a constant multiple of z~!
as shown by the inequality

mhe(&, y)h(y, —z) < \/Elfrly2/32_5/31(0,2|§|]( )+2y7° 1/31 ¢, +0)(¥)
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that follows from

(2.16) £ -yl > %Im,zwu(y) + %Rzla,m)(ﬁ’

for R(&) < 3(¢). From the expression (2.10), zhr(y,—z) is symmetric, i.e.,
zhy(y,—z) = yhp(z,—y). This implies that for z/2 <y <3z/2, hi(y,—z) <
(3/2)h(z,—y). Using this bound and noticing that A;(z,—y) is a probability
density, the latter is bounded by a constant multiple of z~!. Since
|é| € [z/2,32/2], we can replace z~! by a constant multiple of A(|£|, —z). Assume
¢e C\L with R(&) > 3(&). By the strong Markov property,

o]

(2.17) he (&, ~2) =j0 ha(iZ, )i iy, —2) dy.

The bound 4y (iy,—z) < Ch(y,—z), which has already been shown above, implies
that the right-hand side above is bounded by a constant multiple of z~! (recall

€] € [2/2,32/2]).

Proof of (2.13). The upper bound is immediate from (2.11). Let V(d) =
{¢e C\L: —(n/2)+0 < arg(é) <m—9J}. From (2.12), it is enough to show
that for given ng € IV there exists a constant C(d,no) such that if &€ V(4), z> 0
and (z/|¢]) A ([€]/z) = 1/no, then

hL(éy _Z) = C(aa nO)h(lél’ _Z)'

This follows from the inequality A.(&, —z) = Iiwe)<3(e3h8(E —2) + Ime)>3)) -
o2 hB(iE, y)hp(iy, —z)dy (see (2.15) and (2.17)).

2.3. Estimates of some elementary integrals
Let f be a nonnegative measurable function on (0, +oc0) and u and v positive
numbers. Then we obtain that

[ee]

1) u/v
J (P +ur) Py dy < ou P J f(ow)dw + v~/ J w43 f (ow) dw.
0 0 u/v

Let
H () = fila, p,v,9) = y 1o q(y)(1 v log(v/y)).

Assume —1 < p < 1/3. We are going to calculate

ufv 0
(2.18) ou4/3 J fi(ow)dw +v71/3 J w3 £, (ow) dw.
0 ufv

Let a <u and e <v/a. Then the second term of (2.18) vanishes and, using that
p > —1 and performing the integration by parts, the first term is seen to equal

1 alv
w43 aP*log(v/a) + vP+! J wP dw 3;
0

p+1
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hence
(o8]
(2.19) JO (V¥ + 1) fi(y) dy < Kju*2a"* log(v/a),

where K! is a constant that depends only on p. In the case a <u and e > v/a,
the second term of (2.18) also vanishes. We decompose the first term into two
parts, one the integral of u~*/3v”*!wPlog(1/w) over (0,1/¢) and the other the
integral of u=#/3vP*!w? over [1/e,a/v]. Recalling that p > —1 and combining
this decomposition with (2.19), we obtain that if a <4,

o0
j 02 +) 1 (y) dy < K'u a1 v log(v/a),
0

where K;’ is another constant depending only on p. The case a > u is similarly
dealt with; we consider the cases v/u < e, v/a <e < v/u and e < v/a separately,
and as above we use the integration by parts and the assumption that p < 1/3.
The second term of (2.18) is at most (6/(1 —3p))u?~'3(1 v log(v/u)). In
consequence we obtain that for pe(—1,1/3),

(2.20)

Ja(yz +u?) PP (L v log(v/y) dy < K *P (@' A u?*h)(1 v log(v/(a A w))),
0

where v is an arbitrary positive number and K, is a constant depending only on
p. The same argument also shows that for p < —1,

(o]

(2.21) j (% 4+ u2) Py (1 v log(y/v)) dy

- K,a?~'3(1 v log(a/v)) (a>u)
K {aPt (1 v log(a/v)) + uP (1 v log(u/v))} (a < u)

and that for p e (—1,1/3),

(2.22) J:(yz +u?)2Pyray < Ku =3 (Pt A urth)
and for p < -1,

(2.23) r( Y +ud) Pyl dy < Kyt (@ A ut).

The bounds (2.20), (2.21), (2.22) and (2.23) will be used on several occasions in
the succeeding sections.

LemMma 2.3. There exists a constant cg such that for x >0 and z > 1/2,

|gB(ix7 Z) - hB(iX, Z)I < C6(x2 + 22)—17
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and that for ke N and |l € Z,
|Hp(ik, 1) — hp(ik,1)| < co(k> + 1%) /2.

Proof. The second assertion is a restatement of (1.7). The order
O((x*+z2)7") of the first comes from the difference between hp(i{x),{z>) and
hp(ix, z).

2.4. Estimates of y

In this subsection we derive estimates for y(x,—z). In the first two pre-
liminary lemmas we give some estimate of y(x, —z) by using the first inequality of
Lemma 2.3. If x and z are elements of IN, then we deduce a sharp estimate of
y(x, —z) (Lemma 2.6) from (1.7). In its proof it will be revealed how important
the manner of the definition of Hp is for exploiting the relation (1.7) effectively.

LemMa 2.4. There is a constant ¢; such that for z > 1/2 and x > z,

c7
(2.24) e —2)l < L,
and that for z > 1/2 and x € (0, z),
(2.25) Ip(x,—2)| < (1 v log(z/(x v 1))).

Moreover, there exists a constant cg such that for x>1/2 and z > 1/2,
(2.26) [h2(ix, z) — h3(i{x),2)| < = (1 v logz).

Proof. We write

y(X, _Z) = }’3(X, _Z) + y4(x7 —2)7
where

yy(x,—2) = j: Hy(ix, y){A(iy,2) — ha(iy, =)} dy,

and
o, —2) = L {Hp(x, y) — hp(ix, ) Yha(iy, 2) dy

We apply Lemma 2.3 to see that
yx,—zsjhzxy dy + c(x7? /\z‘J dy.
=2l s | s )35+ i .57
The second term on the right-hand side above is equal to 2¢2(x72 A z72). By
replacing 1/(»? + z2) by 1/22, the first term is at most (cs/2)z=2. The obvious
inequality Ap(ix, y) < 1/(xn) implies that it is also at most (cs /2)x 1271, Thus

[y3(x, —2)] < Cz7}(x"' A z7!). By Lemma 2.3 again, we have
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1 (2 1 g
2.2 —2)| < — ] L ———hp(i .
I e e AR et e e L

By the same reason as above, the first term on the right-hand side of (2.27) is
bounded by a constant multiple of z7!(x~! A z7!). It is easy to see that

JOO ! 4 dy < 1nya'yl +JOO : dy
X2+ yr yr 4z T Xz, BTy )

The first term on the right-hand side is at most (1/2)z"2. The second term is

equal to
1 z 2
ylog(l + <—x v (1/2)> )

Hence the second term on the right-hand side of (2.27) is bounded by 3(cs/z?x) -

(I vlog(z/(x v 1)). By symmetry, we see that the second term on the right-

hand side of (2.27) is also bounded by (3¢s/7)(x v z) (1 v log((z/x) v (x/2))).
We notice that for x > 1/2, the difference between hg(ix, y) and hg(i(x), y)

is bounded by a constant multiple of (x? + y2)~'. The definition of 4% implies

that for x > 1/2 and z > 1/2,

[ee]

|h2(ix, z) — h3(i{x),2)| < C J hs(iy,z)dy.

0o X2+ y?

We have the desired estimate for |h3(ix,z) — h3(i{x),z)| by the same argument
as showing that the second term on the right-hand side of (2.27) is bounded by
(3ce/m)(x v 2)72(1 v log((z/x) v (x/z))). The proof of Lemma 2.4 is complete.

LeMMA 2.5. There exists a constant c9 such that

(2.28) [p(x, —2)| < coz™' for ze€(0,1/2) and xe(0,1),
and
(2.29) [p(x, —z)| < cox'log <§> for ze (0,1/2) and x=1.

Proof. 1If z€(0,1/2) then
o0
~i(or=2) = | halin, )hain,2) .
0

By change of variables u = ( y/x)z, this integral is seen to equal

1 (® 1 1 1 1 x
2.30 hj(ix, z) = J du = ——1 (—)
( ) B(lx Z) 27[2)6 0 U+ (Z/X)2 u+1 " 1 - (Z/X)2 7T2X 8 z

This gives (2.29). (2.28) is immediate from hg(iy,z) < 1/(zn).
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LEMMA 2.6. There exists a constant cyp such that for k,le N,

(2.31) ly(k, =1)| < crok™ 1172

Moreover, there exists a constant cyy such that for x >0 and ke N,

k+1/2
(232) [ r—n = ptx 0] < enx e,
k=172
k+1/2
(2.33) | s =0y =yl )] < k5 A,
k=12

Proof. The proof of (2.31) is carried out by estimating y; and y, that are
defined in the proof of Lemma 2.4. We first prove that

(2.34) Dalk, =Dl < Ck™'172,

where C is a suitable constant. From the definition of y,, we obtain

1/2 I
P jo ha(ik, )hs(iy, 1) dy + L/2(H3(ik, ¥) — hs(ik, y))ha(iy,1) dy|.

The first term on the right-hand side is at most (1/872)k~!/=2. To estimate the
second term, we make the decomposition

{Hsp(ik, y) — hp(ik, y)Yhp(iy, 1) = Li(k, y,1) + b(k, y, 1) + Ii(k, y,1).
Here
Li(k, y,1) = {Hp(ik,{y>) — h(ik, y)}{hs(iy,]) — he(iy>,])},
bk, y,1) = {Hp(ik,{y>) — h(ik,{y>) }hs(i{y>,1),
Lk, y,1) = {hs(ik,{y>) — hs(ik, y) }hp(i{y>,]).
According to Lemma 2.3, |I;(k,y,!)| and |L(k,y,l)| are bounded by a
constant multiple of (1/(k*+ y?))I"2. Moreover, the integral of 1/(k*+ y?)

over (0,00) with respect to y is equal to (z/2)k~!. For the proof of (2.34), it
suffices to show that

(2.35) J Lk, y, 1) dy| < Ck~'I72,

1/2

where C is a suitable constant. From Taylor’s series, we obtain that for x > 0,
JEZ and |y—j| <1/2,

i, 3) = halix, ) = - ha(ix, 1)y = 1)+ g, 1+ 0)(3 — )

B\lX, Y B\IX, ] _ayBxa]y J 26_}/2 B\IX, ] y—=17J
with |0] < 1/2. The integral of the first term on the right-hand side over
[j—1/2,j+41/2) with respect to y vanishes. Moreover, |(02/0y?)hp(ix, y)| <
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(8/7)(x% + y*)~*/%. Thus for x>0 and je Z,
M2 o 3
J]—1/2 hp(ix, y)dy — hp(ix, j)| < m

This implies (2.35).
Next we prove

(2.36)

sk, ~D)| < Ck™'172

with a suitable constant C. The proof is similar to that of (2.34). We make the
decomposition

gB(ika y){gB(ly’l) - hB(lyvl)} = 14(k’ y>1) + IS(k’ yal)

Here
Li(k, y,1) = Hp(ik,{y>){Hp(iKy>,1) — hg(i{y>, 1)},
Is(k, y,1) = Hp(ik,{y>){hs(i{y>,I) — hs(1y,])}.
By Lemma 2.3,
rc [ Lu(k, y,1)|dy < cg (c(, +l> f:k‘ll‘l > !
1/2 n) 43 o+ 12
< ¢ (c6 + %) gk_ll_z.
The same argument as verifying (2.36) gives
g2 B 8
jj_m halir ) dy = i) <

Hence as above we obtain that

< 4 (c6 +1>k-11-2,
3 T

00
| ke
12
proving (2.31).

Notice that

o0

k+1/2
hp(ix, y){hg(iy, k) — J hg(iy, y) dy} dy

k+1/2
J y(x, =) dy —y(x,—k) = J
k-1/2

k=1/2 0

and apply (2.36). Then we have (2.32). Similarly

k+1/2 8 [ 1 1
—x)dy —y(k,—X)| < = | 53— ).
J 1y, =x)dy = y(k, —x)| < 3 L 12 et

k=172

This implies (2.33). The proof of Lemma 2.6 is complete.
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3. Asymptotic behavior of Hj (&, —I)

In this section, we will prove Theorems 1.1, 1.2 and 1.3 and Corollary 1.4.

LeMMA 3.1. There exists a constant ¢y such that for x > 1/2 and z > 1/2,
|Hp(x,—z) — hp(x, —2)| < ez
Proof. The proof is carried out by estimating the right-hand side of
(2.9). Lemma 2.4 implies that |y(x,—z)| is bounded by a constant multiple of
z72(1 v logz). Since Hj is an extension of hitting distribution Hy,|Hyy(x,—z)|
is also bounded by a constant multiple of z72(1 v logz). We will show that for
x=1/2 and z>1/2,

ci3x~z71(1 v logx) (x>2)
cpx~ 132733 (x < 2).

(3.1) lyhr(x,—2)| < {

This gives
[yhp(x, —z)| < (6¢13/e)z7>/3.

Since H; is an extension of hitting distribution HL,|fILth(x, —z)| is also
bounded by the right-hand side above.
To prove (3.1), we apply (2.11) to obtain

1/2
(3.2) Iphe(x, —2)] < 2czz-5/3j Iy, )3 dy
0
o0
+ 26, Jm 196, =) |h(y, —2) dy.

By virtue of Lemma 2.5, we may replace [y(x,—y)| by co{lpxciyy™ ' + Iy ypx7'-
log(x/y)}, showing that the first term on the right-hand side of (3.2) is at most
deycox~'z733(1 v logx). Hence it is enough to show that

[ee]
J 7(x, = 0)|h(y, —2) dy < Cx7'Pz71 (x 723 A 27203),
1/2
We decompose the left-hand side of the above into two parts, one the integral
over [1/2,x] and the other that over (x,+o0). By Lemma 2.4, the former is
bounded by
(3.3) erx 12713 J }1_1/3(})2 + 22)_2/3 dy.

1/2

The latter is bounded by

o0
(3.4) 072‘1/3J y 332+ 23731 v log(y/x)) dy.
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Take p=-1/3, a=x, u=z By (2.22), the integral in (3.3) is at most
K_13z7#3(x?3 A 2*%). Take p=-4/3, a=v=x, u=z By (2.21), the in-
tegral in (3.4) is at most 3K_4/3x~1/3(x™#3 A z7%/3). These complete the proof
of (3.1).

Notice that, in the proof of (3.1), the bound ¢j3x~!'z7!(1 v log x) comes from
the first term on the right-hand side of (3.2). Then we have the following
lemma.

Lemma 3.2. There exists a constant ¢13 such that for x > 1/2 and z > 1/2,

o]
J y(x, —yhe (9, —2) dy| < e Bz N (2 A 223,
1/2

PROPOSITION 3.3.  There exists a constant ci4 such that for x > 1/2 and z >
1/2,
|HL(x, —2) — hp(x,—2)| < clax” ' Bz74B3(x7V3 A 27153),

Proof. We will show that each term y = y(x, —z), yHy, hry, hpyH, on the
right-hand side of (2.8), is bounded in absolute value by a constant multiple
of x713z743(x~1/3 A z71/3), Lemma 2.4 implies such an estimate of |y(x, —z)|.
Notice that ﬁL(y,—g)zo for 0<y<1/2. By Lemmas 2.4 and 3.1, the
difference between yH(x,—z) and

(3.5) J;y(x,—y)hL(y, _2)dy

is at most
C7szz”5/3{X“J/ y“dy+J y2(1v log(y/X))dy}
1/2 x

This integral is negligible as O(x'z=>3(1 v logx)). The bound for the integral
in (3.5) was already given in Lemma 3.2. Hence we have the desired estimate of

lyH (x, —z)].
Let us show

(3.6) lhry(x, —2)| < e1sx Vo743 (x" 12 A 2712 (x> 172,z > 1/2).
By (2.11), we obtain that

1/2 )
Ihey(x, —2)] < 2%~ L W(y, —2)ly P dy + 26, J =2

In view of (2.25), we dominate |y(y, —z)| by c7z72(1 v logz) to see that the first
term on the right-hand side above is at most 6c;c;x %/3z72(1 v logz). We
decompose the second term into two parts, one the integral over [1/2,z) and the
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other that over [z,00). By Lemma 2.4, the former is bounded by

(3.7) 26207x2/32_2J (x2+ y2) 2Py 13(1 v log(z/y)) dy.
1/2

The latter is bounded by

(38) 2CzC7x2/3Z_1J (x* + y2)—2/3y—4/3 dy.

Take p=—-1/3, a=v=2z u=x in (2.20) to see that the integral in (3.7) is
at most K_j;3x~43(x?3 A z23)(1 v log(z/x)). Take p=-4/3, a=z, u=x in
(2.23). The integral in (3.8) is seen to be at most K_4/3z71/3(x~#3 A z74/3).
Thus we obtain (3.6).

Notice that Hy(y,—z) =0 for 0 < y < 1/2. By Lemma 3.1 and (3.6),

= O(x_2/3z‘5/3).

0
(s, =2) = || it (3,2
1
The same arguments as in the proof of (3.1) and (3.6) prove
o0
J hLy(x, =) hi(y, —2) dy < Cx Pz 4B (x71P A 27173).
1/2

Hence we have the desired estimate of |h;yH(x,—z)|. The proof of Proposition
3.3 is complete.

If x,ze N, then the estimate given in Proposition 3.3 can be improved
significantly.

PROPOSITION 3.4. There exists a constant cy¢ such that for k,l e N,

IHL(k7 —1) - hL(kv —l)l < C16k—2/31~5/3.

Proof. We will show that each term y,yh;, Hyy, H yh, appearing in the
right-hand side of (2.9), is bounded in absolute value by a constant multiple of
k=23173/3, The estimate of |y(k,—I)| is immediate from (2.31).

We prove that there exists a constant C such that for k,/e NV,

(3.9) |Hyy(k,—1)| < Ck23172.

We decompose

~ 00 J+1/2
Hyy(k,~1) =Y Hi(k, —j){J Yy, =) dy —y(J, —l)}

J=1 7=1/2

0

+ ZHL(ka —])}’(], ‘-1)

J=1
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From Lemma 2.6, |Hyy(k,—I)| is bounded by a constant multiple of /=2 Sl
Hi(k,—j)j~'. The bound (3.9) therefore follows if we show

0

> Hi(k,—j)j™ < Ck.
J=1
But this is immediately seen by writing Hy = (Hp — hy) +hr and applying
Proposition 3.3 and (2.11). Thus we obtain (3.9).
To estimate yhy(k,—/), we decompose

1/2 0

y(k, —p)he(, —1>dy+j 2k, — )i (v, ~1) dy.

yhi (k, ~1) = j
1/2

0

The first term on the right-hand side above is bounded by 4cycok=1175/3.
(1 v logk) (see the bound for the first term on the right-hand side of (3.2)). In
the proof of Proposition 3.3, we proved that the difference between the second
term and yHj(k,—I) is bounded by a constant multiple of k~!/=5/3(1 v logk).
Let us show that there exists a constant C such that for k,/e N,

(3.10) lyHL(k, —1)| < Ck~175/3,

The proof is similar to that of (3.9). In view of Lemma 2.6, it is enough to show
that

0
3 RHL(j, 1) < P
J=1

This is also seen by writing Hy = (Hy — hz) + by and applying Proposition 3.3
and (2.11). We accordingly conclude that

(3.11) lyhp(k, —=1)| < ek~ 1753(1 v logk).
We will show that
J+1/2 3
| =) dy = b= < e
j—-1/2

This bound and (3.11) give

(3.12)

o0
|Hpyhy(k,—1)| < (c17 + c18)l™> Y Ho(k, /) (1 v log j).
J=1

Moreover, the same arguments as in the proof of (3.9) show that the sum on the
right-hand side above is bounded by a constant multiple of k=2/3.
To prove (3.12), we rewrite the left-hand side of (3.12) in the form

[

y+1/2
J » Y7, =) dy —y(j,—y) phe(y, =) dy
.
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Apply (2.11) and (2.33) to see that the integral above is at most

0
2een 1171 JO y PG Ay dy.

Thus we have (3.12). The proof of Proposition 3.4 is complete.

PROPOSITION 3.5. There exists a constant Cy such that for x+ iy e C \L with
xvy=1/2and z>1/2,

(3.13)  [HL({x) +iy), =<2)) — ho(x + 1y, —2)]
< Coflx iy 4 et iy (ki A 1))

Proof. We consider the case x <y and y >1/2. To estimate the dif-
ference Hp({x) + i{y>,—<{z>) —hp(x+iy,—z), we recall (2.1) and use the
relation

(3.14) hi(x +iy,—z) = hp(x + iy, —z) + J hp(x + iy, y)h(y,—z) dy.
0
The term Colx+iy+z|> on the right-hand side of (3.13) comes from the
difference between Hp({x) + iy),—<z)) and hp(x + iy, —z).
Let

o0

hy(x + iy, 2) =j Ha(G) + K0, WAL ~23) = hu(5,~2)} 4

1/
ha(x+1y,z) = L {Hp({x)> +iy>, P> 5> 172y — hp(x + iy, 7)}he (9, —z) d.

By the definition of (), the difference between the second term on the right-
hand side of (2.1) and that of (3.14) is equal to A;(x + iy, l) + h(x+iy,]). We
will show that for x < y with y >1/2 and z > 1/2,

(3.15) | Hp(<x> + iy, j)HL(j,—<z>)—J hg(x + iy, p)he(y, —2) dy

=1 0

< Ihl(x + ly,z)| + |h2(x + ly,Z)|
< Clx+iy[ B (x4 iy A 271,

where C is a constant. Using Proposition 3.3, Lemma 2.3 and (2.11) and then
recalling x < y and y > 1/2, we observe that |h(x +iy,z)| and |hy(x +iy,z)| are
bounded by constant multiples of

o0
Jm et iyl 4 iy 2 A 5B A Y
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and of
1/2
[

0
+ Jl/z(lx +iy[ APPSR A 4P dy,
respectively. The desired bound follows from a simple calculation by dealing
with the cases |x +iy| <z and |x +iy| > z, separately.

It remains to show that (3.13) holds for x > y with x > 1/2. In this case,
we use the relations (2.2) and

iy, —2) = | g+ i 5)hui5, —2)
0
Notice that Hyz(<{x) +i{y),ij) = Hp({y) +i{x),j) and hg(x+iy,iy) =
hg(y +1x,7). Then
(3.16)  |HL({xD>+iKyy, —<z))—hr(x+iy,—2)]|

o]

S Hal<pd+C00, DL ~) = | haly+ix 5.~ 3
=1

By using the bound

|H (iKY, —<{2)) — he(ip, —z)| < C'y=1Pz4B (5713 A 2715)

which has already been shown above, the same argument as in the proof of (3.15)
verifies the estimate (3.13) for x > y with x> 1/2 and z > 1/2.

Proof of Theorem 1.1. Assume e C*\L and R(¢) < 3(&). We use the
following decomposition (as in the proof of Proposition 3.5):

HL(§7 _l) - hL(é) _l) = HB(é) _l) - hB(é, _l) + hl (é, _l) + hZ(év _l)a

where h; and h; are defined in the proof of Proposition 3.5. The term
Col¢ + 1] on the right-hand side of (1.2) comes from the difference between
Hp(&,—1) and hp(é,—1). We will show that for & e C*\L with R(&) < 3(&),

(3.17) S Hale ) HL ) - [ (e e~y
J=1

= (&) + h(E 1) < Cle|72RPI38,
where C is a constant. The proof of (3.17) is similar to (2.31). Put

Is(&, j,1) = Hp(& )){HL(j, —1) — he(j, =D},
and
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J+1/2
I7(fv]al)=HB(éa1){hL(1a~1)_J hL(ya—Z)dy}

7—1/2
Then
(3.18) h(ED) = Is(& 11 + Y B(E D).
J=1 J=1

Apply Lemma 2.3 and Proposition 3.4 and then recall (2.16). We then obtain
that

Is(&, j, )| < 2e16(cs + (1/m)) 1B Lo 0y () + 7 e, 00) (1) }-

The first term on the right-hand side of (3.18) is dominated by C|&|~%1-5/3,
The second term is negligible as O(|&|~'17%/3), if we show

J+1/2

he(iy—1) — j hie(y, ~1)dy
7—1/2

To prove (3.19), we apply the identity

(3.19) < Cj4B31733,

o0
(3.20) v, =1) = iy, 0)+ | B30 (5, =D .
Combining this relation and (2.33), the difference between hL( j,—1) and the

integral of hy(y,—I) over [j —1/2,j+ 1/2) with respect to y is not greater than
enj 43133 plus

(e o]
(3:21) n [ G A5 .~ d
Apply (2.11) to see that (3.21) is bounded by a constant multiple of
20017 [ 5IPG A d
0

Thus we have (3.19). From the definition of A, we obtain that

12
(3.22) hao(é,~1) = —j ha(&, y)hi (v, ~1) dy

0
+ jw (HB(E, <»>) — h(E, ) Yhe(y, ~1) dy

By (2.11), the first term on the right-hand side above is bounded in absolute value
by (4/m)eale] 173, Put

I3(&, y,1) = {Hp(&,<y») — ha(&, y)HAL(y, =) — he (K>, =)},

Iy(&, y,0) = {Hp(&,<y>) — ha(¢, <¥))he({y), =)
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and

110(57 ) l) = {h3(67 <y>) - hB(&, y)}hL(<y>v _I)
Then
(323) {HB(éa <y>) - hB(é, y)}hL(ya _l) = 18(67 Y, l) + I9(éa 2 l) + 110(67 b2 l)
By (2.26) and (3.20), we obtain

lh(y,=1) — he({y),—1)] < cgl™*(1 v logl)
1/2
+ jo 20y, §) — B2y, )i (5, 1) d

o0
4o j Y logPhu( 1) a5

Since A3(iy,-) is a sub-probability density, the second term on the right-hand side
above is at most 4c,/7/3. By (2.11), the third term is bounded by a constant
multiple of /=5/3.  Combining_this and Lemma 2.3, |(&, ,1)| is bounded by a
constant multiple of |& — y| 72753, By (2.16), the integral of |&— y|™* over

[1/2,00) with respect to y is negligible as O(|¢]™"). By virtue of (1.7) and (2.36),
we have only to give a bound of

> 1E =i h(, -0
=1

instead of the integral of |Iy(&, y,1)| and |I1o(&, y,1)| over [1/2,00) with respect to
y. The difference between this sum and

(3.24) L/Z &= ey, ~1) dy

is negligible as O(|¢| 1-%/3) in view of (3.19). By the same argument as showing
that (3.21) is O(j~*3175/%) and by employing the obvious inequality |& — (y}| >
(1/8)(J€] v y), (3.24) is negligible as O(|&|*1-5/3). Hence the desired estimate
(1.2) has been verified for £ e C*\L and R(¢) < J(&).

It remains to show that for £ e C*\L and R(&) > 3(¢),

[H (&, —1) — he(E, 1)
o0 _ o0 _
= IS HalE DL ~1) = | ot e 0y, ~1)
J=1
< Cle|7RI%,
The first relation holds for similar reason as (3.16). By using the bound

|Hy (ij, ~1) — he (i, =1)| < C"j~21733
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which has already been shown above, the same argument as in the proof of (3.17)
verifies the last inequality. The proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. We consider the case & = k. To estimate H(k,—[),
we will show that for y >0 and b >k,

(3.25) PHL(y,—1)| <2-4"Hy(k, 1) + K(b)I 7,

with a function K(b) approaching zero as b goes to infinity. Since hr(k,-) is
a probability density, |hoyH(k,—1)| is also bounded by the right-hand side of
(3.25). Noticing this and (3.25) and using (2.8), we obtain that

hy(k,—1) = 2K (b)I71 < |y(k, =1)| + |hpy(k, 1)
+ (42 + DY H(k,-1).

According to (2.31) and (3.6), the first and second terms on the right-hand side
above are negligible as O(/~!/6). If [ is large enough, then (2.12) states that

h(k,—1) > (1/2)%3col ™5,
Now if we choose b such that
K(b) < (1/3)(1/2)"c,

then (1.3) has been verified for & = k.
For the proof of (3.25), we use the inequality

b 0
(3.26) |yHo(y,—1)| < Jl/z ly(y, =P)HL (3, ~1) dy + L ly(y, =) HL(7,~1) dy.

If k, j € (0,<b>] NN, then the probability that random walk starting at k reaches j
before visiting L is at least 4=, Hence

Hi(j,—1) <4’H (k,~1), (je€(0,<b)]NN),

and the first term on the right-hand side of (3.26) is at most 2-4°Hy (k,—I).
The second term is bounded by

(3.27) f (s ) LG, —1) — b (5, ~D)] d5 + j:o (s —3) e (5, ~1) 5.

The first term of (3.27) is bounded by a constant multiple of »=#/3(1 v logb)I=5/3
according to Lemma 2.4 and Proposition 3.3. Lemma 2.4 and (2.11) give
(s =PNh(3, 1) < 2e275 (1 v log 7).

Then the integral of |y(y,—7)|hL(P,—!) over [b,o0) is bounded by a constant
multiple of 5~1/3(1 v loghb)I=>/3. Thus the second term on the right-hand side of
(3.26) is at most

Ch~'3(1 v logh)I73/3,
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It is clear that this approaches zero as b goes to infinity. This completes the
proof of (3.25).

We consider the case £ € C*\L and R(¢) < 3(¢). By combining (2.1) and
the bound (1.3) for £ =1 which has already been shown above, we obtain

Hy(&,—1) > Hp(&, 1)H(1,—1) > Hp(&, 1)er (1)1,

Notice that Hp(&,1) > 0. Then (1.3) has been verified for this case. For
Ee C*\L with R(&) > 3(&), (2.2) and the bound that (1.3) for £ =i give the
desired lower bound of Hp(& —I). The proof of Theorem 1.2 1s complete.

Proof of Theorem 1.3. The proof is similar to that of Theorem 1.2. First
we will show the following.

LemMa 3.6. For any le€ N, there exists ¢,(I) such that for k€N,
H (k,—1) > é&(1)k™/3.

Proof. By Lemma 2.4 and (3.1), |y(y,—!)| and |yh.(y, —I)| are bounded by
a constant multiple of y~!(1 v logy). We will show that for b >/,
o0
(3.28) J Hy(k,—y)y~'(1 v log y)dy <2-4°*'b(1 v logb)Hy (k,—I)
1/2

+ K(b)k™?3,

with a function K(b) approaching zero as b goes to infinity. (3.28) implies that

|Hy(k,—1)| and |Hyhy(k,—I)| are bounded by a constant multiple of the right-
hand side of (3.28). Noticing this and using (2.9), we obtain that

hi(k,—1) = 2CK(b)k™*" < |y(k, =1)| + |yhe(k, =1)]
+ {4°*2p(1 v logb)C + 1} Hy (k, —1).

If kK and b are large enough, then the left-hand side above is at least (1/3)-
(1/2)%3¢ol=13k=23. According to (2.31) and (3.1), the first and second terms
on the right-hand side are negligible as O(k~!(1 v logk)). The desired estimate
follows.

For the proof of (3.28), we use the inequality

(3.29) J

Hy(k,—y)y~'(1 v log y)dy < 2b(1 v logh) max H(k,—j)
1/2 1<7<<b)

+J ALk, —y)y~'(1 v log y) dy.
b

If j,1 e (0,{bY]N N, then the probability that the random walk starting at —;j + i
visits L for the first time at —/ is at least 47>~1. Hence

HL(k’ _]) S4b+1HL(kv_l) (_]G (0, <b>]nN)7
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and the first term on the right-hand side of (3.29) is at most 2 - 45*1p(1 v logb) -
Hy(k,—1). By Proposition 3.3, the difference between the second term and

0
(3:30) [, mte=3y 1 v 10 ) ay
is at most 3c;4b*3(1 v logh)k=2/3. By (2.11) and the inequality A(k,—y) <
k=23y=1/3_ the integral of h(k,—y)y~'(1 v logy) over [b,+0) is bounded by
a constant multiple of k~2/36=1/3(1 v logh). Thus the integral (3.30) is at most
Ch~'3(1 v logh)k=/.
We have (3.28).
Let
VH6) = {E€ C\L: —(n/2) +6 < arg(é) < 7 — 8},

Next we consider the case £ € V*() and R(¢) < 3(£). By (2.1) and Lemma 3.6,
we obtain

H(E-D= ) HB(é,ﬁHL(j,l)22—2/%2(1)[5!‘2/3{ > HB<«:,1)}.

[€l<y=<2[¢] [Sl<s=2)¢

By the invariance principle if || is large enough, then the last factor on the right-
hand side of the last inequality is at least a constant depending only on . Thus
we obtain that there exists a constant cj(/) such that for £ e V*(9) with R(¢) <

3(8), s

HL(&,~1) 2 e ()Ie™.
For & e V*(9) with R(E) > 3(€), the desired lower bound follows from (2.2) and
the above bound. The proof of Theorem 1.3 is complete.

Proof of Corollary 1.4. Combining the first inequality in (2.13) and
Theorem 1.1, we can choose ny such that for e V*(), e N with |&],] > ny,

(1/5)hp (&, =) < hp(&,—1) — 4Co|&| 22173 < Hi (&, -1),

where Cj is the same constant as in Theorem 1.1. The case when |[&| <np or [ <
ny is disposed of by Theorem 1.2, 1.3 and the last inequality in (2.13). Thus we
have the lower bound as required. The upper bound is immediate.

4. Proof of Theorems 1.5 and 1.6

In this section we prove Theorems 1.5 and 1.6, and then show (1.16), (1.19)
in Remark 1.3 and the first assertion in Remark 1.4. To begin with, we consider

4.1) P(k,l) := Pr{S(tr) € {—1,—il}}

= Py{S(z) e {-1,—il}}

= Hi(k,—1)+ H.(ik,—1) (leN)
and show the following.
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PRrROPOSITION 4.1. For each ke N, the following limit exists
¢* (k) := lim I’3P(k, 1).
-0

The function ¢* is characterized as a unique solution to (1.13) with the boundary
condition limy_,o, k=% 3¢* (k) = 2co, where cq is the same constant as in Theorem
1.5.

PROPOSITION 4.2. For any | € N, the following limit exists
é(l) := lim k*3P(k,1).
k— o0

The function ¢, is characterized as a unique solution to (1.14) with the boundary
condition lim,_,o, 1'/3¢,(I) = 2co, where ¢ is the same constant as in Theorem 1.5.

Proof of Proposition 4.1. We have shown that for k,/e N,
(4.2) 0 < c1(k) + c1(ik) < IPPP(k,1) < decy)k®3.

In fact, the first two inequalities follow from Theorem 1.2 and the last inequality
follows from Corollary 1.4 and (2.11). For fixed k,/’3P(k,l) is bounded. By
Cantor’s diagonal argument, there exists a sequence {/,} such that L/ 3P(k, I,) is
convergent for all ke N. We write

é(k) == lim PPk, 1,).
n— 0

The function ¢ satisfies the following condition
(a) é(k) >0 (keN),
(b) supy.y k~23é(k) < 4ccy,
(c) limy_, o k~2/3¢(k) = 2cp.

(a) and (b) follow from (4.2). We notice that I°/3(hy(k,~I) + hy(ik,~I)) ap-
proaches 2cok?3 as I — co. This and Theorem 1.1 imply (c).

Let us show that ¢ satisfies (1.13). In view of (4.1), the strong Markov
property gives

e8]
(4.3) P(k,1) = Hy(ik, ~1) + _ Hp(ik, j)P(), ).

J=1
We multiply the both sides by /5 and take limit along ,. We use the last
inequality in (4.2) to justify an interchange of the order of limit and summation.
By the dominated convergence theorem, we conclude that ¢ satisfies (1.13).

Proof of Proposition 4.1 is complete if we prove the following uniqueness

result.

LemMa 4.3.  Suppose that ¢, is a solution to (1.13) and satisfies (c). Suppose
¢ is a solution to (1.13) and satisfies (a) and (c). Then ¢, = ¢,.
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Proof. By (c), ¢1(k)/é2 (k) tends to 1 as k — oo. Suppose that there exists
ko such that ¢(ko)/¢2(ko) # 1. By symmetry, we may assume ¢;(ko)/¢2(ko) > 1,
so that the function ¢,(k)/é (k) attains the maximum at some point, k* sa
Since ¢, and ¢, are solutions to (1.13), we obtain

jz_jHB e, ){ @) - 2t | <o

According to the manner of the choice of k*, ¢ (j) — (¢i1(k*)/cx(k*))é2(j) <O.
Hence

(k™)
(k)

a(y) - () =0 (jeN),

in particular
aks) . al)
= =lim_—==1.
ey (k*) = ia())
This contradicts our supposition that ¢;(k*)/é(k*) > 1.

Proof of Proposition 4.2. We can prove Proposition 4.2 in a way analogous
to the proof of Proposition 4.1. The proof is only outlined. There exists a
sequence {k,} = N such that for every / € IV, k2 p P(ky, 1) converges. Let ¢(I) be
the limit. Then ¢(/) satisfies

(@) &(l) > 0(l e N),
(b") sup 1'/3¢(1) < deey
leN
and
() lim 1'3(1) = 2.
=0

Let us show that ¢ satisfies (1.14). By iterating (4.3), we obtain that for
k,leN,

o0
(4.4) Z " (ik, ).
From this, it is easy to see that
o0
(4.5) P(k,1) = Hp(ik,!) + Y _ P(k, j)Hp(ij,1).
J=1

Noticing that k%3Hp(ik,l) vanish as k — oo, we observe that it is enough to
show that

o0

lim szljp n J)Hp(if, 1 =Z N Hs(ij,1)
j= :

This is immediate from the inequality

K*3P(k, j) < Cj~/3
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that follows from Corollary 1.4 and (2.11). Thus ¢ satisfies (1.14). As before
Proposition 4.2 now follows from the following uniqueness result proved as
Lemma 4.3.

LeMMA 4.4. Suppose that ¢, is a solution to (1.14) and satisfies (c').
Suppose ¢, is a solution to (1.14) and satisfies (a') and (c'). Then ¢| = ¢,.

LemMMA 4.5. There exists a constant C such that for k,l e N,
H}(ik,1) < Ck(k™* A 172)(1 v log[(k v 1)/(k A 1)]).

Proof. In view of (2.30),

1 log(k/1)
(k # 1)

Wi 1) = (kl+ N2 1— (I/k)
gy (k=D

By (2.31), the difference between H32(ik,!) and h3(ik,[) is negligible as O(k~'/72).
The proof of Lemma 4.5 is complete.

Proof of Theorem 1.5. The same argument as in the proof of Proposition
4.1 shows that there exists c*(k) := lim;_., I°/*Hy (k,—[), c¢* satisfies c*(k) > 0
(ke N) and c¢* is a solution to

(4.6) ) =S Bk, e ()
J=1

with the boundary condition lim;_ . k~2/3c*(k) = co. Here we have applied
Lemma 4.5 and (2.3). Uniqueness of a solution to (4.6) which satisfies the
boundary condition limy_,., k=*3¢*(k) = ¢y is verified as in the proof of Lemma
4.3.

We must show that (1/2)é* = c¢*. Since ¢* is a solution to (1.13), é* is
also a solution to (4.6). Moreover ¢* satisfies (a) and limy_,., k~2/3¢*(k) = 2¢o.
Hence by uniqueness (1/2)¢é* = c*.

Proof of Theorem 1.6. The proof of the first and second assertions is similar
to that of Theorem 1.5. The proof of the last assertion is based on the relation

0
Hy (k,0) = Hg(ik,0) + Y _ P(k, j)Hz(ij,0)
J=1
that follows from (4.4) and H(k,0) =Y ,", Hj(ik,0). ((4.4) is also valid
for /=0). The same reason as showing that ¢ satisfies (1.14) implies that
limy_, o, k?/3Hy (k,0) exists and the limit is expressed as (1.15). The proof of
Theorem 1.6 is complete.
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Proofs of (1.16) and (1.19). The same arguments as showing that ¢ satisfies
(1.13) deduce (1.16) from (2.1) and (2.2). If |£| > 2/ and (n/8) < arg(&) <=,
then (2.1) and Lemma 2.3 imply that

@7 H(E—1) = S k(& DHLU, 1) + 00 ™).
J=1

We rewrite hg(£, j) in the form

ha(&, j) = m—S/ahB(_é_ L) (i>_2/3j2/3
’ [SMI4VANS '

By this and Theorem 1.6, |£]2/ 3Hy (£,—1) tends to the right-hand side of (1.19)
as |¢] goes to infinity in such a way arg(¢) — 6, showing (1.19).

Let us verify that both k2/3c*(k) and ['/3c,(I) are non-constant functions.
We decompose Hp(im, j) according to the value of S(1) to obtain that for me N,

(4.8) Hp(im, j) = %{Hg(i(m +1), /) + Hg(1 +im, j)

+ HB(_I + lma]) + HB(l(m - 1)7])}7
where Hp(0,j) =6(0,j). Multiply (4.8) by c¢*(j) and make summation over
j€N. Further, take m =1 and use (1.13). Then
1 o0 (e8]

(1) =Z{c @+ DL Hal1+11) )+ 3 HA(-1 ) m}.
Assume that k=%/3c*(k) is constant. Then, from (1.13) it follows that k%> =
Zj"il Hpg(ik, j)j*/* and, since Hp(m + i, j) = Hp(i, j — m), the previous equality
yields

Hp(i,0) = 4 - 22 — iHB(i,j){(H ¥+ (- 1)}
J=1

The infinite sum on the right-hand side above is at most 2 since x%/> is concave,

ie., G— 1D+ (+1)%* <2j%% On the other hand, Hp(i,0) is expressed as
Hp(i,0) = (1/4)Gp(i,i) = (1/4)a(2i)

by virtue of (1.4) and (1.5). The values of a(¢) are computed in Spitzer [8,
p- 149], according to which we obtain that

2223 < (1/4)a(2i) = 1 — (2/n).

But in fact 2 — 223 > 1— (2/n). Thus we may conclude that k=2/3c*(k) is not
constant.

Multiply (4.8) by c.(m) and make summation over m e N. Further, take
j=2 and use (1.14). Then we obtain that
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c(2) :%{c*(l) +c.(3)+ ic*(m)HB(i(m +1),2) + io:c*(m)Hg(i(m - 1),2)}.

m=1 m=2

If 1'3¢,(I) is a constant function, then this equality yields

(2-2"Y3Hp(i,2) = —4-27'3 4+ 14+ 3713 1 2Hp(i,2)
o0
+ > {m =177 + (m+ 1)} Hp(im, 2)
m=2

and from (1.14) it follows that /73 =3  m~'3Hp(im,I). The last term on
the right-hand side above is at least 23 7 , m~'/3Hp(im,2) since x~/3 is con-
vex, ie., (m— 1)_1/3 + (m+ 1)_1/3 >2m~'3. On the other hand, Hjp(i,2) =
(1/4){a(~2 + 2i) — a(~2)} = (10/37) — 1. Thus
10

2-273) (=~ 1) = 1+3712 223,

@-r)(3-1) 21+
This contradicts the actual inequality (2 —27'/3)(10/3z —1) < 1+ 3713 - 223,
Thus we also conclude that /'/3c,(I) is not constant.

5. Proof of Theorem 1.7

In this section we state some known results and then prove Theorem 1.7.

Lemma 5.1 (Lawler [7, Theorem 2.1.3]). There exists a constant C and a
natural number ko such that if A is a subset of C* that is contained in the ball of
radius n and |&| = kon, then

A - (0] = C (log

LemMa 5.2 (Kesten [4]). Let U(n)={-1eC*:0</<n}. Then there
exists a constant C such that for —I e U(n),

)M@% (LeA).

n

Hy (=) < C((n =1+ 1) v 1+ 1)) 12,

The next lemma is deduced from Theorem 1.1 by an easy modification of
Lawler’s proof of Proposition 2.4.10 in Lawler [7].

LEMMA 5.3. There exists a constant C such that
C(l+1)Pn23, (0<1<n/2),

/‘L(n)(_l) = ( ) -1/2,-1)2

Cn—1+1)"“n712 (n/2 <] <n).

Proof. If le[n/5,n]NN, then the bound of Lemma 5.3 is immediate
from Lemma 5.2. By virtue of (1.22), it therefore suffices to show that for /e
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[0,n/5)N ({0} UN),
(5.1 P_[{‘L'@C 2m) < TL(n) t<cC(l+ 1)_1/3}1_2/3

where C(r)={¢eC*:|{|<r} and 0C(r) ={,e C*\C(r)|IneC(r): |E—y| =
1} as in (1.1). Let us extend the function P(-,/) to the one on C*\L by

P(&,1) = Hy (&, 1) + HL (i€, -1).
The strong Markov property shows that for n > 2 and ¢ e C(n/2)\L

x 0
(52) > PEN= >, Pelracw <, S(tocm) = f7}< > P(fl,j))-
s nedC\L et

Theorem 1.1 and (2.14) imply that for j > 2|&|,

(5:3) P(¢, j) < 2es +9Cy)|E[j .

Thus the left-hand side of (5.2) is bounded by a constant multiple of |£|**n=2/3.
On the other hand, the invariance principle shows that there exists a positive
constant C such that for ne N and n € dC(n)\L,

o0
Y P@j)=C.
J=n+1

Hence for & e C(n/2)\L,

(5.4) Pof{TaC(n < TL(n)} Pg{‘[‘ac(n) < TL} < 619'6'2/3

Since
Po{tacen < trem}t < (1/4)Pi{tocen) < tem} + (1/4)Pi{tacwm) < trm}
= (1/2)P{toctn) < tim }s
(5.1) is shown to hold for / =0. Corollary 1.4 and (2.13) imply that

0

Z P(i, j) = cyon™?/?

J=n+1

where ¢y is a positive constant. It is clear that the second factor on the right-
hand side of (5.2) is at most 1. Combining this and (5.2), we also have

(55) Pi{TOC(n) < ‘L‘L(,,)} > Czon_2/3.

Assume /€ [1,n/5)NN. To get the upper bound of P_{toc(n) < Tr(m}, We
use the following inequality;

P_{tocen) < trm} < Pi{tacen < TL(n)}< sup  Pe{tocm < TL(n)}>~
£eaCI\L(n)
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Replacing 75¢(21) by 7_110¢() and using the spatial homogeneity, we see that the
first factor on the right-hand side of the above inequality is at most

Po{tocyy < tu} < cul™,

where U :={{e C:3(¢) =0} and the inequality above is shown in Lawler
[7, §2.4]. By §5.4), the supremum of P:{7sc(n) < Tr(n} over &€ 0C(21)\L(n) is at
most 22/3¢19/?3n=2/3,  Therefore, we have

P_{tacom < L} < Poiftace < tom} < 22 cioenl™*n 3,

This is the desired bound. The proof of Lemma 5.3 is complete.

To get the lower bound of P_i{t;c(m) < Tr(m)}, We replace 1, by 7,2, and
use the fact that the probability that random walk starting at —1 reaches i before
visiting 0C(2n)U L(n) is at least 1/16. Then

1
P_{tac@n < Trm} = EPi{Tac(Zn) < Tr(m}-

Combining this, (1.22) and (5.5), we also have the following lemma.

LemMMa 54. There exists a positive constant C such that

By (—1) = Cn™23,

LemMma 5.5.
lim  sup n2/3HL(é,—1)—J hg i,u w2 duc,(1)| =0,
Ho® e acm\L 0 <]

where
i {6_ i R(E) <3
i if R(E) > 3().
Proof. The proof is similar to that of (1.19). The same arguments as
showing (4.7) and (2.2) show that for & e dC(n)\L with R(&) > I(&),

Hy (&, —1) =" hg(i&, j)HL(ij, —1) + O] ).
=1
We notice that R(i€) < 3(i€) for R(E) > I(¢) and limjo j73HL(j,~1) =

lim, o, j%*Hy(ij, ~1) (see (1.20)). These reduce our problem to showing that
uniformly for & e dC(n)\L with R(&) < 3(¢) and for s =0,1,

2/3 = . N L @© £ —2/3 .
<] ;hB(f,J)HL(l J,—=1) Jo hg(m,u)u duc,(l) = 0

as n — +o0. The required uniformity comes from (2.16).
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Let [s] be the greatest integer not exceeding s and let
Pu(&, 1) = Pe{S(trm) = -1}

LemMMA 5.6. Let g€ (0,1) be fixed. Then there exists a constant C such that
for £ dC([n))\L and 1€ (0,[n?]/4) NN,
(56) |Pu(&,~1) = HL(&,=D)| < Cn2F3
and for & e (0C([n1))\L(n))NL and I € (0,[n?]/4]NN,
(5.7) Pu(&, 1) < C(n~9 v n~ 1193,
Moreover, there exists a constant C such that
(5.8) Pp{toc(ne)) < Trm} < Cn~ 21913,

Proof. Let & e 0C([n?])\L and [ € (0,[n?]/4]NN and put
L={-1:1=0,1,2,.. }U{=il:1=0,1,2,...}.

By the strong Markov property, the difference P,(¢, —/) — H.(¢, —/) is equal to
the sum of Hp(&,#)P,(n,—I) over n e L\L(n). Therefore

h@rU—MKrUS&SmﬁiVMH<$mIMmJO

nel\Lin)

We replace 77, by 7y(s)) and combine Lemmas 5.1 and 5.3. If n is large
enough, then the second factor on the right-hand side above is O(n=24/3). We
rewrite the first factor as

oC
PLS() e I\L(n)} = 3 P(,j).
J=n+1
If n>2|¢|, then the bound (5.3) implies that the right-hand side above is
O(n~21-9/3). Thus we have (5.6).
The proof of (5.7) is similar to that of (5.6). Assume ¢ e (0C([n?])\L(n)) N
L and 1€ (0,[n?]/4|NN. To estimate P,(&, —1), we use the following inequality

(5.9) Pu(& 1) < PAS(r;) = -1} + P{S(7;) € ﬁ\L(n)}( S‘lip( )P,,(q, —l)).
nelL\L(n

By symmetry of random walk, we obtain that for e C* with R() <0,
3(¢) <0,
(5.10)  Pe{S(r;) = —j} < Hp(=¢,j) and P{S(r;) = —yj} < Hp(—ig, )).

By (5.10) and Lemma 2.3, the first term on the right-hand side of (5.9) is at
most 8(ce + (1/n))n™9. If j>2|¢|, then |&+ j| A |i€ + j| = j/2. Combining
this inequality, (5.10) and Lemma 2.3, the first factor of the second term is
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bounded by 8(cs + (1/7))|¢] Z 212 It has already been shown in the proof
of (5.6) that the second factor of the second term is O(n=%/3). The proof of
(5.7) is complete.

If n > 3, then every random walk path from n? to L([n%]) crosses dC([n?]).
By decomposing P,2{S(7(») € L([n?])} according to the first crossing point, we
obtain that for n > 3,

(5.11) P2 {S(trm) € L([n])} = Pra{tec(ne) < trm}

. <éeoC1[nq] NL(n )PC{S TL(”) EL([ ])})

If [n?] < n/4 and n is large enough, then Lemmas 5.1 and 5.3 imply that the left-
hand side of (5.11) is bounded by a constant multiple of

(n?]
2By ()
7=0

The sum is O(n~21-9/3). By making use of invariance principle, it is easy to
show that there exists a positive constant ¢y, (independent of n) such that for
¢ € 0C([n])\L(n),

Pe{S(z;) € L([n?])} = c2.

Hence the second factor on the right-hand side of (5.11) is at least ¢y and we
have (5.8).

Proof of Theorem 1.7. Let qe(0,1) be fixed. The proof is based on

(512) Pn(n2’ —l) = Z Pnz{rﬁC([n‘i]) < TL(n)> S(T@C ni) ) f}
&edC((n?)\L(n)

Pu(&, 1), (n=3,1€(0,[n?)/4] N N).
Since Kesten (5] provided the existence of lim, .. n*3uy, (), Lemma 5.1
implies that there exists lim,_ ., n*?P,(n?,~I) and the limit is equal to

lim,_, n2/3,uL(,,)(~—l). From Lemmas 5.5 and 5.6, the difference between the
right-hand side of (5.12) and

n~24Be,(I) Z P2 {tac(ne)) < TrLny S(Tac(ne))) = &}
EeaC([n9])\L

'thg —g— Ju lu 2P du
€1’
is o(n=?/3). By (5.12) we conclude that

nlin% ’12/3ﬂL(n)(—1) = ac.(/),



74 YASUNARI FUKAI
where

0‘=,,1L1{)10n2(1_q)/3 Z P2 {tsc(na)) < Trmy» S(Tac(na))) = &}
teaCmi\L

= (€ 23
. Julu=° du.
J, (@
It is immediate from Lemma 5.4 that o is a positive constant. The proof of
Theorem 1.7 is complete.

6. Proof of Theorem 1.8

In this section we will prove Theorem 1.8.
Let

Uy ={{eC:R() >0}U{le C\{0}: =3() < R(Y) <0},
Ur={{eC:0<R() < -3},

and let U*=U;NC" (j=1,2). To begin with, we will show that (1.23) for
Ee Uy and ne U2 with £ ##. By the strong Markov property, we obtain that
for £e C*\L and n e C*\L with #, <0,

(6.1) GL(& 1) ZHL (& —=)G(=jsn),

where G(&,n) =a(é—#)—a(—n) and 7= —n; +in,. The strong Markov
property also gives the following Brownian analogue of (6.1)

(62) g1 (En) = g(ém) — f b (&~ (- y.m) dy,

where g(&,n) = (1/m)log(|¢ — l/|€ = nl). The term C|¢ — ] appearing in the
right-hand side of (1.23) comes from the difference between G(&,#) and 2g(&,7)
(see (1.6)). It remains to show that for & e Uy and ne Uy with & #1,

oC

63)  [> Hu(e,-)G(=jm) —2]5 he(E,—»)g(—y,m) dy

J=1

< ClE[ Py~

Recall the proof of (3.17). We rewrite the difference between the second term on
the right-hand side of (6.1) and that of (6.2) with 4; and h,. (Take Hy, G, hy, 2g
for Hp, Hy, hp, hy, respectively.) Further, we decompose #; into two parts and
hy into four parts (see (3.18), (3.22) and (3 23)). Then we can show that each
term appearing in those decomposition is bounded in absolute value by a
constant multiple of |£|%*/=%3. Thus we have (6.3).
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If e (C*\L)\U;" and 5 € Uy, then we obtain the relations

(6:4) GL(&n) =Y Hp(& /)GL(j,n),
J=1

and its Brownian analogue

(6 = | hale y)ou ()
Notice that je U] in (6.4), for which

(6.5) \GL(jsm) — 291 (jyn)| < Cj~ 23|y

as has already been shown above. Take Hp, G, hp, 2g; for Hp, Hy, hp, hp,
respectively. The same procedure as in the proof of (3.17) verifies the estimate

> Ha(& )Gulion) =2 [ a(&. Dgn(rum | < €I Il

J=1

for £ e (C*\L)\U; and 5 € Uy as desired with the help of (6.5).
Put

Us ={{eC:-3({) <R(() <0},

Us = {C e C\{0}: 0 < R(0),

Us={{eC:-R() <3
and let U = U;NC" (j=3,4,5). We will show that (1.23) holds for &, € Uy
with & ##. In this case, the proof of (1.23) is based on the relations

GL(&n) =Ge(&n) + Y, Hp(&j—i)GL(j—ij,n)

J€Z\{0}

3O}

0<3
<0},

and its Brownian analogue

gr(&,n) =g (&n) + JR\{O} he/(Ey —iy)gr(y —iy,n)dy,

where B’ = {{e C: —R({) = 3({)} as in Remark 1.2, gp is the Green function
of B’ for two-dimensional standard Brownian motion and explicitly given by
gp(&,n) = (1/n)log(|¢ + if|/|&é —n|). Combining (1.8) and (1.6), the term
C|¢ — | appearing in the right-hand side of (1.23) comes from the differ-
ence between Cp/(&,) and 2gp/(&,7). Since Gp and g, are symmetric,
ie., GL(j—ij,n) = Gr(n,j—ij) = Go(ifl,—j +ij),9.(J = i,n) = gr(n,j —ij) =
g (iff, —j + ij), the estimate (1.23) for £ € C*\L and n € Uy with & ##, as has
already been shown above implies that j e Z\{0} and # € Uy,

—2/3).1-2/3

|GL(] - ljvn) - 2gL(] - l]>’7)| < C|]| |’7I_



76 YASUNARI FUKAI

Figure 2: The region B;.

Take Hp/, Gy, hp', 291 for Hg, Hy, hp, hy, respectively. The same procedure as
in the proof of (3.17) also verifies the estimate

Ha (&, j— i) Go(j — i) — 2[

h (&, y —iy)gr(y —iy,n) dy
R\{0}

JeZ\{0}
< Cle[2P |y

for &,ne Uy with & #n.
We will show that (1.23) for £ e U N U; and # e Uy with & # 5. In this
case, the proof of (1.23) is based on the relations

GL(&n) = G,(&m) + Y Hp, (& j — i/)GL(j — ij,n)
=1
and

gr(&,n) = ga,(&n) + L he, (&, y —iy)gL(y —iy,n)dy,

where B3 =LU{{eC:0<R() < —3()} (see Figure 2) and hg(&,-) and
gs,(&,-) are the distribution and the Green function to B; of two-dimensional
standard Brownian motion starting at £, respectively. To make further progress
on the difference GL(&,7n) —2g.(,n), we will check that for £e C*\B; and
ned(C\By),

(6.6) \Hp,(¢&,n) — ha,(&,m)| < C{IE = 7> + 17 (In| +1)7%}
and for £ C*\B; and y > 1/2,
(6.7) |[Hp, (&, y> — iKp>) — hp, (&, y — ip)]

< C{lE—y+iyl 2+ 1Py A v
Moreover, we will check that for &e U;UUS and ne Uy with & #1),

(68) |Gr (&) = 203,(&m)] < CLIE =l + 17211~}
and for jeN and ne Uj,

(6.9) \GL(j — ij,n) — 290 — if,m)| < C~2 g™,
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Then same procedure as in the proof of (3.17) implies that for ¢ e U; U Uy and
ne Uy with & #7,

> Hg, (& —i)GL(j — ij,n) —2 L h, (&, y —iy)gr(y —iy,n)dy
J=1

< Cle[ P

(taking Hp,, Gr, hp,, 291 for Hp, Hy, hp, hy, respectively) and we conclude that
(1.23) holds for & e (Uy U Uy) and 5 € U with & # 5. It remains to check (6.6),
(6.7), (6.8) and (6.9).

(6.9) is immediate from symmetry of G, and g, and (1.23) for £ € C*\L and
ne Uy with & #n. Let

V={eC: R <3IU{CeC:-R(©) = 3()}
and let

NgE

(Hg-Hp)'(k,1) = Hp(k + ik, j))H (j,1 — il)

-
Il

(Hg - Hy)""'(k, j)(Hg - Hy)' (j,1).

NgE

(Hg-Hy)"(k,1) =
1

~
Il

We employ the relation

Hp,(k+ ik,] — il) = > (Hp - Hy)"(k,1)
n=1
instead of (2.4). In view of this relation, the method developed in §3 can be
adapted for deriving (6.6) and (6.7). The proof of (6.8) is similar to that of
(1.23) for £ e U] and ne Uy with £ ##. (6.8) follows from the relations

GB3(€) ) a(é ’7 - a é ’7 g HB3 ( lj - ﬁ) - a(] - lj - ’7)}
and
IE—al [* 1 |y —iy—7]
_1 h —iy)=logi——4d
o (e = log ey & =7l Jo 56y =)z log |y —iy =l

that are given by the strong Markov property.
If £e Us and 5 € U5, then we obtain the relations

(6.10) GL(&n) = GL(&,7) + G(&,n) ZHL (& —=/)G(=jm);

and its Brownian analogue



78 YASUNARI FUKAI

611 gu(en) = grEq) + g(Em) - f B (E,—2)g(~y.n) dy.

Notice that i € Uy and n, —in, € Uy if £ € U5 and 5 € U; and that G. and g
are symmetric. The estimate
|GL(&,7) = 2908 M) < CHIE—nl > + [& 7 7)
follow from (1.23) for & e Uy U U, and 5 € Uy with ¢ ##, as has already been
shown above and the inequality |&— 7| < 4[i€ —n, +in,| (recall ¢ e Us and
ne U;). In view of (6.10) and (6.11), the same argument as showing (1.23) for
£e Uy and ne Uy with & ## gives
|GL(E 1) = GL(&,) = 29(&m) +290(&, )] < C{IE =117 + 170>},

Thus we have (1.23) for &€ U and #n e U5.
By symmetry of G; and g, we conclude that (1.23) for & e C*\L with
¢ ##. The proof of Theorem 1.8 is complete.

7. Appendix
For B €(0,2n), put
W=wh={¢(eC:p<6<2n},

where (|£],60) is the polar coordinate of &, 0 < 6 <2z and let Ay /(&,-) be the
hitting distribution to W of two-dimensional standard Brownian motion starting
at . We will show that for ¢ e C\W and n e W with arg(n) = f, hw(&,n) is
expressed as

T & ror \" _
7.1 - m+1 1
(7.1) 7 mZ (,W) r

v{:m (o) Soen (2

. mnby
- sin 5

where (ro,6y) and (r,f) are the polar coordinates of ¢ and 7, ¥,, = mn/f and

c(v,n) is the same function as in (2.10).
The two-dimensional standard Brownian motion W(¢) can be expressed as

the skew product
(oo(f;0%))

where r(7) is the two-dimensional Bessel process and 6(¢) is the projection modulo
27 of 1-dimensional standard Brownian motion that is independent of r(z).
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Let 0 <y <fand T:=inf{r>0:6(z) ¢ (0,5)}. By the Markov property,
Po,{0(T) =B, T > t} = Eg[Poy{0(T) =B} : T > 1].
It is known in Ito and McKean [3, p. 31] that for 0 < 6y < f3,

Pp,{0(t) €dO, T >t} = %i exp< ;ﬂ;z) <sin n%%) <sin mTzzg)
m=1

Further, it is easy to see that for 0 < 8 < 8, Pp{6(T) =} = 6/B. Combining
above relations and using an easy calculation, we have

m+1
(7.2) Po{0(T) =B, T > 1} = 22 1) + xp(—m;;22t> . %00

We write

14

2 pt
h(t,ro,r)2rdr:= E,, [exp<—?J r‘z(s) ds),r(t) edr].
0
Then

1 12+ 1\ (ror
(7.3) h(t,ro,r) = % exp(— 5 )IV (T)’

where I'(s) is the gamma function and

B _ X vV oo (x/2)2n
heo= () 2T+ D)

(see Ito and McKean [3, p 271])
Let 7:=inf{r>0: 9{0 r~2(s)ds) ¢ (0,8)}. Since 6(¢) is independent of
r(f), we can compute the hitting distribution to W by writing

T
P(,O,go){9< JO r2(s) ds) =p,r(T)e dr}
—OOEdPGT‘Zd—Tttddt
=, B |-GPado( | @) =pT> i) ear| a

(7.2) and (7.3) imply that the right-hand side of above is equal to

0 0 2 2
n m+1 - mnby _17 (Tor ry+r
ﬁ mEZ (sm —ﬂ ) L L, <_t ) exp <—2 ) dt.

Noticing that for v > 1, the 1ntegra1 of t~exp(—(rg +r*)/(2t)) over (0, 0)
with respect to ¢ is equal to (2/(r§ +r?))"” 'I'(v — 1), we obtain an expression of
the hitting distribution to W.

Put f=3%/2 and replace 6y by 0+ (n/2) in the right-hand side of (7.1).
Then we have (2.10) in §2.
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Let gw be the Green function of the sector W. Then we have

(74)  gw(En) = J:o{Eé [r(t) € dr, 0 (L z(s)ds) e db, T>J 2(s)ds]/}dt
()
| L 1 () exp (;{ ) @
=532 (o5 (0 5) ()

1 ot e ror \2"
— + +) cOmn) | 5
m <r0 + r2> z; m ! <r§ +r2) [’

n=

where (rg,6p) and (r,0) are the polar coordinates of ¢ and #.
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