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HITTING DISTRIBUTION TO A QUADRANT OF

TWO-DIMENSIONAL RANDOM WALK

YASUNARI FUKAI

Let HL(ζ,η) be the probability that a two-dimensional simple random walk
starting at ξ hits the third quadrant L for the first time at η. The main objective
of this paper is to investigate the asymptotic behavior of HL(ζ,η). It is es-
pecially proved that there exists a constant Co such that for ξ e Z2\L and / e N,

\HL(ξ, (-/, 0)) - AL(f, (-/,0))| < C0{\ξ + (/,0)Γ3 + |f Γ2 / 3Γ5/3},

where hL(ξ, •) is the density of the hitting distribution to the third quadrant of
two-dimensional standard Brownian motion starting at f. This estimate is sharp
at least in the sense that the powers —2/3 and —5/3 can not be improved.

I. Introduction and statements of results

Let {S(n)}™=0 be a two-dimensional simple random walk starting at ξeZ2,
namely,

S(0) = f and S(n)
k=\

where X\,X2,... is a sequence of independent, identically distributed random
variables that take four values (1,0), (—1,0), (0,1), (0, —1) with equal probability.
We denote by Pξ the probability law of the process {S(n)}^=0. For a subset A
of R2 such that AΠZ2 ^ 0, define

τA =ini{n> 1 : S(n) eA},

the hitting time of A. Since S(n) is recurrent, τ^ < oo a.s. The hitting dis-
tribution HA(ξ,η) is defined by

HA(ζ,η)=Pξ{S(τA)=η}, (ξ e Z2\A,η E AΠZ2).
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By the definition of simple random walk, this is a probability measure on

(1.1) d(Z2\A):={ηeZ2ΠA\3ζeZ2\A:\η-ζ\ = l}.

We use complex notation ζ = ζx + iζ2 e C, i — V—T, instead of ζ = (Ci ? C2) G ^ 2

for the sake of convenience: The notations \ζ\,ζ and arg(£) are used in the usual
sense. Put

L = {ζeC: M(C) < 0 and 3(C) < 0}

(the third quadrant of C) and

C* = { C e C

(the set of all lattice points of C). Let W(i) be a two-dimensional standard
Brownian motion on a probability space (Ω,#; <P) and 7^ the corresponding
hitting time:

7 i = i n f { / > 0 : W(ήeA}.

Let HA denote the Brownian analogue of HA, i.e., for x + iye C\L, z > 0,

/*L(* + i>, -z) = ^ { - ^ < W(ΓL) < 01 fF(O) = x + Ϊ » .

The objective of this paper is to investigate the asymptotic behavior of HL. The
function Â  has an explicit expression by means of a Bessel function, so that fine
bounds for the difference HL — fiL will provide fine estimates of HL. The main
results are stated as Theorems 1.1 through 1.8 below.

THEOREM 1.1. There exists a constant Co such that for ζ e C*\L and I e N,

(1.2) \HL(ζ, -i) - hL(ξ, -i)\ < co{\ζ + /p 3 + | ί Γ 2 / 3 r 5 / 3 } .

THEOREM 1.2. For any ξe C*\L, there exists a positive constant c\(ξ) such
that for I e N,

(1.3) HL{ξ,-l)>cλ{ξ)r5l\

THEOREM 1.3. For <Je(O, π/2) and leN, there exists a positive constant
cx{δ,l) such that for ξ e C*\L with -(π/2) +δ < arg(£) <π-δ,

HL{ξ,-l)>cx{δ,l)\ξ\-2l\

Remark 1.1. For x,ze(0,+oo), we can write

G)
where M(x, z) is bounded both from above and from below by positive constants
and satisfies
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M(x, z) —• 1 as (x/z) v (z/x) —• +00

(see (2.12) and (2.13) below), where a v b = max{α,Z>}. From this, the estimate
of HL{k, —I) in Theorem 1.1 is seen to be quite sharp when both k and / are large
(in fact the powers —2/3 and —5/3 appearing in (1.2) cannot be improved; see
Remark 1.4). However it does not give the lower bounds of HL as Theorem 1.2
and Theorem 1.3 do.

COROLLARY 1.4. For any δ e (0, π/2), there exists a positive constant c such
that for leN and ξ e C*\L with -(π/2) + δ < arg(f) <π-δ,

X-hL{ξ, -I) < HL(ζ, -I) < chL{ξ, -I).

By means of Green's function

n=0

) can be expressed as

(1.4) HA(ζ,η)= Σ GA(ξ,ζ)Pζ{S(l)=η} (ξ e C*\A,η e AΠC*)
ζeC*\A

(see Spitzer [8, §15]). Put

The reflection principle then shows that for ξ,η e C*\B,

(1.5) GB(ξ,η)=a(ξ-η)-a(ξ-η),

where a(ξ) is the potential function, that is,

a(ξ) := Σ (po{^(«) = 0} - Pζ{S(n) = 0}).

It is well known (Spitzer [8, p. 148]) that

σ(0) = 0,

α(2) - a(-2) = a(2i) = a(-2i) = 4 - - ,
π

Fukai and Uchiyama [2] provided the following asymptotic expansion for
a(ξ):
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(1.6)
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where ωξ = (ωf,ω|) =ξ/\ξ\ and γ is Euler's constant, and by using this, the
estimate

Ί-3\(1.7) HB(ik,l) = hB(ik,l)-

where hB = hB(x + iy, z) is a Brownian analogue of HB and explicitly given by

. , . , 1 V

The estimate (1.7) will play a crucial role in the proof of Theorem 1.1.

Remark 1.2. Let

5 ' = {CeC : - « ( { ) > 3(0},

F = {{ € C : -9t(C) < 3(C)} U {C e C : «(£) > 3(f)},

(see Figure 1) then the reflection principle gives the relations

(1.8) GB,(ξ,η)=a(ξ + iη)-a(ξ-η), (ξ,ηeC*\B')

and

Gv(ξ,η) = α ( - ί - iη) - a(-ξ + η)+ a(-ξ + iη) - a(-ξ -η), (ξ,ηe C*\V).

We can also compute the following estimates. For ξ e C*\B' and I e Z,

(1.9) H B , ( ξ , l - i l ) = h B I ( ξ , l - i l ) ^ ξ + ξ

\ξ-l + U\4

\ξ-l + U\6

, 4

where

Figure 1: The regions V,B\,B2 and 2?4.
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hB>(x + ιy,z- iz) = = ~.
π(x-z)2 + (y + z)2

For ξeC*\V and leN,

(1.10) # κ ( f , -/ + //) = Aκ(ί, -/ + //) + O(\ξ + / - ι7Γ3),

where AK(x + ι>, - z + ΪZ) = hB>(-x - ίy,z - iz) - hB>(-x - iy, -z + iz).
There is, however, no simple relation between GL and a(ξ) as those for GB,

GBι and G^. To calculate HL, we derive relations among HL,hL,HB and /z#.
By using (1.7) and an explicit representation of HL as given later, such relations
lead to the estimate of Theorem 1.1.

Let

= {ζeC: 3(C) < 0} U {ζ e C : 9t(C) >

= {£ e C : SR(f) < 3 ( 0 < 0}

(see Figure 1). The same method as proving Theorem 1.1 can be adapted for
deriving (6.6) in §6 and the following estimates. There exists a constant C such
that for ξ e C*\B2 and η e d(C*\B2),

\HB2(ζ,η) - hB2(ζ,η)\ < C{\ξ - η\~3 + \ζ\-2/\\η\ + 1 )- 5 / 3 ( | ί |~ 2 / 3 Λ (\η\ + 1)" 2 / 3)},

and for ξ e C*\5 4 and η e d(C*\B4),

\HB4(ξ,η) ~ hB4(ξ,η)\ < C{\ζ - η\~3 + \ξl*Π{\η\ + 1)" 1 1 / 7 },

where hA(x + iy, •) is the density relative to Lebesgue measure on the boundary of
A of the hitting distribution to A of two-dimensional standard Brownian motion
starting at x + iy.

Put

Bλ={ζeC: -9l(C) < 3 ( 0 } U {ζ e C : 3 ( 0 < 0}

(see Figure 1). It is easy to see that for ξ e C*\B\ and η e d(C*\B\),

(1.11) HBι(ζ,η)=hBι(ζ,η) + O(\ζ-ηΓ3)

from (1.7), (1.9) and the relations

(1.12) HBι(ξ,-l + il)=HB,{-ξ,l-il)-HB,(-ξ,-l + il)

-HB.(-ll-iI)+HB,(-l-l + il),

HBι (ί, -/) = HB(ξy -I) - HB(ζ, I) - HB(-iξ, I) + HB(-iζ, -/),

that are given by the reflection principle and symmetry of simple random walk.
The estimates (1.10) and (1.11) are sharp at least in the sense that

O(\ξ - η\~3) can not be replaced by o(\ζ - η\~3). For s e (0,1) and / > 1/j, we
put <!;/=-/ + φ7], where [a] denotes the greatest integer not greater than a.
Then from (1.9) and (1.12) it is easy to deduce that there exist constants
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so e (0 ,1) , keN a n d C > 0 such t h a t for / > /0,

HBι(ξ?, -I + //) - Mf/*, -/ + U) > C(l - *oΓ3Γ3.

Thus 0(|<J —^|~3) cannot be replaced by o(\ξ — η\~3) in (1.11). The reasoning
for (1.10) is similar.

THEOREM 1.5. For any keN, the following limit exists

c*(k):= lim l5/3HL(k,-l).
/->oo

The function c* is characterized as a unique solution to the equation

(1.13) c*{k) = ΣHB(ikJ)c*{j), {keN)
7=1

with the boundary condition lim^oo k~2/3c*(k) = Co, where Co — (2/3π) sin(π/3).

THEOREM 1.6. For owy /e^V, the following limit exists

c*(/):= lim k2'*HL{k, -I).

The function c* is characterized as a unique solution to the equation

(1.14) C*(1)

λe boundary condition lim/^oo lx^c*{l) = Co, where Co is the same constant as
in Theorem 1.5. Moreover, limjζ-+o0k

2/3HL(k,0) exists and the limit is expressed
by means of c* and Hβ as

(1-15) lim

Remark 1.3. We can show that for ξeC*\L, there exists lim/^oo l5^
HL(€,—1)- The limit is expressed by means of c* and HB as follows:

(1.16) lim l5/3HL(ξ,-l) =
/->oo

I 7=1

It is related to λ\(ξ,π>π/2) appearing in Kesten [5, Theorem 1] as follows:

(1.17)
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where (|£|, θ) is the polar coordinate of ξ, -π/2 < θ < π. Notice that ξ and iξ are
mirror images of each other with respect to the diagonal {x + ix : xe R}. The
representation (1.16) gives

(1.18) lim l5/3HL{ζ, -I) = lim l5/3HL(iξ, -I).
/ o / X>oo

Since lim/^oo/5//3//L(£,—/) is quite sensitive to the change of ξ as realized e.g.,
by the fact that lim/^oo l5^HL(ί, — /) is equal to

\ {lim l5/3HL(2i, -I) + lim / 5 / 3i7L(l + /, -/) + lim 15/3HL(-1 + /, - / ) ) ,
4 |̂ /->oo /->oo /-»oo J

(1.18) may seem strange coincidence. It, however, simply explained by

\HL[ξ, -I) - HL(il -l)\ < HB(ζ, -I) (if

(as is seen by reflection with respect to the diagonal 9t(£) = 3(ξ)). Moreover,
we can show that for θe [π/4,π),

(1.19) lim | ^ ^ ( g , - / ) = c.(/)M . 2 f l ; ^ .
(^)6> π Jo s i n

z β -f (cos θ - u)

In the particular case when ^ = ik we have

(1.20) lim k2/3HL{ik,-l) = c*{l).

Remark 1.4. We shall see in §4 that neither of k~2^c*(k) and lιl*c*(l) is
constant, while both x~2/3 limz^oo z5/3hL(x, —z) and zχ/3>\\τax^O0x

2^hL{x1—z) are
constant (= co). This is the reason that the powers —2/3 and -5/3 appearing
(1.2) cannot be improved. By Theorem 1.1,

and for ξ e C*\L,

(1.21) lim l5/3HL{ξ,-l) \im l5/3hL{ξ,-l) -

where (|ί|,^o) is the polar coordinate of ξ,—π/2 < θo < π and C\ is a constant
independent of ξ; in particular c*(k)k~2/3 - c0 = 0(Ar4/3).

Remark 1.5. With the help of invariance principle and a simple estimate of
the difference HL(ξ,—l) — HL(ξ, -I— 1) (see Remark 2.1 in §2), we can readily
deduce from Theorem 1 in Kesten [5] that there exists lim/_+oo l5l3HL(ξ, — I) and
these limits are positive and satisfy (1.17). In Kesten [5], however, it does not
seem to be identified with anything. We also deduce from Theorem 2 in Kesten
[5] that for εe (0,1/8], there exists a constant K° = K°(ε) < oo and a function
θ(ε, /) > 0 such that

θ(ε,l) ->0 as /-» oo,
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and for each ζ e C*\L with \ξ\ < (1 - 2ε)l

\HU(, -I) - Mi, -/)| £ κ

where

- x | : x < 0 } i f f 2 > 0

ix\:x<0} i f £ 2 < 0 .

Theorem 1.1 is an improvement of this estimate.

For a finite subset A of C*, the hitting distribution of A by the random walk
starting at infinity may be defined by

μA(ζ):=^HA(ζ,ζ) (ζeA)

(the limit exists and ΣCGAMO = 1> Spitzer [8, §14]). Let

L{n) = {-/ e C* : 0 < / < n} U {-// G C* : 0 < / < « } .

Theorem 1.6 is useful for investigating the asymptotic behavior of //£(«) (~~0

THEOREM 1.7. There exists a positive constant a such that

where c* is the same function as in Theorem 1.6.

Remark 1.6. The existence of lim«__oo n2^ μLί^(—l) is obtained, as a special
case, by Kesten [5], in which, however, the identification of it as in Theorem 1.7
is not considered.

Remark 1.7. Auer [1], Kesten [4] and Lawler [7, §2.4] provided some bounds
of the hitting probabilities μΛ. In those papers, Auer, Kesten and Lawler used
the fact that there is a positive constant C such that if a finite connected set
A cz C* contains the origin and η e A then

1
(I- 2 2 ) ~^Pη{^dC{2r) < U} < μA{v) ̂  CPη{τdC(2r) < ̂ } ,

where r = r(A) := max{|£| : ξ e A}, C{r) = {ξ e C* : \ξ\ < r} and dC(r) -
{ξ e C*\C(r) I 3ζ e C(r) : \ξ - ζ\ = 1} (as in (1.1)) and computed Pη{τdc{2r) < τA}
instead of μA(η). This method is an important tool to compute a bound of μA(η)
but would give no information about lι^\imn^o0 n2^μL(^{—I) except for
boundedness.
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THEOREM 1.8. Let QL be the Green function of L for two-dimensional
standard Brownian motion. Then there exists a constant Co such that for ξ, η e
C*\L with ξΦη,

Remark 1.8. From (1.2) in Theorem 1.1, we can show that there exists a
constant C such that for ξ,η e C*\L,

\ Vlίl +1*17
For ξ,η e C*\L with ξφη, we write

Then M(ξ,η) is bounded from above by a constant multiple of

For δ e (0,π/2), we restrict # L to {(ί,//) e C x C : -(π/2) +(5 < arg(ξ),arg(^) <
7Γ — 5}, then M(< ,̂ //) is bounded from below by a positive constant (depending on
δ). With the help of these bounds of gL, (1.23) gives the upper bound of Gx that
is the same bound as (1.24) and also gives a lower bound of GL-

2. Preliminary lemmas

In this section we give preliminary lemmas to calculate bounds of HL\ in
particular we introduce relations among HL,HB,hL,hB, fundamental in our proof
of Theorem 1.1, which connect the discrete object HL with the continuum one
h^. As mentioned in the introduction, the estimate (1.7) plays a crucial role to
obtain a result so sharp as given in Theorem 1.1. To exploit (1.7) effectively, it
is important to suitably define a continuum extension HB{x, —z) of HB(k, —I) as
given in the first subsection below.

2.1. Fundamental relations among HL,hL,HB,hB and γ
The strong Markov property shows that for ξ e C*\L with 3(ξ) > 0 and

leN,

(2.1)

and that for ξ e C*\L with 9{(ξ) > 0 and / e N,
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(2.2) HL(ξ,-l) =
7=1

where B = {ζ e C* : 5R(£) < 0}. By these equalities and by symmetry, i.e.,
HB(k,ij) =HB(ik,j) = HB(ik,-j), HL(k,-l) may be written as

00

(2.3) HL{k,-l)=H2(ikJ)

Here H2(ikJ) and in general H%(ik,l)n = 1,2,... are defined by Hι

B{ίkJ) =
HB(ik,l) and

7=1 7=1

Iterating (2.3) we obtain

(2.4) HL(k,-l) =
7 1 = 1

Put

= £ if/t-l/2

and define Hg{ix,z), an extension of H% to a function on {(ix,z) : x > 0, z > 0},
by

0, if 0 < x < 1/2 or 0 < z < 1/2.

Then

f 0 0

Hp(ix.z) = HD~ (ix, y)HB(iγ,z) dy.

Let HL be a similar extension of HL, or what is the same thing

(2.5) HL(X) -Z) = y^H2 n(ix,z).

Similarly

oo

n=\

Here hB(ix,z) is defined by hB(ix,z) =hB(ίx,z) and
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R e m a r k 2 . 1 . I t i s t h e f o l l o w i n g e s t i m a t e f o r ζ e C * \ L a n d l e N

( 2 . 7 ) \HL{ξ, -I) - HL(ξ, -I - 1)| < C(\ξ + /Γ1 v rλ)HL(ξ, -I)

(C is a suitable constant) that is mentioned in Remark 1.5. It is immediate
from (1.7) that \Hβ(ξ, —I) — HB{ξ, —I — 1)| is bounded by a constant multiple of
\ξ + l\-ιHB(ξ,-l). By (2.4) we have

HL{k, -I) = Hl(ik, l) +
7 = 1

which shows that for a constant C

\HL(k, -I) -

Combining this inequality with (2.1) and (2.2) yields (2.7).

For measurable functions Fx and F2 from (0,+oo) x (—oo,0) to [0,+oo), we
define

FιF2(x,-z)=\ Fι(x,-y)F2(y,-z)dy.
Jo

When we use this notation, we regard HL as the function restricted on (0,-foo) x
(-oo,0).

LEMMA 2.1. For x > 0 and z > 0,

(2.8) (HL - hL)(x, -z) = (γ + yHL + hLγ + hLγHL)(x, -z),

(2.9) (HL - hL)(x, -z) = (γ + γhL + HLγ + HLγhL)(x, -z),

where

γ(x, -z) = H2

B(ίx, z) - hl(ix, z).

Proof. Let

γx (JC, -z) := Hβ(ix, z) and γ2(x, -z) := h\(ix, z).

γx and y2 are functions from (0,+00) x (—oo,0) to [0,+oo) and satisfy γ =
7\ ~ Ύi- We rewrite (2.5) and (2.6) in the form

HL(x, -z) = γx(x, -z) -f yxflL{x, -z),

hL(x, -z) = γ2(x, -z) + hLγ2(x, -z).

It is immediate to deduce the following three identities

HL — hL = y -f y\HL — hLy2-,

yxHL = yHL + hLHL - hLy2HL,
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and

fay 2 = -fay + hLHL - hLyxHL.

Substituting the latter two into the right-hand side of the first, we get (2.8). We
rewrite (2.5) and (2.6) in the form HL = 7\ + HLJX and fiL = γ2 + Jifa- If w e

write down the decompositions of HL7\ and γ2hL instead of yxHh and fay 2 in the
above, we obtain (2.9). The proof of Lemma 2.1 is complete.

2.2. Estimates of hL

For ξ e C\L and z > 0, hL(ξ, -z) is expressed as

(2.10)

. m(2θ
sin

Here vm = 2m/3, c(v,/i) = (v + 2/i- l)(v + 2w - 2) (V + Λ + l)/«! and (|£|,0) is
the polar coordinate of ξ, —π/2 < θ < π. This expression is shown by the usual
eigenfunction expansion of a harmonic function. We give a proof of (2.10) in
the appendix. We have the following consequences of this expression.

LEMMA 2.2. There exist constants c2 and ci such that for z > 0 and ξ e C\L,

(2.11) hL(ξ,-z)<c2ll

and that for z > 0 and ξ e C\L with \ξ\ € (0,z/2) U (3z/2, oo),

(2.12)

where

x

, -z) ̂  Λ ψj ,

(|ί |,0) is the polar coordinate of ξ and Co = (2/3π) sin(π/3) (the same constant as
in Theorem 1.5). Moreover, for each δ e (0, π/2), ίλere exists a positive constant
c(δ) such that if z > 0, ξ e C\L and -{π/2) +δ < arg(£) < π - δ, then

(2.13) -^A(|ί|, -z) < AL(ί, -z) < φ)A(|ί | , -z).
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Proof. To prove (2.12), we calculate c(v,n). By using Stirling's formula,
we obtain that for v > 0 and n > 2,

c(v,ή) <c4

v+2w l 1 1

v Λ-n

= C4(/ f ( l -

V+Mnn \/v + 2n Λ/V Λ-n φι

-t\-v-2n 1 1
/ : = •

v + n

where c4 is a constant (independent of v and ή). The function f(t) :=
(1 - ί)log(l - 0> 0 < ί < 1, attains the minimum log(l/2) at ί = 1/2. Hence

φ,n)<2v+2nc4x
 1

This inequality implies that

where

hL(ξ, -z) -

4

~9π

, -z) — s m < C

xz
2-2/3 co /

n=2 x

2«-2/3

+Σ m
xz

»-4/3 r j

If Jξ|e(0,z/2)U(3z/2,oo), then 2 |φ/( |^ | 2 + z2) < 12/13, so that /(|ξ|,z) < C.
This gives the asserted bound of hL(ξ, —z).

From (2.12), it is easy to see that there exists a constant cs such that for
z > 0 and ξ e C\L with \ξ\ e (0,z/2) U (3z/2, oo),

(2.14) hL(ξ,-z)<c5h(\ξl-z).

To complete the proof of (2.11), it is sufficient to show (2.11) for z/2 < \ξ\ <
3z/2. Assume ξ e C\L with 9l(ξ) < 3(ξ). By the strong Markov property, we
obtain that

(2.15) hL(ξ, -z) = hB(ξ, -z) + Γ hB(ζ, y)hL{y, -z) dy.
Jo

It is clear that hB(ξ,—z) is bounded by |£|/(π|£ -f z|2). We decompose the
second term on the right-hand side above into two parts, one the integral of
hB(ξy y)hι(yy-z) over (0,z/2) U (3z/2, +oo) with respect to y and the other that
over [z/2,3z/2]. (2.14) implies that the former is at most the integral of
cshB(ξ,y)h(y,—z) over (0,+oo). This is bounded by a constant multiple of z"1

as shown by the inequality

πhB(ξ, y)h{y, -z) <
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that follows from

(2-16) |f- y\ > ^/(o,2|{|](;p) +f/(2iα+

for 9l(ξ) <3(ξ). From the expression (2.10), zhjXy,—z) is symmetric, i.e.,
zhL(y, -z) = yhL{z, -y). This implies that for z/2 < y < 3z/2, hL(y, -z) <
(3/2)fiL{z,—y). Using this bound and noticing that hiXz,—y) is a probability
density, the latter is bounded by a constant multiple of z"1. Since
\ξ\ e [z/2,3z/2], we can replace z"1 by a constant multiple of h(\ξ\, —z). Assume
ξe C\L with 9l(ξ) > 3(ξ). By the strong Markov property,

(2.17) hL(ξ, -z) = [°° hB(iξ, y)hL{iy, -z) dy.
Jo

The bound ΛL(Z>, —Z) < Ch(y, —z), which has already been shown above, implies
that the right-hand side above is bounded by a constant multiple of z~ι (recall

Proof of (2.13). The upper bound is immediate from (2.11). Let V(δ) =
{ζ e C\L : -(π/2) +δ < arg(£) < π - δ}. From (2.12), it is enough to show
that for given ΠQ e N there exists a constant C(5,«o) such that if ξ e V(δ), z > 0
and (z/\ζ\) A (\ξ\/z) > l/w0, then

ΛL(£,-z)>C(^0)/Kiα-*)
This follows from the inequality hL(ξ, -z) > I{^ξ)<^ξ))hB{ζ, -z) -\-I{n{ξ)>3{ξ)} -
lz

zjlhB{il,y)hB{iy,-z)dy (see (2.15) and (2.17)).

2.3. Estimates of some elementary integrals
Let/be a nonnegative measurable function on (0, -f-oo) and u and v positive

numbers. Then we obtain that

CΦ f(vw)dw ίΓ1/3 I
u/v

Let

My) =Ma,P,v,y) := ypl(o,a](y){l v log(t;/j;)).

Assume — I < p < 1/3. We are going to calculate

J 'U/V

0

Let a < u and e < v/a. Then the second term of (2.18) vanishes and, using that
p > — 1 and performing the integration by parts, the first term is seen to equal

1 , ί [a>v 1
P+l { Jo j

ί (y2 + u2Ylβf{y) dy < ^ " 4 / 3 [ / ( H dw + *r1/3 [ w~4/3f(vw) dw.
Jθ Jo iu/v
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hence
ΛCO

(2.19) (y2 + u2r2"fλ(y) dy < K'pU-^ap+ι log(v/a),
Jo

where Kp is a constant that depends only on p. In the case a < u and e > v/a,
the second term of (2.18) also vanishes. We decompose the first term into two
parts, one the integral of u~4^3vp+ιwp\og(l/w) over (0,1/e) and the other the
integral of u~A^vp+ιwp over [l/e,a/v]. Recalling that p > — 1 and combining
this decomposition with (2.19), we obtain that if a < u,

J co

(y2 + u2)~ ' fι(y)dy < K"u~*l3ap+X(\ v log(v/a)),
o

where Kp is another constant depending only on p. The case a > u is similarly
dealt with; we consider the cases v/u < e, v/a < e < v/u and e < v/a separately,
and as above we use the integration by parts and the assumption that p < 1/3.
The second term of (2.18) is at most (6/(1 - 3p))up-χ^(\ v \og(v/u)). In
consequence we obtain that for p e (—1,1/3),

(2.20)

[ V + w 2Γ 2 /V(l v \og(v/y))dy < Kpu~^\ap^ A up+ι)(\ v \og(v/(a A «))),
Jo

where v is an arbitrary positive number and Kp is a constant depending only on
p. The same argument also shows that for p < — 1,

(2.21) ( j 2 + u2)~2/3yp(l v log(j//ι;)) <fy
Jα

ί ^ ^ - ' ^ ( l v log(fl/»)) (β > u)

v log(α/ι;)) + M / ) + 1 ( 1 V \og(u/v))} (a < u)

and that for pe(-l, 1/3),

(2.22) ί °( j 2 + w 2 Γ 2 / y Φ ^ ^ M - 4 / 3 K + 1 Λ u?+ι)
Jo

and for /> < — 1,

(2.23)

The bounds (2.20), (2.21), (2.22) and (2.23) will be used on several occasions in
the succeeding sections.

LEMMA 2.3. There exists a constant cβ such that for x > 0 and z > 1/2,

\HB(ix,z)-hB(ix,z)\<c6(x2 + z2y\
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and that for keN and I e Z ,

\HB(ik, /) - hB(ik, l)\ < c6(k2 + / 2 ) - 3 / 2 .

Proof The second assertion is a restatement of (1.7). The order
0((x 2 + Z2)"1) of the first comes from the difference between hB(i(x},(z}) and
hB(ix,z).

2.4. Estimates of γ
In this subsection we derive estimates for γ(x,—z). In the first two pre-

liminary lemmas we give some estimate of γ(x, — z) by using the first inequality of
Lemma 2.3. If x and z are elements of N, then we deduce a sharp estimate of
γ(x, -z) (Lemma 2.6) from (1.7). In its proof it will be revealed how important
the manner of the definition of HB is for exploiting the relation (1.7) effectively.

LEMMA 2.4. There is a constant cη such that for z > 1/2 and x > z,

(2.24) | y ( ^ _ z ) | < ^ ,

and that for z > 1/2 and x e (0,z),

(2.25) \γ(x,-z)\ < ^ ( l v log(z/(x v 1))).

Moreover, there exists a constant c% such that for x>\/2 and z > 1/2,

(2.26) \h2

B(ix,z) - *!(/<*>, z) I < % 1 v logz).

z

Proof We write

γ(x, -z) := y3(*, -z) + γ4(x, -z),where

73 (

and

ΛOO

, - z ) - HB{ix,y){HB(iy,z)-hB(iy,z)}dy,
Jo

f 0 0

y4(x, -z) = {HB(ιx, y) - hB{ix, y)}hB(ιy, z) dy.
Jo

We apply Lemma 2.3 to see that

The second term on the right-hand side above is equal to 2c\{x~2 A Z~2). By
replacing l/(y2 + z2) by 1/z2, the first term is at most (ce/2)z~2. The obvious
inequality hB(ix,y) < l/(xπ) implies that it is also at most (ce/2)x~ιz~ι. Thus
|y3(x, —z)| < Cz~ι(x~ι A z"1). By Lemma 2.3 again, we have
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B(,y)

By the same reason as above, the first term on the right-hand side of (2.27) is
bounded by a constant multiple of z~ι(x~ι Λ z~ι). It is easy to see that

* 2 l y * A * d y ~
The first term on the right-hand side is at most (l/2)z~2. The second term is
equal to

Hence the second term on the right-hand side of (2.27) is bounded by 3(ce/z2n)
(1 v log(z/(x v 1)). By symmetry, we see that the second term on the right-
hand side of (2.27) is also bounded by (3c6/π)(x v z)~2(l v \og((z/x) v (x/z))).

We notice that for x > 1/2, the difference between hB(ix, y) and hB(i(x}, y)
is bounded by a constant multiple of (x2 + j 2 ) " 1 . The definition of h\ implies
that for x > 1/2 and z > 1/2,

J oo i

-τ—ihB(iy,z)dy.
o χ •+• y

We have the desired estimate for \h\{ix^z) — Λ^(/<x),z)| by the same argument
as showing that the second term on the right-hand side of (2.27) is bounded by
(3cβ/π)(x v z)~2(l v log((z/x) v (x/z))). The proof of Lemma 2.4 is complete.

LEMMA 2.5. There exists a constant eg such that

(2.28) \γ(x, -z)\ < c9z~ι for z e (0,1/2) and x e (0,1),

and

(2.29) \γ(x, -z)\ < c9x~ι log(-λ for z e (0,1/2) and x > 1.

Proof If z e (0,1/2) then

r00

-γ(x, -z) = hB(ix, y)hB(iy, z) dy.
Jo

By change of variables u = (y/x)2, this integral is seen to equal

1 Γ00 1 1 1 1 /x\
(2.30) h2Jix,z)=—H 9 Tdu = 7-H°β "
K J M ; 2π2x}0 u+{z/x)2u+\ \-(z/x)2n2x B\zJ
This gives (2.29). (2.28) is immediate from hB(iy,z) < l/(zπ).
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LEMMA 2.6. There exists a constant c\o such that for k,l e N,

(2.31) \y{k,-l)\<cwk-U-\

Moreover, there exists a constant c\\ such that for x > 0 and keN,

r*+l/2
γ(x, —y) dy — γ(x, —i

Jit-1/2
(2.32)

(2.33)

Γ
h

rfc+1/2
γ(y, -x) dy - γ(k, -x)

Jk-i/2

Proof The proof of (2.31) is carried out by estimating γ3 and γ4 that are
defined in the proof of Lemma 2.4. We first prove that

(2.34) |y4(£,-/)l <ck~lr2,

where C is a suitable constant. From the definition of γ4i we obtain

fl/2 foo

\γ4(k, -l)\< hB(ik, y)hB(iy, l)dy+ (HB(ik, y) - hB(ik, y))hB{ίy, I) dy
JO Jl/2

The first term on the right-hand side is at most (1/Sπ2)k~ιl~2. To estimate the
second term, we make the decomposition

{HB(ik, y) - hB{ik, y)}hB{iy, I) = h(fc, y, I) + h(k, y, I) + /3(fc, y, I).

Here

h (k, y, I) = - hB(ik, y)}{hB(iy, I) - hB{i(y\

- hB(ik, <y»}hB(Ky>, /),

According to Lemma 2.3, \I\(k, y,l)\ and \h(k, y,l)\ are bounded by a
constant multiple of (\/(k2 + y2))l~2. Moreover, the integral of l/(k2 + y2)
over (0, oo) with respect to y is equal to (π/2)k~ι. For the proof of (2.34), it
suffices to show that

(2.35) Γ h(k,yj)dy
Jl/2

<

where C is a suitable constant. From Taylor's series, we obtain that for x > 0,
jeZ and \y-j\< 1/2,

hB{ix, y) - hB(ixJ) = —hB(ix,j)(y - j) + - j-^hB(ixJ + θ)(y - y)2,

with \θ\ < 1/2. The integral of the first term on the right-hand side over
[j — 1/2,j + 1/2) with respect to y vanishes. Moreover, \{d2/dy2)hB(ix, y)\ <



HITTING DISTRIBUTION OF RANDOM WALK

(8/π)(x2 + y2y3/2. Thus for x > 0 and j e Z,

53

(2.36) J y+1/2

7-1/2

hB(ix,y)dy-hB(ixJ)

This implies (2.35).
Next we prove

-1/-2\γ3(k,-l)\<Ck-Ί

with a suitable constant C. The proof is similar to that of (2.34). We make the
decomposition

HB(ik, y){HB(iy, I) - hB{iy, /)} = 74(fc, y, I) + Is(k, y, /).

Here
h{k, y, I) = HB{ik, <y}){HB(Ky}, I) - hB(Ky\ /)},

I5(k, y, I) = HB(ik, <y»{hB(Ky}, I) - hB(ιy, /)}.

By Lemma 2.3,

The same argument as verifying (2.36) gives

ry+i/2
hB(iy,x)dy-hB(ij1x)

Jy-l/2
Jy-l/2

Hence as above we obtain that

3/2-

f 0 0

h{k,yj)dy
Jl/2

proving (2.31).
Notice that

J
fc+l/2 roo Γ r/t+1/2 "I

y(x, -^) έfy - γ(x, -k) = hB(ix,y)\ hB(iy,k) - hB{ίy, y) dy \ dy
A:—1/2 JO ( Jk-\/2 Jand apply (2.36). Then we have (2.32). Similarly

rk+1/2 1

This implies (2.33). The proof of Lemma 2.6 is complete.
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3. Asymptotic behavior of HL(ξ, -I)

In this section, we will prove Theorems 1.1, 1.2 and 1.3 and Corollary 1.4.

LEMMA 3.1. There exists a constant en such that for x > 1/2 and z > 1/2,

Proof. The proof is carried out by estimating the right-hand side of
(2.9). Lemma 2.4 implies that \y{x, —z)\ is bounded by a constant multiple of
z~2(l v logz). Since HL is an extension of hitting distribution i/L, \HLγ(x, — z)\
is also bounded by a constant multiple of z~2(l v logz). We will show that for
x > 1/2 and z > 1/2,

(3D
(3.1)

This gives

\yhL{x,-z)\<{6cu/e)z-5l\

Since HL is an extension of hitting distribution HL,\HLγhL(x,—z)\ is also
bounded by the right-hand side above.

To prove (3.1), we apply (2.11) to obtain

fl/2
(3.2) \γhL{x, -z)\ < 2c2z"5/3 |y(x, -y)\y2" dy

Jo
ΓCO

+ 2c2 \γ(x,-y)\h(y,-z)dy.
J 1/2

By virtue of Lemma 2.5, we may replace \γ(x, —y)\ by cg{I{x<ιyy~ι + I{x> \}X~ι

log(x/^)}, showing that the first term on the right-hand side of (3.2) is at most
4c2Cgx~ιz~5/3(l v logx). Hence it is enough to show that

Γ \γ(χ,-y)\h(y,-z)dy < Cx-Wz-^X-1'* A Z-2/3).
J 1/2

We decompose the left-hand side of the above into two parts, one the integral
over [1/2,x] and the other that over (JC, +oo). By Lemma 2.4, the former is
bounded by

(3.3) \
Jl/2

The latter is bounded by

(3.4) Clz-X>3 Γ y~4/\y2 + z 2 )~ 2 / 3 (l v \og(y/x)) dy.
Jx



HITTING DISTRIBUTION OF RANDOM WALK 55

Take p = -l/3, a = x, u = z. By (2.22), the integral in (3.3) is at most
^_i / 3z- 4/ 3(x 2/ 3 Λ z2/3). Take p = -4/3, a = v = x9 u = z. By (2.21), the in-
tegral in (3.4) is at most 3^_4/3x~1/3(x~4//3 Λ Z ~ 4 / 3 ) . These complete the proof
of (3.1).

Notice that, in the proof of (3.1), the bound cux~ιz~ι(l v logx) comes from
the first term on the right-hand side of (3.2). Then we have the following
lemma.

LEMMA 3.2. There exists a constant c\ $ such that for x>\/2 and z > 1/2,

γ(x,-y)hL{y,-z)dy :
11/2

P R O P O S I T I O N 3 .3 . There exists a constant cu such that for x>\/2 and z >

1/2,

\**LyX) Zj — tϊLyX ) —Z)\ -^ C14X Z yX Λ Z ) .

Proof We will show that each term γ = γ(x, -z) , JHL, hLγ, hLγHL, on the
right-hand side of (2.8), is bounded in absolute value by a constant multiple
of x~1/3z~4/3(x~1/3 Λ z" 1/ 3). Lemma 2.4 implies such an estimate of \γ(x, - z ) | .
Notice that HL(y,-z)=0 for 0 < y < 1/2. By Lemmas 2.4 and 3.1, the
difference between yHL(x,—z) and

(3.5) Γ y(χ,-y)hL(y,-z)dy
Jl/2

is at most

This integral is negligible as O(x xz 5/ 3(l v log*)). The bound for the integral
in (3.5) was already given in Lemma 3.2. Hence we have the desired estimate of

\γHL(χ,-z)\.
Let us show

(3.6) \hLy{x, -z) | < cλ5χ-χ^z-A'\χ-χl2 A Z~^2) (JC > l/2,z > 1/2).

By (2.11), we obtain that

fl/2 foo
\hLy{x, -z)\ < 2c2x~2^ \γ(y, -z)\y~*/3 dy + 2c2 h(x, -y)\γ(y, -z)\ dy.

Jo Jl/2

In view of (2.25), we dominate \γ(y, -z)\ by c 7 z" 2 (l v logz) to see that the first
term on the right-hand side above is at most 6c2Cηx~2^z~2(\ v logz). We
decompose the second term into two parts, one the integral over [1/2, z) and the
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other that over [z,co). By Lemma 2.4, the former is bounded by

(3.7) 2c2cΊx
2^z-2 Γ (x2 + y2y2/3y-1/3(1 v log(z/y)) dy.

Jl/2

The latter is bounded by

(3.8) 2c2cΊx
2/3z-1 (x2 + y2y2/3y-4/3 dy.

)z

Take p = -l/3, a = v = z, u = x in (2.20) to see that the integral in (3.7) is
at most K_ιβχ-A/3(x2'3 A Z 2 / 3 ) ( 1 V log(z/jc)). Take p = -4/3, a = z, u = x in
(2.23). The integral in (3.8) is seen to be at most K_4/3z-^3(χ-4^3 A Z~ 4 / 3 ) .
Thus we obtain (3.6).

Notice that HL(y, -z) = 0 for 0 < y < 1/2. By Lemma 3.1 and (3.6),

f 0 0

hLγHL(x, -z) - hLγ(x, -y)hL{y, -z) dy
Jl/2

The same arguments as in the proof of (3.1) and (3.6) prove

Γ \hLy{x,-y)\hL{y,-z)dy < Cχ-ι/3z^3{χ-χl3 A Z" 1/ 3).
Jl/2

Hence we have the desired estimate of \hLyHι(x, —z)|. The proof of Proposition
3.3 is complete.

If x.zeN, then the estimate given in Proposition 3.3 can be improved
significantly.

P R O P O S I T I O N 3.4. There exists a constant c\β such that for k,l e N,

Proof. We will show that each term y^yhL,HLγ,HLγhL, appearing in the
right-hand side of (2.9), is bounded in absolute value by a constant multiple of
£-2/3/-5/3 τ h e estimate of \y{k,-l)\ is immediate from (2.31).

We prove that there exists a constant C such that for kJeN,

(3.9)

We decompose

HLγ(k, -I) = > J HL(k, -j) <{ I γ(y, -l)dy- γ(j, -I)
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From Lemma 2.6, \HLγ(k,—l)\ is bounded by a constant multiple of /
HL(k,—j)j~x. The bound (3.9) therefore follows if we show

7=1

But this is immediately seen by writing HL = (HL — hL)
Proposition 3.3 and (2.11). Thus we obtain (3.9).

To estimate γhL(k, - / ) , we decompose

and applying

yhL{k
fl/2

JO l/2
K -y)hL(y, -/) dy.

The first term on the right-hand side above is bounded by
(1 v log/:) (see the bound for the first term on the right-hand side of (3.2)). In
the proof of Proposition 3.3, we proved that the difference between the second
term and γHL(k,—l) is bounded by a constant multiple of k~ιl~5^{\ v logA;).
Let us show that there exists a constant C such that for kj e N,

(3.10) \yHL(k, -l)\ < Ck~ιΓ5/3.

The proof is similar to that of (3.9). In view of Lemma 2.6, it is enough to show
that

This is also seen by writing HL — {HL — hL)+hL and applying Proposition 3.3
and (2.11). We accordingly conclude that

(3.11) |yAL(*,-/)|£.

We will show that

Γ7+1/2

J/-1/2

This bound and (3.11) give

(3.12)
(-7+1/2

7hL(y,-l)dy-yhL(j,-l)
J/-1/2

v log/:).

<c 1 8 r ' r 5 / 3

\HLγhL(k, -l)\ < (c1 7 v logj).

7=1

Moreover, the same arguments as in the proof of (3.9) show that the sum on the
right-hand side above is bounded by a constant multiple of k~2/3.

To prove (3.12), we rewrite the left-hand side of (3.12) in the form

, -y) dy - yϋ\ -y)
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Apply (2.11) and (2.33) to see that the integral above is at most

Jo

Thus we have (3.12). The proof of Proposition 3.4 is complete.

PROPOSITION 3.5. There exists a constant Co such that for x -\- iy e C\L with
x v y > 1/2 and z> 1/2,

(3.13) \HL«x) + Ky\ -<z» - hL{x + iy, -z)\

< C0{\x + iy + z\~2 + \x + iy\-l/3z-V\\x + z>Γ1/3
 Λ Z" 1 / 3 )}

Proof. We consider the case x < y and y > 1/2. To estimate the dif-
ference HL((x} + /<}>>,— <z» — AL( ̂  + Ϊ J , — ̂ ), we recall (2.1) and use the
relation

(3.14) hL(x + iy,-z)=hB(x + iy,-z)+ \ hB(x + iyJ)hL(y,-z)dy.
j CC

Jo

The term Co\x + iy + z\~2 on the right-hand side of (3.13) comes from the
difference between HB((x) + Ky), - < z » a n ( 3 hβ{x + «>, ~^)

Let

l/2

=
JoJo

By the definition of <j>, the difference between the second term on the right-
hand side of (2.1) and that of (3.14) is equal to h\(x + iy, I) + h2(x + iy, I). We
will show that for x < y with y > 1/2 and z > 1/2,

(3.15) - Γ
Jo

4-1>,^)AL(^, ~Z) dy

where C is a constant. Using Proposition 3.3, Lemma 2.3 and (2.11) and then
recalling x < y and y > 1/2, we observe that \h\(x + iy,z)\ and \h2(x + iy,z)\ are
bounded by constant multiples of

|
l/2
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and of

pl/2

1-2

11/2

respectively. The desired bound follows from a simple calculation by dealing
with the cases \x + iy\ < z and |JC + iy\ > z, separately.

It remains to show that (3.13) holds for x > y with JC > 1/2. In this case,
we use the relations (2.2) and

hL(x
, 0 0

0>, -z) =
Jo

Notice that Hέ((x) + /<;;>, //) =
hB(y + ιx,y). Then

(3.16) |jyL«x>

/>, ίy)hL{iy, -z) dy.

+ K^>, Λ and h${x -h z>, /j) =

ί=f
By using the bound

which has already been shown above, the same argument as in the proof of (3.15)
verifies the estimate (3.13) for x > y with x > 1/2 and z > 1/2.

Proof of Theorem 1.1. Assume ξ e C*\L and 9t(£) < 3(f). We use the
following decomposition (as in the proof of Proposition 3.5):

HL(ξ, -I) ~ hL{ξ, -I) = HB(ξ, -I) - hB(ξ, -I) + h(ί, -/) + A2(ί, -/) ,

where h\ and hi are defined in the proof of Proposition 3.5. The term
Q|£ + /| 3 o n t n e right-hand side of (1.2) comes from the difference between
HB(ξ,-l) and hB(ξ,-l). We will show that for ξ e C*\L with M(£) < 3(f),

(3.17)
7=1

j\ -I) ~ Γ AΛ(ί,

where C is a constant. The proof of (3.17) is similar to (2.31). Put

I6(ξ,j\l) = HB(ζJ){HL(j\-l) - hL(j\-l)},

and
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y-i/2

Then

(3.18)
7=1 7=1

Apply Lemma 2.3 and Proposition 3.4 and then recall (2.16). We then obtain
that

\h{ξjj)\ <

The first term on the right-hand side of (3.18) is dominated by C\ξ\~2/3l~5/3.
The second term is negligible as O(\ξ\~ιl~5/3), if we show

(3.19)
ry+l/2

,-l)-\ hL{y,-l)dy
J/-1/2

To prove (3.19), we apply the identity

(3.20) hL(y,-l) = hl(iyj) + Γ h2

B(iy,y)hL(y,-l)dy.
Jo

Combining this relation and (2.33), the difference between hι(j,—l) and the
integral of hL(y, —I) over [j — 1/2, j + 1/2) with respect to y is not greater than

* β 5 β plus

(3.21) en Γrιrl(rl ΛFl)hL(y,-l)dy.
Jo

Apply (2.11) to see that (3.21) is bounded by a constant multiple of

2c2r
ιl-5βΓy-φ(Γl ΛFl)dy.

Jo

Thus we have (3.19). From the definition of h2, we obtain that

fl/2

(3.22) h2(ξ, -/) = - hB(ζ, y)hL(y, -I) dy
Jo

+ Γ {HB(ξ, (y)) - hB(ζ, y)}hL(y, -I) dy.
Jl/2

By (2.11), the first term on the right-hand side above is bounded in absolute value
by {A/π)c2\ξ\-χl-5l\ Put

k(ξ, y, I) = {HB(ξ, (y)) - hB(ξ, y)}{hL(y, -I) - hL{(y\ -/)},

I9(ξ, y, I) = {HB(ξ, < j » - hB(ξ, <y»}hL«y>, -I)
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and

Then

(3.23) {HB(ξ, <^» - hB(ξ, y)}hL(y, -I) = h(ξ,.

By (2.26) and (3.20), we obtain

, y, I) = {hB(ξ, <y}) - hB(ξ, y)}hL(<y\ - /

79(£, 7 1 0 (ί,

v log/)

Γ
Jo j-00

y~2{l v logj))AL(ί, -
Jl/2

Since A|(/^, •) is a sub-probability density, the second term on the right-hand side
above is at most 4c2/~5//3. By (2.11), the third term is bounded by a constant
multiple of /~5/3. Combining this and Lemma 2.3, \I$(ξ,y,l)\ is bounded by a
constant multiple of \ξ - y\~2l~5/3. By (2.16), the integral of \ξ - y\~2 over

[1/2, oo) with respect to y is negligible as
we have only to give a bound of

By virtue of (1.7) and (2.36),

instead of the integral of [hiξ, y, l)\ and \I\o(ξ, y, l)\ over [1/2, oo) with respect to
y. The difference between this sum and

(3.24) Γ \ζ-
Jl/2

is negligible as O(|c ĵ 3/ 5/3) in view of (3.19). By the same argument as showing
that (3.21) is O(j ^l~5^3) and by employing the obvious inequality \ξ — (y}\ >
(1/8)(|£| v y), (3.24) is negligible as 0(|<*Γ4/3/-5/3). Hence the desired estimate
(1.2) has been verified for ζ e C*\L and &(ξ) < 3(ξ).

It remains to show that for ξ e C*\L and 9l(ζ) >

\HL(ξ,-l)-hL(ξ,-l)\

HB(iξ, j)HL(ij, -I) - Γ hB(iξ, y)hL(ιy, -I) dy
J o

The first relation holds for similar reason as (3.16). By using the bound
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which has already been shown above, the same argument as in the proof of (3.17)
verifies the last inequality. The proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. We consider the case ξ = k. To estimate HL{k, —/),
we will show that for y > 0 and b > k,

(3.25) \γHL(y, -l)\ < 2 4bHL(k, -I) + K{b)Γ5'\

with a function K(b) approaching zero as b goes to infinity. Since hL(k,-) is
a probability density, \liLyHL{k,—l)\ is also bounded by the right-hand side of
(3.25). Noticing this and (3.25) and using (2.8), we obtain that

ΛL(fc, -/) - 2K(b)Γ5'3 < \γ(k, -l)\ + \hLγ(k, -l)\

According to (2.31) and (3.6), the first and second terms on the right-hand side
above are negligible as 0(/~ n / 6 ) . If / is large enough, then (2.12) states that

hL(k,-l)>(l/2)5/3c0Γ
5/3.

Now if we choose b such that

K(b) < ( l/3)(l/2) 5 / 3 c 0 ,

then (1.3) has been verified for ξ — k.
For the proof of (3.25), we use the inequality

(3.26) \γHL(y, -l)\ < f \γ(y, -y)\HL(y, -I) dy + Γ \γ(y, -y)\ίϊL(y, -I) dy.
Jl/2 Jb

If k,j e (0, <Z7>] Π7V, then the probability that random walk starting at k reaches j
before visiting L is at least 4~b. Hence

HL(j\ -I) < 4bHL(k, - / ) , (j E (0, <b}} ΠN),

and the first term on the right-hand side of (3.26) is at most 2ΆbHL(k,—l).
The second term is bounded by

(3.27) Π \γ(y, -y)\ \HL(y, -I) - hL(y, -l)\dy + Γ \γ(y, -y)\hdP, -I)dy.
Jb Jb

The first term of (3.27) is bounded by a constant multiple of b~4^(\ v logb)l~5^
according to Lemma 2.4 and Proposition 3.3. Lemma 2.4 and (2.11) give

\γ(y,-y)\hL(y,-l) <2c2eΊy-φ(l v logy)Γs'\

Then the integral of \y{y->—y)\hL(y,—l) over [b, oo) is bounded by a constant
multiple of &~1//3(1 v logZ?)/~5/3. Thus the second term on the right-hand side of
(3.26) is at most

OΓ1/3(1 v \ogb)Γ5/\
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It is clear that this approaches zero as b goes to infinity. This completes the
proof of (3.25).

We consider the case ξ e C*\L and 9l(^) < 3(f). By combining (2.1) and
the bound (1.3) for ξ — 1 which has already been shown above, we obtain

, -I) > HB(ξ, 1)#L(1, -/) > H*(ζ, \)cx (1)Γ5/3.

Notice that HB(ξ, 1) > 0. Then (1.3) has been verified for this case. For
ξ E C*\L with 5R(ί) > 3(f), (2.2) and the bound that (1.3) for ξ = i give the
desired lower bound of HL(ξ,—l). The proof of Theorem 1.2 is complete.

Proof of Theorem 1.3. The proof is similar to that of Theorem 1.2. First
we will show the following.

LEMMA 3.6. For any leN, there exists cι(l) such that for keN,

HL{k,-l)>c2{l)k-2l\

Proof By Lemma 2.4 and (3.1), \γ(y,—l)\ and \yhι(y,—l)\ are bounded by
a constant multiple of ^ ( l v logy). We will show that for b > /,

/•OO

(3.28) HL(k,-y)y-\\ v \ogy)dy < 2 AMb{\ v log b)HL (k,-l)
Jl/2

with a function K(b) approaching zero as b goes to infinity. (3.28) implies that

\Hγ(k,—l)\ and \HγltL{k,—l)\ are bounded by a constant multiple of the right-

hand side of (3.28). Noticing this and using (2.9), we obtain that

hL{k, -I) - 2Ck(b)k-V3 < \γ{k, -l)\ + \γhL(k, -l)\

If k and b are large enough, then the left-hand side above is at least (1/3)
(l/2)5 / 3c0/~1 / 3£~2 / 3 According to (2.31) and (3.1), the first and second terms
on the right-hand side are negligible as 0{k~x(l v log/:)). The desired estimate
follows.

For the proof of (3.28), we use the inequality

J oo

HL(k, -y)y~\\ v logy) dy < 2b{\ v logfc) max HL(k, -j)
1/2 l<y<<6>
/

fCO

+ HL[k,-y)y-\\ v logy)dy.
h

If y, / G (0, <Z>>] Π N, then the probability that the random walk starting at -j + i
visits L for the first time at -/ is at least A~b~x. Hence

HL{k, -j) < 4MHL(k, -I) (j e (0,
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and the first term on the right-hand side of (3.29) is at most 2 4b+ιb(l v logb)
HL(1C,—1). By Proposition 3.3, the difference between the second term and

(3.30) Γ hL(k,-y)y-\\ v log y)dy
ib

is at most 3ci 4Zr 4 / 3(l v logb)k~2/3. By (2.11) and the inequality h(k,-y) <
k~2/3y~1/3, the integral of h(k,—y)y~ι(l v logy) over [b, + oo) is bounded by
a constant multiple of k~2/3b~χ/3(l v log6). Thus the integral (3.30) is at most

Cb~ι/3(l v logb)k~2/3.
We have (3.28).

Let

V*(δ) = {ξe C*\L : -(π/2) + δ < arg(£) < π -δ}.

Next we consider the case ξ e V*(δ) and SR(d ) < 3(ξ). By (2.1) and Lemma 3.6,
we obtain

\ζ\<J<2\ξ\ [\ξ\<j<2\ξ\

By the invariance principle if \ξ\ is large enough, then the last factor on the right-
hand side of the last inequality is at least a constant depending only on δ. Thus
we obtain that there exists a constant c'2(l) such that for ξ e V*(δ) with 9i(ξ) <

()

HL(ξ,-l)>c'2(l)\ξ\~2β-

For ζ 6 V*(δ) with 9l(ξ) > 3( ί ) , the desired lower bound follows from (2.2) and

the above bound. The proof of Theorem 1.3 is complete.

Proof of Corollary 1.4. Combining the first inequality in (2.13) and
Theorem 1.1, we can choose no such that for ξe V*(δ), leN with \ξ\,l>no,

(l/5)AL(ί, -/) < AL(ί, -/) - 4Co\ξΓ2βΓ5/3 < HL(ξ, - / ) ,

where Q is the same constant as in Theorem 1.1. The case when \ξ\ < no or / <
no is disposed of by Theorem 1.2, 1.3 and the last inequality in (2.13). Thus we
have the lower bound as required. The upper bound is immediate.

4. Proof of Theorems 1.5 and 1.6

In this section we prove Theorems 1.5 and 1.6, and then show (1.16), (1.19)
in Remark 1.3 and the first assertion in Remark 1.4. To begin with, we consider

(4.1) P{k,l):=Pk{S(τL)e{-l,-il}}

-il}}

ik,-l) (leN)

and show the following.
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PROPOSITION 4.1. For each k e N, the following limit exists

c*(k):= lim l5/3P(kJ).
/ + 0 0
/—+00

The function c* is characterized as a unique solution to (1.13) with the boundary
condition lim^oo k~2/3c*(k) = 2co, where Co is the same constant as in Theorem
1.5.

PROPOSITION 4.2. For any I e N, the following limit exists

k>oo

The function c* is characterized as a unique solution to (1.14) with the boundary
condition lim/^oo /1//3c*(/) = 2c0, where Co is the same constant as in Theorem 1.5.

Proof of Proposition 4.1. We have shown that for kJeN,

(4.2) 0 < ci(Jk) + cι(ik) < l5/3P(k,l) < 4cc2k
2/3.

In fact, the first two inequalities follow from Theorem 1.2 and the last inequality
follows from Corollary 1.4 and (2.11). For fixed k,l5/3P(kJ) is bounded. By
Cantor's diagonal argument, there exists a sequence {/„} such that In P{k,ln) is
convergent for all k e N. We write

c(k):= lim l5J3P{k,ln).
n—>oo

The function c satisfies the following condition

(a) c(k) > 0 (keN),

(b) supkENk-2/3c(k)<4cc2,

(c) lim^oo k~2l3c(k) = 2c0.

(a) and (b) follow from (4.2). We notice that l5'3(hL{k,-l) + hL{ίk,-l)) ap-
proaches 2cok2/3 as /—• oo. This and Theorem 1.1 imply (c).

Let us show that c satisfies (1.13). In view of (4.1), the strong Markov
property gives

(4.3)
7=1

We multiply the both sides by /5/3 and take limit along /„. We use the last
inequality in (4.2) to justify an interchange of the order of limit and summation.
By the dominated convergence theorem, we conclude that c satisfies (1.13).

Proof of Proposition 4.1 is complete if we prove the following uniqueness
result.

LEMMA 4.3. Suppose that c\ is a solution to (1.13) and satisfies (c). Suppose
C2 is a solution to (1.13) and satisfies (a) and (c). Then c\ — ci
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Proof By (c), c\(k)/c2{k) tends to 1 as k —• oo. Suppose that there exists
k0 such that c\(ko)/c2(ko) Φ 1. By symmetry, we may assume c\(ko)/c2(ko) > 1,
so that the function c\(k)/c2(k) attains the maximum at some point, k* say.
Since c\ and Q are solutions to (1.13), we obtain

According to the manner of the choice of k*,c\(j) — (c\(k*)/c2(k*))c2(j) < 0.
Hence

in particular

c2(k*) j-+coc2(j)

This contradicts our supposition that c\(k*)/c2{k*) > 1.

Proof of Proposition 4.2. We can prove Proposition 4.2 in a way analogous
to the proof of Proposition 4.1. The proof is only outlined. There exists a
sequence {kn} c N such that for every / e N, k^3P(kn, I) converges. Let c(l) be
the limit. Then c(l) satisfies

(a') c(!)>0(leN)9

(b') sup lχl*c{l) < 4cc2

and

(c;) lim lχ/*c{l) = 2c0.

Let us show that c satisfies (1.14). By iterating (4.3), we obtain that for
k,leN,

(4.4)

From this, it is easy to see that

(4.5) P(k, I) = HB(ik, I) +
7 = 1

Noticing that k2/3HB(ik,l) vanish as k -* 00, we observe that it is enough to
show that

Um kψ Σ P(knJ)HB(ij, l) = Σ c{j)HB{ij, I).

This is immediate from the inequality
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that follows from Corollary 1.4 and (2.11). Thus c satisfies (1.14). As before
Proposition 4.2 now follows from the following uniqueness result proved as
Lemma 4.3.

LEMMA 4.4. Suppose that c\ is a solution to (1.14) and satisfies (c').
Suppose c~2 is a solution to (1.14) and satisfies (a') and (c'j. Then c\ = ci.

LEMMA 4.5. There exists a constant C such that for k,l e N,

H2{ikJ) < Ck(k~2 A Γ 2 ) ( l v \og[(k v l)/{k A /)]).

Proof In view of (2.30),

By (2.31), the difference between H\(ik,ΐ) and /£(&,/) is negligible as O(k-χl~2).
The proof of Lemma 4.5 is complete.

Proof of Theorem 1.5. The same argument as in the proof of Proposition
4.1 shows that there exists c*(k) := l i n i / ^ l5/3HL(k, - / ) , c* satisfies c*(k) > 0
(fc e TV) and c* is a solution to

(4.6) c*(k) f

with the boundary condition lim^oo k~2/3c*(k) = co Here we have applied
Lemma 4.5 and (2.3). Uniqueness of a solution to (4.6) which satisfies the
boundary condition lim^oo k~2/3c*(k) = Co is verified as in the proof of Lemma
4.3.

We must show that (l/2)c* = c*. Since c* is a solution to (1.13), c* is
also a solution to (4.6). Moreover c* satisfies (a) and lim -̂̂ oo k~2/3c*(k) =2co.
Hence by uniqueness (l/2)c* = c*.

Proof of Theorem 1.6. The proof of the first and second assertions is similar
to that of Theorem 1.5. The proof of the last assertion is based on the relation

00

HL(k, 0) = HB(ik, 0) + Σ p(k> JWU, 0)

that follows from (4.4) and HL(k,0) = ΣZi H%{ik,Q). ((4.4) is also valid
for / = 0). The same reason as showing that c satisfies (1.14) implies that
Yimk-^cnk2^HL{k, 0) exists and the limit is expressed as (1.15). The proof of
Theorem 1.6 is complete.
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Proofs 6>/(1.16) and (1.19). The same arguments as showing that c satisfies
(1.13) deduce (1.16) from (2.1) and (2.2). If \ξ\ > 2/ and (π/8) < arg(ί) < π,
then (2.1) and Lemma 2.3 imply that

(4.7) HL(ξ, -I) = £ > ( ί , ./)/&(/, -I) + O(\ξΓι).
7 = 1

We rewrite hB{ξ,j) in the form

By this and Theorem 1.6, \ξ\2/3HL(ξ, -/) tends to the right-hand side of (1.19)
as \ζ\ goes to infinity in such a way arg(^) —• θ, showing (1.19).

Let us verify that both k~2^c*{k) and /1//3c*(/) are non-constant functions.
We decompose HB(im,j) according to the value of S(l) to obtain that for me N,

(4.8) HB(imJ)=^{HB(i(m+l)J)+HB(l+imJ)

where HB(0,j)=δ(0,j). Multiply (4.8) by c*(j) and make summation over
jeN. Further, take m = 1 and use (1.13). Then

1 ( Λ

^ I 7=1 7=1

Assume that k~2/3c*(k) is constant. Then, from (1.13) it follows that k1^ =
Y^LH{ikJ)j2^ d i H( + ij) H(iJ ) th i lit

c(k) is constant. Then, from (1.13) it follows that k
^ and, since HB(m + ij) = HB(iJ - m), the previous equality

yields

7=1

The infinite sum on the right-hand side above is at most 2 since x2^ is concave,

i.e., (j - 1)2 / 3 -h (j + 1)2 / 3 < 2 / / 3 . On the other hand, HB(i,O) is expressed as

by virtue of (1.4) and (1.5). The values of a(ξ) are computed in Spitzer [8,
p. 149], according to which we obtain that

2 - 2 2 / 3 < (1/4)Λ(2Ϊ) - 1 - (2/π).

But in fact 2 - 2 2 / 3 > 1 - (2/π). Thus we may conclude that k~2/3c*(k) is not
constant.

Multiply (4.8) by c*(m) and make summation over meN. Further, take
j = 2 and use (1.14). Then we obtain that



HITTING DISTRIBUTION OF RANDOM WALK 69

1 ( 00 00 ϊ

c*(2)=-\c*{\) + c*$)+Σc*{m)HB{ifa
\ m=\ m=2 )

If /1/3c*(/) is a constant function, then this equality yields

(2 - 2-χl*)HB{U 2) = -4 2-1/3 + 1 + 3-1/3 4- 2^(1,2)

- 1)"1 / 3 + (m + iyι/3}HB(im, 2)

and from (1.14) it follows that Z"1/3 = ^ = i ^ ~ 1 / 3 ^ K / ) . The last term on
the right-hand side above is at least 2^^==2m~1/3//#(/m,2) since x~1//3 is con-
vex, i.e., (m- l)~1 / 3 + ( m + l ) " 1 / 3 > 2m"1/3. On the other hand, HB(i,2) =
(l/4){α(-2 + 2ΐ) - a(-2)} - (10/3π) - 1. Thus

This contradicts the actual inequality (2 - 2~1/3)(10/3π - 1) < 1 + 3"1 / 3 - 22 / 3.
Thus we also conclude that lι^c*(l) is not constant.

5. Proof of Theorem 1.7

In this section we state some known results and then prove Theorem 1.7.

LEMMA 5.1 (Lawler [7, Theorem 2.1.3]). There exists a constant C and a
natural number ko such that if A is a subset of C* that is contained in the ball of
radius n and \ξ\> kon, then

^ ( ψ Q , (ζeA).

LEMMA 5.2 (Kesten [4]). Let U(n) = {-/ e C* : 0 <l <n}. Then there
exists a constant C such that for —/ e U(n),

μuin)(-l) < C((n - I + 1)"1 / 2 v (/ + I)- 1/ 2)*" 1/ 2 .

The next lemma is deduced from Theorem 1.1 by an easy modification of
Lawler's proof of Proposition 2.4.10 in Lawler [7].

LEMMA 5.3. There exists a constant C such that

μL{n)[ }-\c{n-l+\)-ιl2n-V\ (n/2 < / < « ) .

Proof. If I e[n/5,n}f)N, then the bound of Lemma 5.3 is immediate
from Lemma 5.2. By virtue of (1.22), it therefore suffices to show that for /e
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[O,n/5)n({O}UΛ0,

(5.1) P-ι{τdc(2n) < τL(n)} < C{1 + l ) " 1 / 3 « - 2 / 3 ,

where C{r) = {ξ e C* : \ξ\ < r} and dC{r) = {ξe C*\C{r) \ 3η e C(r) :\ξ-η\ =
1} as in (1.1). Let us extend the function P{-,1) to the one on C*\L by

P(ξ,l)=HL(ξ,-l) + HL(iξ,-l).

The strong Markov property shows that for n > 2 and ξ e C(n/2)\L,

oo

(5.2) Σ P & J) = Σ Pd*sc(n) < T L , S(τdc{n)) = η } ( Σ
j=n+\ ηedC(n)\L \J=«+1

Theorem 1.1 and (2.14) imply that for j > 2\ξ\,

(5.3) 2 β 5 ' 3

Thus the left-hand side of (5.2) is bounded by a constant multiple of \ζ\2^n~2^.
On the other hand, the invariance principle shows that there exists a positive
constant C such that for n e N and η e dC(n)\L,

Hence for ξ e C(n/2)\L,

(5.4) Pξ{τdC(n) < τL{n)} = P

Since

< τL{μ)} < (l/4)Λ{τ5c(/ι) < τL(Λ)} + (l/4)Pi{τδC(r t) < τL{n)}

(5.1) is shown to hold for / = 0. Corollary 1.4 and (2.13) imply that

J=n+\

where C20 is a positive constant. It is clear that the second factor on the right-
hand side of (5.2) is at most 1. Combining this and (5.2), we also have

(5.5) Pi{τdC(n) < ?L(n)} > C2on~2/3.

Assume / e [l,n/5)ΠN. To get the upper bound of P_/{τ^C(«) < ?L(«)}, we
use the following inequality;

P-ι{τdC(n) < ?L(n)} < P-ι{τdC(2i) < ?L(n)} I sup Pξ{τdC(n) < τL{n)} I.
\ξedC(2l)\L(n) I
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Replacing τdC(2i) by τ_/+^C(/) and using the spatial homogeneity, we see that the
first factor on the right-hand side of the above inequality is at most

Γ\?u} <c2\

where U := {ξ e C : 3(f) = 0} and the inequality above is shown in Lawler
[7, §2.4]. By (5.4), the supremum of Pξ{τdC(n) < τL{n)} over ξ e dC(2l)\L(h) is at
most 22//3ci9/2/3π~2//3. Therefore, we have

P-lUdC(2n) < ?L(n)} < P-

This is the desired bound. The proof of Lemma 5.3 is complete.

To get the lower bound of P-\{τdC(2n) < tL(n)}, w e replace τ L ( w ) by τL{2n) and
use the fact that the probability that random walk starting at — 1 reaches / before
visiting dC(2n)UL(n) is at least 1/16. Then

P-\{τdC{2n) < τL{n)} ^ γ?Pi{^dC(2n) < τL{2n)}-

Combining this, (1.22) and (5.5), we also have the following lemma.

LEMMA 5.4. There exists a positive constant C such that

μL{n){-\) > Cn~2/\

LEMMA 5.5.

lim sup
rt-"°° ξedC(n)\L

where

n2"HL{ξ, -I) - I " hB 11|, iι J«"2/3 duct{l) = 0,

ξ=U if
Proof. The proof is similar to that of (1.19). The same arguments as

showing (4.7) and (2.2) show that for ξ e dC{n)\L with M(f) > 3(f),

00

HL(ξ, -I) = ΣhB(iξ,j)HL(ij, -I) + O(|£Γ8/3).
7=1

We notice that «(ι | ) < 3(iί) for W(ξ) > 3(ί) and lim^oo j2/iHL(j, -I) =
lim^oo j2^Hι{ij, — I) (see (1.20)). These reduce our problem to showing that
uniformly for ξ e dC(n)\L with 1Λ(ξ) < 3(ξ) and for s = 0,1,

\ξ\V3YίhB(ξ,j)HL{i'j, -I) - IJ hB^i^ju-2"duct{l) -> 0

as n —> +oo. The required uniformity comes from (2.16).
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Let [s] be the greatest integer not exceeding s and let

Pn(ξ,-l) = Pξ{S(τL{n)) = -l}.

LEMMA 5.6. Let q e (0,1) be fixed. Then there exists a constant C such that
for ξ e dC([n«])\L and I e (0, [««]/4] Π N,

(5.6) \Pn(ξ,-l)-HL(ζ,-l)\zCn-2'3

and for ξ e (δC([ni])\L(n)) Γ\ L and I e (0, [n"}/4] Π7V,

(5.7) Pn{ξ,-l)<C{n-q vn-

Moreover, there exists a constant C such that

(5.8) Pn

Proof. Let ξ e dC([n^])\L and / e (0, [n^]/4]ΠN and put

By the strong Markov property, the difference Pn{ξ,—l) - HL(ξ, — I) is equal to
the sum of HL(ξ,η)Pn(η,—l) over ηeL\L(n). Therefore

Pn(ξ,-l)-HL(ζ,-l)<Pζ{S(τL)eL\L(ή)}( sup />*(*/,-/))
\ηeL\L(n) )

We replace τL^ by ?L{[n<i)) and combine Lemmas 5.1 and 5.3. If n is large
enough, then the second factor on the right-hand side above is O(n~lq^). We
rewrite the first factor as

Pζ{S(τL) e L\L(n)} = J P(ξJ).
j=n+\

If n > 2|£|, then the bound (5.3) implies that the right-hand side above is
O(n-2V-M3). Thus we have (5.6).

The proof of (5.7) is similar to that of (5.6). Assume ξ e (dC([n«])\L(n)) Π
L and / e (0, [«*]/4] Γ\N. To estimate Pn(ξ, —/), we use the following inequality

(5.9) Pn(ξ,-l)<Pξ{S(τL) = -l} + Pξ{S(τL)eL\L(n)}( sup />„(*,-/)).
\ηeL\L(n) )

By symmetry of random walk, we obtain that for ξ e C* with 9l(ξ) < 0,
0,

(5.10) Pζ{S(τL) = -j} < HB(-ζJ) and Pξ{S(τL) = -ιj) < HB(-iξJ).

By (5.10) and Lemma 2.3, the first term on the right-hand side of (5.9) is at
most 8(c6 + (l/π))rr«. If j > 2\ξ\, then \ξ + j\ A \iξ + j\ > j/2. Combining
this inequality, (5.10) and Lemma 2.3, the first factor of the second term is
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bounded by 8(c6 + (l/π)) |£| X ^ Λ + 1 j ~ 2 . It has already been shown in the proof
of (5.6) that the second factor of the second term is 0{rΓ2ql3). The proof of
(5.7) is complete.

If n > 3, then every random walk path from n2 to L{[nq\) crosses δC([nq]).
By decomposing Pni{S(τL^) e L([nq])} according to the first crossing point, we
obtain that for n>3,

(5.11) Pn2{S(τL{n)) e L([nq})} > Pn2{τdc{[nq]) < τL{n)}

\ΐ[nq] < n/4 and n is large enough, then Lemmas 5.1 and 5.3 imply that the left-
hand side of (5.11) is bounded by a constant multiple of

Σ
7=0

The sum is O(n~2(^~q^3). By making use of invariance principle, it is easy to
show that there exists a positive constant C22 (independent of ή) such that for
ξedC{[n"})\L{n),

Pξ{S{τL)eL{[ni})}>c22.

Hence the second factor on the right-hand side of (5.11) is at least C22 and we
have (5.8).

Proof of Theorem 1.7. Let qe (0,1) be fixed. The proof is based on

(5.12) Pn(n\ -I) = Σ pn2{τdC([n<]) < U{n),S{τdc{[n^) = ξ}
ξedC([m])\L(n)

Since Kesten [5] provided the existence of lim^oo n2//3μL^(—l), Lemma 5.1

implies that there exists limw_+oo n2^3Pn(n2

) — I) and the limit is equal to

limw_oo^2//3^L(«)(~O From Lemmas 5.5 and 5.6, the difference between the

right-hand side of (5.12) and

n~2q/3c*(l) Σ Pn
ξEdC([ni))\L

is o(n~2/3). By (5.12) we conclude that

limn2/3μL{n)(-l) = αc*(/),
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where

α = lim n

2{ι~q)/3 ] Γ Pn2{τdC{[^]) < τL{n), S{τdC{[n<])) = ξ}

"~"°° ξedC([n<])\L

hB(^λu-2'3du.

It is immediate from Lemma 5.4 that α is a positive constant. The proof of
Theorem 1.7 is complete.

6. Proof of Theorem 1.8

In this section we will prove Theorem 1.8.
Let

U{ = {ζ e C : K(ζ) > 0} U {ζ e C\{0} : -3(£) < «(f) < 0},

t/2 = {CeC:0<JR(C)<-3(C)},

and let t/y* = ί/yflC* (y = 1,2). To begin with, we will show that (1.23) for
ξ e Uγ and η e C/2*

 w i t n ζ^V By the strong Markov property, we obtain that
for ζ e C*\L and η e C*\L with η2 < 0,

oo

(6.1) GL(ξ,η) =

where G(ξ, η) = a(ξ — ή) — a(ξ — η) and ή = —ηλ + iη2. The strong Markov
property also gives the following Brownian analogue of (6.1)

(6.2) gL(ζ, η) = g(ξ, η) - Γ hL(ξ, -y)g(-y, η) dy,
Jo

where g(ξ, η) = (1/π) log(|ί - ή\/\ξ - η\). The term C\ξ - η\~2 appearing in the
right-hand side of (1.23) comes from the difference between G(ζ,η) and 2g(ξ,η)
(see (1.6)). It remains to show that for ξ e U^ and η e £/2* with ξ φ η,

(6.3) J2 HL(ξ, -j)G(-j, η) - 2 Γ hL(ξ, -y)g(-y, η) dy
ή=i Jo

Recall the proof of (3.17). We rewrite the difference between the second term on
the right-hand side of (6.1) and that of (6.2) with h\ and h2. (Take HL, G, hL, 2g
for HB, HL, hB, AL, respectively.) Further, we decompose h\ into two parts and
/*2 into four parts (see (3.18), (3.22) and (3.23)). Then we can show that each
term appearing in those decomposition is bounded in absolute value by a
constant multiple of \ξ\~2/3Γ2/3. Thus we have (6.3).
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If ζ e (C*\L)\Uf and η e C/2*, then we obtain the relations

(6.4)
7=1

and its Brownian analogue

j CO

*>>/)= hB{ζ,y)gL(y,η)dy.
Jo

Notice that j e Uf in (6.4), for which

(6-5) \GLU,I) ~ 29LU,1)\ ^ CΓVM~lβ

as has already been shown above. Take HB, GL, hB, 2gL for HB, HL, hB, hL,
respectively. The same procedure as in the proof of (3.17) verifies the estimate

hB(ξ,y)9L(y,η)dy < C\ξ\-2/3\η\-2/3

for ξe(C*\L)\Uΐ a n d V e ^2 a s desired with the help of (6.5).
Put

t/3 = { f e C : - 3 ( C ) < 5 R ( O < 0 } ,

U4 = {ζe C\{0} : 0 < M(C), 0 < 3(C)},

t/5 = { C e C : - « ( C ) < 3(C)^0},

and let C// = U; ΓΊ C* (7 = 3,4,5). We will show that (1.23) holds for ξ,ηe C/4*
with ξφη. In this case, the proof of (1.23) is based on the relations

HB,(ξJ - ij)GL(J - ij,η)
JGZ\{0}

and its Brownian analogue

9L(ξ,η)=gB'(ξ,η)+ hB,(ξ,y-iy)gL(y-iy,η)dy,
J/?\{0}

where B' = {ζ e C : -9l{ζ) > 3(C)} a s m Remark 1.2, gB> is the Green function
of B1 for two-dimensional standard Brownian motion and explicitly given by
gB>{ξ,η) = (l/π)\og{\ξ + iη\/\ξ-η\). Combining (1.8) and (1.6), the term
C\ξ — η\ 2 appearing in the right-hand side of (1.23) comes from the differ-
ence between CB>(ξ,η) and 2gB>(ξ,η). Since GL and gL are symmetric,
i.e.,GL(j-ij,η) = GL(ηJ-ij) = GL(iη,-j + ij),gL(j - ij,η) = gdηj-ίj) =
9L(ίη, —j + ij), the estimate (1.23) for ξ e C*\L and η e C/2* with ζ φ η, as has
already been shown above implies that j e Z\{0} and ηe ί/4*,
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Figure 2: The region 2?3.

Take HB>, GL, hB>, 2g^ for HB, HL, hB, h^, respectively. The same procedure as
in the proof of (3.17) also verifies the estimate

Σ Hβ>{ξ, j - ij)GL(j - ij, η)-2\ hB,(ξ, y - iy)gL(y - iy, η) dy
JGZ\{0}

for ξ,ηeU; with ξΦη.
We will show that (1.23) for ξ e t/3* Π t/4* and // e C/3* with ί # η. In this

case, the proof of (1.23) is based on the relations

GL(ξ,η) = GB3(ξ,η) + Σ
7=1

and
f00f00

hB,{ξ,y - iy)gL{y - iy,
Jo

where £ 3 = LU {CG C : 0 < W(C) < -3(C)} (see Figure 2) and λ*3(f, ) and
gB3(ξ, ) are the distribution and the Green function to J53 of two-dimensional
standard Brownian motion starting at ξ, respectively. To make further progress
on the difference G^iζ.η) — 2gι(ξ,η), we will check that for ξ e C*\Bs and
ηed(C*\B3),

(6.6) \HB3(ξ,η) - hBM,η)\ < C{\ξ - η\~3 + \ξΓ4/5(\η\ + 1)'9 / 5}

and for ξ e C*\B3 and y > 1/2,

(6.7) \HB3 (ξ, <^> - Ky)) - hB3 (ξ, j ; - ι » |

< C{|ί -y + iy\~2 + \ξ\-ι/5y-β/5(\ξ\-3/5 A r 3 / 5 ) }

Moreover, we will check that for ξ e U^U C/4* and η e C/3* with ξ φ η,

(6.8) \GB,(ξ,η)-2gB3(ξ,η)\ < C{\ξ ~ η\~2+ \ξ\-^5\η\-^5}

and for j e N and η e C/3*,

(6.9) |GL(y - //, v) - 2gL(j - y,^)| < C
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Then same procedure as in the proof of (3.17) implies that for ξ e t/3* U C/4* and
η e U; with ξ Φ η,

ΛOO

/ - ( / ' , η ) - 2 \ hB3(ξ,y-ίy)gL{y-iy,η)dy
Jo

(taking Hβ3, GL, hB3, ΊQL for HB, HL, hβ, ΛL, respectively) and we conclude that
(1.23) holds for ξ e (t/3* U U*) and η e U; with ξΦη. It remains to check (6.6),
(6.7), (6.8) and (6.9).

(6.9) is immediate from symmetry of GL and gL and (1.23) for ζ e C*\L and
η e £/2* with ξφη. Let

V={ζeC: 5R(C) < 3 ( 0 } U {ζ e C : -9t(C) > 3(f)}

and let

7=1

) n -Hγ)
n-\kJ){HB

7=1

We employ the relation

n=\

instead of (2.4). In view of this relation, the method developed in §3 can be
adapted for deriving (6.6) and (6.7). The proof of (6.8) is similar to that of
(1.23) for ξ e t/f and η e V{ with ξφη. (6.8) follows from the relations

and

7=1

that are given by the strong Markov property.
If ξ e C/5* and η e i73*, then we obtain the relations

(6.10) GL(ξ,η) = GL(ξ,η) + G(ξ,η)-
7=1

and its Brownian analogue
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f 0 0

(6.11) gL(ξ,η) = gL(ξ,ή)+g(ξ,η)- hL{ζ,-y)g(-y,η)dy.
Jo

Notice that iξ e £/3* and η2 - ir\\ e C/4* if ξ e Uξ and η e (73* and that GL and gL

are symmetric. The estimate

\GL(ξ,ή) - 2gL(ξ,ή)\ < C{\ζ - η\~2 + | ίΓ 2 / 3 |»/Γ 2 / 3}

follow from (1.23) for ξ e ί/3* U C/4* and // e ί/3* with ξ φη, as has already been
shown above and the inequality \ξ - η\ < A\ίξ - η2 + iηx\ (recall ζ e Uξ and
η e ί/3*). In view of (6.10) and (6.11), the same argument as showing (1.23) for
ζ e Uf and η e t/2* with ξ φ η gives

\GL(ξ,η) - GL(ζ,η)-2gL(ξ,η)+2gL(ξ,η)\ < C{\ξ - η\-2 + |ί|"2/3 |//Γ2/3}-

Thus we have (1.23) for ξe Uξ and ηe ί/3*.
By symmetry of GL and gL, we conclude that (1.23) for ξ,η e C*\L with

ζ φ η. The proof of Theorem 1.8 is complete.

7. Appendix

For /?e(0,2π), put

where (|ί |,^) is the polar coordinate of ζ, 0<θ<2π and let hw(ζ,-) be the
hitting distribution to W of two-dimensional standard Brownian motion starting
at ξ. We will show that for ξ e C\W and ηe W with arg(^) =/?, hw(ξ,η) is
expressed as

(7.1) ^(ί,,)^!;;-,)"'

where (ro,#o) and (r,j8) are the polar coordinates of ξ and η, vm — mπ/β and
c(v,/i) is the same function as in (2.10).

The two-dimensional standard Brownian motion W{t) can be expressed as
the skew product

r(t),θ\\r-ι(s)ds

where r(t) is the two-dimensional Bessel process and θ(t) is the projection modulo
2π of 1-dimensional standard Brownian motion that is independent of r(t).
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Let 0 < #o < β and T := mf{t > 0 : θ(ή φ (0,β)}. By the Markov property,

PθQ{θ(T) =β,T>t} = Eθo[Pθ{ή{θ(T) = β}:T>t}.

It is known in Ito and McKean [3, p. 31] that for 0 < θo < β,

Pθo{θ(t) Σ ^ v [ r j [WL j j (̂ sin
. mπθ\
in — j .

Further, it is easy to see that for 0 < θ < β, PO{Θ(T) = β} = θ/β. Combining
above relations and using an easy calculation, we have

(7.2) PΘAΘ{T) = β,T > t) = 2 Y ^ ^ - ^ e x p ί - m %

Ί ) s i n ^ - ^ .
^rί m π \ iβ ) β

We write

Γ / v2 V o \ 1
h(t,ro,r)2rdr := Ero e x p - — r~2(s)ds),r(ή edr\.

L V 2 Jo / J
Then

(73) Kt^r)=-

where T{s) is the gamma function and

(see Ito and McKean [3, p. 271]).
Let f :=mf{t>0:θ(^r-2[s)ds)φ(0J)}. Since θ(t) is independent of

r(t), we can compute the hitting distribution to W by writing

=β,r(f)edλ

-2(s)ds\ =β,f>t\r(t)eώ\dt.

(7.2) and (7.3) imply that the right-hand side of above is equal to

Noticing that for v > 1, the integral of r v exp(-(r^ + r2)/(2t)) over (0, oo)
with respect to t is equal to (2/(ΓQ +r 2)) v~ 1Γ(v — 1), we obtain an expression of
the hitting distribution to W.

Put β = 3π/2 and replace θ0 by 0+(π/2) in the right-hand side of (7.1).
Then we have (2.10) in §2.
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Let gψ be the Green function of the sector W. Then we have

(7.4) gw{ξ, η) = | ίεξ \r{t) e dr, θ(J r~2(s) dλ edθ,T> J" r~2(s) ds\ Iλ dt

where (ro,#o) a nd (r, 0) are the polar coordinates of ^ and η.
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