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ENTIRE FUNCTIONS THAT SHARE ONE VALUE WITH
THEIR LINEAR DIFFERENTIAL POLYNOMIALS

PiNnG LI*

Abstract

This paper study the problem on entire functions sharing one value with their
certain type of linear differential polynomials. The results here improved and gener-
alized some results obtamned by L. Z. Yang [9] and H. Zhong [10].

1. Introduction

Let f'and g be two nonconstant meromorphic functions in the complex plane
C and a be a value in the extended complex plane C. We say that f and g share
the value a CM (IM) provided that f —a and g —a (1/f and 1/g, resp.) have
the same zeros counting multiplicities (ignoring multiplicities) in the case of a € C
(a = oo, resp.). Rubel and Yang proved [8] that if an entire function f share two
finite values CM with its derivative, then f = f’. This result has been gen-
eralized to sharing values IM by G. Gundersen (see [3]) and by Mues-Steinmetz
(see [7]) independently. In 1986, Jank, Mues and Volkmann [5] proved the
following.

THEOREM A. Let f(z) be a nonconstant entire function. If f and f' share
the value a (a #0) IM, and f"(z) = a when f(z)=a, then f = f'.

The function (see [10]) f(z) = e* +a—1, where ae C and a # 1, a¥"! =1,
k>3, shows that f, f' and f% share the value @ CM, but f # f’ and
f# f®. Hence the f” in Theorem A can not be simply replaced by f®
(k =3). In [10] Zhong gave a generalization of Theorem A in the following
way.

THEOREM B. Let f(z) be a nonconstant entire function. If f and f' share
the va{u)e a (@#0) CM, and f(z) = f"*V(z) =a (n> 1) when f(z) = a, then
="
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Related to Zhong’s result, L.-Z. Yang [9] gave another generalization of
Theorem A.

TuroreM C. Let f be a nonconstant entire function. If f and f" share the
finite value a (a # 0) IM, and f'(z) = f"*V(z) = a when f(z) = a, then f = f.

In this paper, we improve and generalize above results to the case that f
and its linear differential polynomials share one value. We prove the following
theorems.

THEOREM 1. Let f be a nonconstant entire function, and

(1) L=af +af"+ - +af™,

where ay,ay,...,a, # 0 are constants. If f and f' share the finite and non-zero
value a IM, and if L(z) = L'(z) = a when f(z) =a, then f = f'= L.

THEOREM 2. Let f be a nonconstant entire function, and L be the differential
polynomial in f defined in (1) whose coefficients satisfy Z,:'=12kak #0 or
Siciax #—1. If f and L share the finite and non-zero value a IM, and if
f'(z)=L'(z) =a when f(z) =a, then f = f = L.

We will give an example to show that the condition Y ,2%ax #0 or
Y k_iax # —1 in Theorem 2 is necessary.

We assume that the reader is familiar with the basic notations and results
about Nevanlinna’s value distribution theory (see [4] or [6]).

2. Lemmas

LemMMA 1 (see [10]). Let f be a nonconstant entire function. If f and ' share
the finite and non-zero value a IM, then

T(r,f) < 2N(r, ) +S(r, 1),

1
f—a
where and in the sequel the notation S(r, f) is defined to be any quantity satisfying
S(r, f)=0(T(r,f)), as r — oo possibly outside a set of finite linear measure.

LemMma 2 (Clunie [1], Doeringer [2]). Let f be a nonconstant meromorphic
Sunction and Q|f], Q*[f] be differential polynomials in f with Q[f]#0. Let
neN and

[l =0lf]
If the degree of Q[f] is not great than n, then m(r,Q*[f]) = S(r, f).
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LemMMA 3. Let ¢(#0) be an entire function. If ¢" + Plg] = 0, where P|g] is
a differential polynomial in ¢ with constant coefficients, and the degree of Plg] is at
most n—1, then ¢ is a constant.

Proof. Suppose ¢ is not a constant. We write ¢" + Plp] =0 as ¢" ' -9 =
—P[p]. Then by Lemma 2, we have m(r,¢p) = S(r,p). Note that ¢ is an entire
function. We get T(r,¢p) = S(r,9), a contradiction. Hence ¢ is a constant.

O

LemMMA 4. Let f be a meromorphic function, L be the differential polynomial
in f defined in (1), and a be a finite non-zero value. Then

(ot mlet) selet) s

Proof. By the lemma of logarithmic derivative, we have m(r,L/(f — a)) =
S(r,f) and m(r,L'/(L(L — a))) = S(r,f). In terms of Nevanlinna first funda-
mental theorem and the properties of the counting functions, we have

m(r,%) +m(r,LL_a> =2T(r,L) —N(r,%) —N(r,L—l_—a) +0(1)

“T(rz=a) Mrza=a) o0

LemMMA 5. Let f be a nonconstant entire function, L be the differential
polynomial in f defined in (1), and f # L. If f and L share the finite and non-zero
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value a IM, and if f'(z) = L'(z) = a when f(z) = a, then
1
T(r,f)= 2N<r’f_——a) +8(r, f)-
Proof. Since f'(z) = L(z) = L'(z) = a when f(z) =a and f # L, we can

derive that
7f‘—(l 2 ,f-— L "

IA

IA

IA

o )+ 3m(r1 =)+ 50,7)

< sm(r,f)+S(r, /)

1
< 3T f) + S(r. ).
On the other hand, by Lemma 4, we have

T(r,f/)+T(r L)< N(r,ﬁ) +N(r,%_a> +m<r,i1—,) +S(r, f)

<2N (r, ﬁ) +T(r, L") + S(r, f),

which leads to
T(r f) < 2N(r,ﬁ> + S(r, f).

Hence T'(r,f) = 2N(r,1/(f —a)) + S(r, f). O

LEMMA 6. Let f be a nonconstant entire function, L be the differential
polynomial in f defined in (1), and a be a finite non-zero value satisfying

m(r, lé(f—a)) =8(r,f). If f'(z) =L(z) = L'(z) = a when f(z) =a, then [ =

!

Proof. Set
f'—a
2 = .
2) =t
Since @ is a non-zero value and f'(z) = a when f(z) = a, all a-points of f are
simple, and thus « is an entire function. By the lemma of logarithmic derivative

and the condition m(r,1/(f —a)) = S(r,f), we deduce that m(r,a) = S(r, f).
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Hence
A3) T(r,a) = S(r, f).
The equation (2) can be rewritten as
(4) fl=atolf —a)=p +uf,
where f; =a —ao and o) = o are entire functions. From (4), we deduce that
(5) S = Bt of,
where f, and o are entire functions satisfying the following recurrence formulas
(6) Brs1 = Br + Brow,
(7) Qi1 = O + a1,
for k=1,2,.... Hence we have
n
(®) L=Y af®=¢+nf,
k=1
where
n n
9) (= Zakﬂk and 7= Zakak.
k=1 k=1

From the recurrence formulas (6) and (7), we can easily see that ¢ and #» are
entire functions, and

T(r,é):S(raf)v T(r7”)=S(ryf)'
By taking the derivative in equation (8), we get
(10) L'=&+n'f+uf"

Suppose z is an g-point of f. Then by the assumption of Lemma 6 and
equations (8), (10), we have

(11) ¢(2) +n(z)a—a=0,
(12) E'(2)+n'(2)a+n(z)a—a=0.
Let yy=¢+na—a and y, =& +n'a+na—a. We have y(z) =0, y,(z) =0,

and T(r,y,) = S(r,f), T(r,y,) = S(r,f). If yy #0 or y, #0, say, y; #0, then
we get

N(r ) < N(%) < T(r,0) + S0, f) = S0, /).
This and the condition m(r,1/(f —a)) = S(r,f) lead to T(r,f) = S(r,f)

, a
contradiction. Hence we have y; =0 and y, = 0, which imply ¢ =0 and n =1
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or

(13) zn:ak(xk =1.

k=1

Hence from (8) we get L = f. By recurrence formula (7), equation (13) can be
expressed as

ano" + Pla] = 0,

where Plo] is a differential polynomial in o with degree less than or equal to
n—1. From this and by using Lemma 3, we can conclude that « is a con-
stant. Therefore from recurrence formula (7), we get ox = «*. From (4), we

deduce that

a(l —a)
o

f=- + Ae”,

f(k)zo(kAe“zzakAe“Z, k=1,2,...,n,

where A4 is a non-zero constant. Note Z,’c'zl aro = 1. From the above
equation, we have

k=1

n
L= (Z akak> Ae®™ = Ae* = éf’.

Let z be an a-point of /. We get « = f'(z)/L(z) = 1, and thus L = f’. Hence
f = f'= L, which completes the proof of Lemma 6. O

LEmMMmA 7. Let f be a nonconstant entire function, L be the differential
polynomial in f defined in (1), and a be a finite non-zero value satisfying
N, 1/(f @) # S(r, /). I £(2) = L(z) = L'(z) = a when f(z) = a, then [" #
L—f+a.

Proof. Suppose
(14) fl=L-f+a

Then we have f” = L’ — f'. Therefore according to the assumption we have
f"(z) =0 when f(z) =a. Set

(15) h=

We see that / is an entire function and T'(r,h) = S(r, f). Rewrite (15) as f" =
h(f —a) and taking the derivatives, we can get

(16) FE*D = (f —a)+uf, k=0,1,...,
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where Ao = h,pp =0, and A, are entire functions satisfying the following
recurrence formulas

(17) e = Ay + by,
(18) My = Ak—1 +ﬂ//¢_17
for k=1,2,.... Hence by (16) we have
(19) L=af' +) af®

k=2

= <Xn: aklk-Z) (f — a) + (al + Zn:ak;uk—2> f/'
k=2 k=2

Note that f'(z) = L(z) = a when f(z) =a. We have aj + Y [, akity_»(z) =1
for all a-points of f. From the recurrence formulas (17) and (18), we see
that T(r, %) = S(r, 1), T(r,u) =S(r, f), k=1,2,.... Since N(r,1/(f —a)) #
S(r, f), we can conclude that

(20) ar+ Y apy, =1,
k=2
and thus by (19) and (14), we have
(21) > adia=1.
k=2

From the recurrence formulas (17) and (18), by mathematical induction in the
number k, we can conclude that A, and g, are differential polynomials in A
with degree less than or equal to (k + 1)/2 when k is odd; and Ax and g, have
the forms A%+2/2 4 Py [n] and h*+2)/2 - O [h], respectively, when k is even, where
Py[h] and Qi [h] are differential polynomials in / with degree less than or equal to
k/2. Hence for even number n > 2 equation (21) can be expressed as

(22) h"? 4 Pl = 0,
and for odd number n > 3 equation (20) can be expressed as

(23) h=D/2 L glh) = 0,

where P[h] and Q[h] are differential polynomials in 4 with deg P[h] < (n/2) — 1
and degQ[h] < ((n—1)/2) —1. In both cases, by using Lemma 3, we can
conclude that 4 is a constant. Hence by (15), we get (f')* = h(f —a)* + C,
where C; is a constant. By assumptions of Lemma 7, the constant C; should be

a?. Therefore we have

(24) (f' = a)(f' +a) =h(f —a).
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By assumptions of Lemma 7 again, we see that —a is an exceptional value of
f'. Hence there exists an entire function { such that f’' = —a+ %, and thus
f" ={'¢*. Combining this and (15), we see that {'(z) = 0 when f(z) = a. Note
that N(r,1/(f —a)) #S(r,f) and T(r,{)=S(r,f). If {'#0, then we get
N(r,1/(f —a)) < N(r,1/{') = S(r, f), a contradiction. Therefore we have {' =
0. Hence we see that f’ is a constant, and thus by (24) f is a constant, which
contradicts the assumption and completes the proof of Lemma 7. O

3. The proofs of theorems

Proof of Theorem 1. Set

L'~ f L—f'
25 = = .
( ) ¢ f —a 9 ¢1 f —a
It is easily seen that ¢, ¢; are entire functions and T'(r,¢) = S(r, f), T(r,¢;) =

S(r, f)
If ¢ #£0, then we have

mr, f) = m( oL - f’)) <m(r,f') + S(r. /) < m(r, f) + S, ),

and thus T(r,f)=T(r,f')+ S(r,f). From (25), we have f=a+ (1/4)-
(L' — f'). By taking the derivative, we get

= (5) @ -k,

()= g
¢ ¢ ¢
Since ¢ is an entire function, we can easily see that 1+ (1/¢)" # 0. Therefore

e O 525)

Hence from the above equation and by using the lemma of logarithmic de-
rivative, we can deduce that m(r, f'/(f' —a)) = S(r, f), and thus

Since L' = Y7 ap f*™) and L'(z) =a when f'(z) =a, we see that the
multiplicity of any a-point of f’ is at most n. Hence we have

which leads to
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1 — 1
N(z(",m) SnN(z(r,m),

where Np(r,1/(f' —a)) and N(r,1/(f' — a)) are defined to be the counting
function and reduced counting functlon of 1/(f' —a) related to the multiple
a-points of f', respectively. Suppose z is a multiple a-point of f’. Then by
calculation we have ¢;(z) = 1. By Lemma 1, we have N(r,1/(f —a)) # S(r, f).
Therefore from Lemma 7, we see that ¢1 #1. Hence N (r 1/(f'—a) <
N 1/(¢; — 1)) < S(r,[), and thus Np(r, 1/(f" —a)) < S(r, f) which implies

that
W) =8 (rrs) + 500,

(ra) =1 N (rgg) s

= T(r, ") N(r, ! )+S

) g
=H(rry) V() + e

=S8, f).

Hence by Lemma 6, we obtain f = f' = L, which leads to ¢ =0, a contra-
diction.

If =0, then L — f is a constant. By Lemma 1, we see that the value a is
not an exceptional value of f. Hence we must have L — f =0. From this we
can get

)l =) s

and thus by Lemma 6, we conclude that f = f' = L, which completes the proof
of Theorem 1. O

Therefore

\,

Proof of Theorem 2. Let ¢ be the function defined in (25) and

L L' L(L-f
9 i R A ST}
It is obvious that m(r,¢) = S(r,f) and m(r,y) = S(r,f). Since a #0 and
f(z) = a implies f'(z) = L(z) = L'(z) = a, we see that all a-points of f are simple
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and these points are double zeros of L — f. Therefore ¢ and y are entire
functions. Hence

T(r,¢) =S(r.f), T(ry)=S(r/f).

Suppose z is an a-point of f. Then by calculation, we have

¢(Z) — L”(Z) _f (Z) , W(Z) — % L”(Z) - f (Z) ,

a a

and thus ¢(z) —2y(z) =0. If ¢—2y #0, then we obtain N(r,1/(f —a)) =
S(r,f). From this and Lemma 5, we get T(r, f) = S(r,f), a contradiction.
Hence we have ¢ = 2y, which leads to L — f = ¢(L —a) or

(27) f—a=(L—-a)(l+ca—cL),
where ¢ is a constant. If ¢ =0, then we have f = L, and thus
1 L
m(r,m) :m(r,ﬁ) +S(r, f) :m(r,7—_—a) +S(r, f)=S(r,f).

Hence by Lemma 6, we obtain the conclusion f = f' = L.
Suppose now that ¢ # 0. If a+ (1/c) is not an exceptional value of L, then
there exists a z such that

14 ca—cL(z) =0.

Therefore from equation (27), we have f(z) —a =0, and thus by assumption
L(z) = a, which contradicts the above equation. Hence a+ (1/c¢) is an excep-
tional value of L. This means that there exists an entire function y such that

1
(28) L=at_+o

Obviously, we have T'(r,y) < S(r,L) < S(r, f).
If a+ (1/c) #0, then we have

m(h%) :m(rfeT-i__la—-i_%) < S(r,e”) < S(r,f)

From this and by using Lemma 5, we have
10.0) = 2m(rs) + 50 < () + 500 = 801,

a contradiction. Hence a+ (1/¢) =0. This, (27) and (28) give

f=a+$L(L—a), L=¢,
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and thus L' =9y'L. Note that N(r,1/(f —a)) # S(r,f) and f(z) = a implies
L(z)=L'(z) =a. We must have Y =1 or L' = L. From the above equation,
we get /& = (2%/a)L2 — L, k=1,2,...,n. Therefore

n n n
L= Zakf(k) = (Z 2kdk> le - (Z ak> L.
=1 = a %=
Note that L is not a constant. Hence we have

izkak =0, i:ak =-1,
k=1 k=1

which contradict the assumption, and completes the proof of Theorem 2. []

The following example shows that the condition Y ;_;2%a; #0 or
> i_1ak # —1 in Theorem 2 in necessary.

ExampLE 1. Suppose ai,ay,...,a, are constants satisfying

f:zkak =0, iak =-1.
k=1 k=1

Let f(z) =a+ (1/a)e¥ —e*, where a is a finite non-zero constant. Then
fP(z) = (2%/a)e* —e?, and L(z) := 37_,anf®(z) = ¢*. Hence f,L share a
CM, and f'(z) = L(z) = L'(z) = a when f(z) =a, but f # f.
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