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ON THE MONODROMY OF A FUNCTION GERM DEFINED ON
AN ARRANGEMENT OF HYPERPLANES

MARIA IOACHIM ZAHARIA

1. Introduction

Let o = {H),...,H;} be an arrangement of hyperplanes in C"*' such
that 0 e H;N --- N Hy and let ¥ (/) denote the intersection poset of /. Let
f:(HU---UH,0) - C be a germ of a holomorphic function in the origin
with the property that the restriction of fto any X € £(«), X # C™*', X # {0},
has an isolated critical point in 0. It is known that f defines a Milnor fibration
(see [2]) and that the Milnor fiber of f, denoted by F, has the homotopy type of a
bouquet of spheres of (real) dimension n — 1.

Let h:H, (F)— H,_1(F) be the (algebraic) monodromy and A(¢) =
det(sI — h) be its characteristic polynomial. For X € £(«/), X # C""!, X #
{0}, let Ax(#) denote the characteristic polynomial of the monodromy and u(f|y)
denote the Milnor number of the restriction of f to X. If {0} e £(«/) we put
Ay(t) =t—1and u(fly) =1. Let p: £(/)— Z be the Mdbius function of
ZL().

In this article we shall prove the following theorem (we consider the reduced
homology with integer coefficients):

THEOREM 1.1. Under the above conditions, we have:

A(r) = I1 AEON ().

XeP(d),X#C"!

In Section 3 we shall use Theorem 1.1 to obtain formulas for the { function
of the monodromy, the Lefschetz number of f and the Milnor number of f,
depending on the similar objects of the restriction of f to the linear spaces
X e (/) and on the values of the Mobius function of #(<7).

These results answer question raised by Professor D. Siersma to whom I
would like to thank. I am also grateful to the referee for useful suggestions.

We shall remind some facts on arrangements of hyperplanes in a vector
space, which we shall need in the proof of Theorem 1.1. These facts can be
found in [4].
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Let o = {Hj,...,Hy} be an arrangement of hyperplanes in a vector space V
such that 0 e T(/) = Hi N --- NH,. Let ¥ = ¥ (o) be the intersection poset
of o

L) ={VYU{W3{i,...,5,} ={1,...,k} such that W=H, N---NH,}.

On ¥ a partial order is defined by reverse inclusion: X <Y & Y < X.

DerFINITION 1.2. The Mobius function u, : ¥ x ¥ — Z is defined by
wX, X)=1, if Xe2,

> wX,2)=0, if X,Y,Ze# and X <7,
X<Z<Y

u(X,Y) =0, otherwise.

DeriNITION 1.3. For X € &, we define u(X)=u(V,X), oy ={He |
X c H} and r(X) =codimX =dim ¥V —dimX. We denote u(«/) = u(T()).

Remark 1.4. 1t is well-known, see for instance [4], that ), _, #(X) =0 and
that for X € ¥, we have u(X) = (—1)’(X)|,u(X)| = u(Ly).

2. Proof of Theorem 1.1

We prove Theorem 1.1 by double induction on the number of hyperplanes in
the arrangement, k£, and the dimension of the base space, n+ 1.

For k = 1 and any n, we have one hyperplane H in C"*! so dim H = n and
we work in fact with f|,. We have A(7) = Ag(f).

For n=1 and any k we have k (complex) lines, H,,...,H; in C* and
H N ---NHy={0}. The Milnor fiber F of f is a finite set of points and
consequently the only nonzero homology group is Ho(F). We have £ () =
{C* H,... H;,{0}} with u(C* =1, u(H)=—-1, Vie{l,...,k}, u({0})=
k—1. The formula to prove is

Alf) = (1 — 1! ﬁAH,(t).
=1

For k =2: Let F; = FN H; be the Milnor fiber of the restriction f/; and
let F, = FN H, be the Milnor fiber of the restriction f| H- Then F; consists of
u(f|y,) + 1 points, say X0, X1+ - Xp( ]y )> and F, consists of u(f|g,)+ 1 points,
SY Yo Y1+ o5 Yufl,): Since FiINF, =0, F=F UF, consists of u(fly,)+
u(fg,) +2 points and dim Ho(F) = u(fly,) + u(f|y,) +1. Let us consider the
Mayer-Vietoris sequence for F = F; U Fy:

0 — Hy(F\) @ Hy(F2) — Hy(F).
A basis in Ho(F) is {xo—x|j=1,2,...,u(flg)}
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A basis in Ho(F2) is {yo— y;|i=1,2,...,u(f|x,)}-
A basis in Hy(F) is
{xo =X, ¥0 = YisXo — Yol Jj = 1727'“7/‘(f|H1) and 7= 1’2"""“(f|H2)}'

By [2], the monodromy respects the stratification. Thus, if 4(xy) = x, and
h(yo) = y; for some je{0,1,...,u(f|y,)} and some i€ {0,1,...,u(f|g,)}, then

h(xo — yo) =% — yi = —Xo + X, + Yo — ¥ + X0 = Yo
Thus, the matrix of the monodromy 4 : Hy(F) — Hy(F) in the above basis is
Matrix of the

monodromy 0 0
of f |H.
Matrix of the
0 monodromy 0
of f |H2
* * 1

Consequently, the characteristic polynomial of 4 is
A(r) = A, (1) - A, (1) - (1 = 1).

The induction step k — k + 1: The induction hypothesis is: for k lines in
C? the characteristic polynomial of the monodromy is

A(t) = A, (1) - Ay (1) - (1 = DL

Let Hy,..., Hiy1 be k + 1 lines in C? such that H; N --- N Hy,; = {0}. The
sets of points representing the Milnor fibres of the restrictions f|; do not
intersect, hence

k+1

dim Ho(F) = > u(f1y,) + k.
1=1

We put Fi=FN(HU---UH;) and F, = FN Hp, and we note that

k
dim Hy(F1) = > ul(f1g) + (k= 1).
1=1

If we fix basis in Hy(F;) and Hy(F>) we can get a basis in Hy(F) in the same
way we did in the case k =2 and, like there, we get

k+1

k
A() = An, () - (1= 1) - (1 = D' [[Am(0) = ¢ = D[] A (0)-
1=1 1=1

Let us consider now that Theorem 1.1 is true for any p hyperplanes in a
(m+1) dimensional vector subspace of C""! for p <k and m <n and let us
prove it for k+1 hyperplanes in C"'. So consider Hj,..., Hiy < C™!,
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f:(HiU - - UHys1,0) — C as before and let ¥ be the Milnor fiber of /. We
put:

F1 =Fﬂ(H1U UHk) and F2=FﬂHk+1.

Thus, F is the Milnor fiber of the restriction f H,U--UH, and F; N F;, is the Milnor
fiber of the restriction flp,  ngu..um,)- Let us consider the following mono-
dromies:

h = the monodromy of f

hy = the monodromy of f/|y ..um,

h, = the monodromy of f|y, |

hi2 = the monodromy of f|y, . umy):-
Because the monodromy respects the stratification, the Mayer-Vietoris sequence
for F =F,UF, gives us the following commutative diagram:

0 —— Hy 1(F) @ Hyit(F) —— Hyp((F) —— Hy2(FINF) —— 0

bl

0 — H,_\(F1) ® Hy-1(F2) —— Hy\(F) —— Hy2(FiINF) —— 0.
Because the homology groups are free Z-modules,
Hn-l(F) =~ Hn—l(Fl) @ Hn—l(FZ) @ Hn—l(Fl an)

so there exists a basis in H,_;(F) with respect to which the matrix of
the monodromy /4 consists of cells corresponding to the matrices of h;, h, and A
on the diagonal and zeroes above them (like in the case k=2 above).
Consequently,

(1) A(t) = Ap,,, (1) - Ao(2) - Apa(2),

where A,(¢) and Aj,(¢) are the characteristic polynomials of h; and hjs.
The induction hypothesis applies for f|g ..yy,, SO we have

2) rMn= [T AP,
Xeg' x+Cm™!

where </’ is the arrangement {Hj,...,H;} in C"™' and ' is the Mobius
function of %’ := #(o/'). Next, we can apply the induction hypothesis for
Sl ngnn-nm,) because we have at most k hyperplanes, HiNHy,...,
H; N Hy,y, in a n-dimensional subspace, Hy.), of c™1l. So

(3) G || VA ON
Xeg" x#C"!

where /" is the arrangement {H N Hiy1,...,Hy OV Hip1} in Hiy and p” is the
Moébius function of £” := £(/"). By introducing the relations (2) and (3) in
(1), we easily see that the proof of Theorem 1.1 reduces to the proof of the
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following:
(4) For all X e 'NZ", we have: |u(X)| = |u'(X)| + |u"(X)|.

To prove (4), let Xe ¥ N¥". Then X < Hyy and X =T(y)e
P (Ax\{Hr1}) = L(Ay). Thus, Hryy is not a separator, in the sense of [4],
Definition 2.58. And now, point (2) of Corollary 2.59 in [4] gives us that

() |u(x)| = lu(y)] + ()|

By Remark 1.4, relation (5) implies (4). Thus, Theorem 1.1 is proved.

3. Consequences of Theorem 1.1

Because the degree of the characteristic polynomial is equal to dim H,_;(F),
we have

PrOPOSITION 3.1. Under the conditions in Theorem 1.1, we have

dim H,_((F) = Z (X - u(flx)-

XeZ (), X#C"!

Remark 3.2. For another proof of this Proposition, see [8]. In [5] it is
obtained a similar result for homogeneous /. Note also that the above formula
is used in [6].

Remark 3.3. In [7] and [8] we proved a formula to compute the algebraic
codimension (when finite) of a function germ f defined on an arrangement
o = {{x1 =0},...,{x, = 0}} of coordinate hyperplanes in C"*!, when we know
the Milnor numbers of its restrictions to the spaces X € ¥ (/). It turns out that
in this case the algebraic codimension is equal to dim H,_;(F). We do not know
if such a property holds for any arrangement ..

For a function germ f defined on a central arrangement of hyperplanes and
having an isolated singularity in 0, as considered above, the { function of the
monodromy is

G0 = (1= DA

where A is the characteristic polynomial of the monodromy and v is the degree of
A. Using the formulas in Theorem 1.1 and Proposition 3.1, we obtain:
(-n™!
Goy=1-0| I @V0A))kl

XeZ(A),X#C!
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But, for any X € #(«), X # {0}, X # C""', we have

_l)dlmX—l

L, = (1= 1)[t*V1x) 'Ax(l—l)](

SO

(—1ydmx-1

U Ax (e = [(1 - ’)_ICf|X(f)]
If {0} € Z(o/) we put {j () = 1. Consequently, by Remark 1.4 we have:

-n""
Go=0-n [ (-7 @)
Xe2(d),X#Cm

(—1)dmX=1-n+1

-9 JI  |(a=97"g,o)]

Xe¥(A), X #C"!

=(1-1) H [(1- t)—lcflx]I#(X)l(

XeZ(A),X#C"!

=(1-1) II [(1— [)Cﬁi(,)]lﬂ(X)l(—l)""’

XeZ(A),X#C"™!

=(1-0n [ =90

Xe2 (), X#C"!

- I "0

XeP(A),X#C!

_pyro-t

Thus, we proved

PROPOSITION 3.4.  Under the hypotheses of Theorem 1.1, the { function of the
monodromy of f is

L(e) = 11 G ).

XeP (o), X #C"!

For X € #(«), let us denote by Ay the Lefschetz number of the mono-
dromy of f|y. If {0} e #(«/) we put Ay =0. The Weil inversion formula
and Proposition 3.4 imply

PROPOSITION 3.5. Under the conditions in Theorem 1.1, the Lefschetz number
of the monodromy is

© AW=1+ 5 (-ApguxX)=— S Ax-ux).

XeP(od),X#C"™! XeP(¥),X#C™!
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Let (X,0) be the germ of a smooth analytic space, my o the maximal ideal
of the local ring Oy o and f a function germ defined on X. In [1] N. A’Campo
proves that for the monodromy 4 of f, we have A(h) =0 if f e m% , and A(h) =
1if f emyo\m%, Because the subspaces X € £ (/) are smooth, the formula
(6) implies that to compute A(h) we need only the Lefschetz numbers of those
restrictions of f to X € #() for which f|y, emy. Proposition 3.5 and
A’Campo’s result imply the following

COROLLARY 3.6. Let (X,0) be the germ in 0 of a central hyperplane ar-
rangement in C™*', let my,o be the maximal ideal of the local ring Oy o and let f
be a germ of function defined on (X,0). If f emf‘,,0 then A(hs) =0.

ExampPLE 3.7. Let o/ be the arrangement of all coordinate hyperplanes in
C"!'. 1Its defining ideal is I = (x1 -+ xnt1) and the maximal ideal /, of the local
ring of this germ of analytic space is the image of the ideal m = (xi,...,Xu11)
in 0,y1/1. Let fem\m® be a function germ defined on /. Then, by [7],
Proposition 4.1, we have: Either f is #-equivalent to x| + --- + x,11, in which
case

Alhy) = 1+ p({0}) = 1 + (=1)"*",

or f is A-equivalent to x; + - + xg + A(Xk41,. .., Xns1) for some ke {l,...,n}
and h with j'A=0. In this situation we identify {(xi,...,Xn41) € C™)|
x;=---=x; =0} with C"**1 The elements X € #(«/) which intervene in
the computation of the Lefschetz number of the monodromy of f are in fact the
elements of the intersection poset of the arrangement of all coordinate hyper-
planes in C"**1_ Let us denote the set of these elements by #x. For X € %,
the value of u(X) is equal to the value of the Mobius function of the arrangement
of all coordinate hyperplanes in C"**!.  Using [4], Proposition 2.44, we get

Alh) =1+ > p(X)=1.

Xey

Thus, in this example the Lefschetz number of the monodromy of f can take
the values 0, 1 or 2.
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