EHRESMANN CONNECTIONS FOR A FOLIATED MANIFOLD AND CERTAIN KINDS OF RECTANGLES WITHOUT TERMINAL VERTEX

NAOYUKI KOIKE

Abstract

We define the notion of a non-extendable rectangle without terminal vertex for a foliated manifold (M,\mathfrak{F}) with a complementary distribution D and classify them into non-singular ones and singular ones. It is easy to show that D is an Ehresmann connection in the sense of R. A. Blumenthal and J. J. Hebda if and only if there is no non-extendable rectangle without terminal vertex. One of our purposes is to investigate the existence of singular non-extendable rectangle without terminal vertex. Another purpose is to obtain a new sufficient condition for the orthogonal complementary distribution of a foliation on a Riemannian manifold to be an Ehresmann connection by investigating a property of singular non-extendable rectangles without terminal vertex.

Introduction

Throughout this paper, unless otherwise mentioned, we assume that all objects are smooth (i.e., of class C^{∞}) and all manifolds are connected ones without boundary. For a foliated manifold (M,\mathfrak{F}) with a complementary distribution D, R. A. Blumenthal and J. J. Hebda considered a piecewise smooth map $\delta:[0,1]\times[0,1]\to M$ such that, for every fixed s_0 , the curve $\delta_{s_0}:=\delta(\cdot,s_0)$ is a horizontal curve, and, for every fixed t_0 , the curve $\delta_{t_0}:=\delta(t_0,\cdot)$ is a vertical curve, where a horizontal curve is a piecewise smooth map from [0,1] to M whose velocity vector field lies in D and a vertical curve is a piecewise smooth map from [0,1] to a leaf of \mathfrak{F} . They called such a piecewise smooth map δ a rectangle. If, for every vertical curve α and every horizontal curve β with $\alpha(0)=\beta(0)$, there is the rectangle δ with $\delta_0=\alpha$ and $\delta_0=\beta$, then they called D an Ehresmann connection for \mathfrak{F} (see [2]). They proved the following so-called global stability theorem and decomposition theorem (see [2]):

- (i) If \mathfrak{F} admits an Ehresmann connection, then the universal coverings of leaves of \mathfrak{F} are diffeomorphic to one another.
- (ii) If D is an integrable Ehresmann connection for \mathfrak{F} , then for each $p \in M$, there is a covering map π of the product manifold $\hat{L}_p^V \times \hat{L}_p^H$ onto M satisfying $\pi_*(T\hat{L}_p^V) = F$ and $\pi_*(T\hat{L}_p^H) = D$, where \hat{L}_p^V (resp. \hat{L}_p^H) is the universal covering of

Received September 24, 1998; revised July 5, 1999.

a leaf of \mathfrak{F} through p (resp. that of the maximal integral manifold of D through p), π_* is the differential of π , $T\hat{L}_p^V$ (resp. $T\hat{L}_p^H$) is the tangent bundle of the foliation $\hat{L}_p^V \times \{\cdot\}$ (resp. $\{\cdot\} \times \hat{L}_p^H$) on $\hat{L}_p^V \times \hat{L}_p^H$ and F is the tangent bundle of \mathfrak{F} .

Thus we can apply the study of an Ehresmann connection to those of the global stability of a foliation and the decomposition of a manifold into a product manifold (furthermore, the geometric decomposition of a manifold with a geometric structure). Therefore, it is very interesting to investigate what kind of foliation admits an Ehresmann connection.

In this paper, we consider a piecewise smooth map $\delta:[0,1]\times[0,1]\setminus\{(1,1)\}\to M$ such that, for every fixed $s_0\in[0,1)$, the curve δ_{s_0} is a horizontal curve, for every fixed $t_0\in[0,1)$, the curve δ_{t_0} is a vertical curve and δ_{s_0} (resp. δ_{s_0}) is a horizontal (resp. vertical) curve without terminal point. We shall call such a piecewise smooth map δ a rectangle without terminal vertex. If there is not a rectangle $\tilde{\delta}$ satisfying $\tilde{\delta}|_{([0,1]\times[0,1]\setminus\{(1,1)\})}=\delta$, then we shall say that δ is nonextendable. By imitating the proof of Proposition 2.3 of [13], it is shown that D is an Ehresmann connection for \mathfrak{F} if and only if there is no non-extendable rectangle without terminal vertex. Thus the study of a non-extendable rectangle without terminal vertex leads to that of an Ehresmann connection. According to Lemma 3.5 of [11], if δ is a non-extendable rectangle without terminal vertex, then $\lim_{s\to 1-0}\delta(1,s)$ does not exist. However, $\lim_{t\to 1-0}\delta(t,1)$ is possible to exist. If $\lim_{t\to 1-0}\delta(t,1)$ exists (resp. does not exist), then we shall say that δ is singular (resp. non-singular).

Remark. If δ is singular, then a continuous curve $c:[0,1]\to M$ defined by

$$c(t) := \begin{cases} \delta(t, 1) & (0 \le t < 1) \\ \lim_{t \to 1-0} \delta(t, 1) & (t = 1) \end{cases}$$

is not of class C^1 at t=1. In fact, it is shown in terms of a foliated coordinate neighbourhood about c(1) that δ is extendable if c is of class C^1 at t=1.

If $\operatorname{codim} \mathfrak{F}=1$, that is, $\operatorname{dim} D=1$, then D is integrable and hence all non-extendable rectangles without terminal vertex are non-singular. It is very important to investigate the existence of a singular non-extendable rectangle without terminal vertex in case of $\operatorname{codim} \mathfrak{F} \geq 2$. In this paper, we shall prove the following result related to its existence.

THEOREM 1. For every $r \geq 3$ and every $n \geq r+1$, there is a triple (M, \mathfrak{F}, D) of an n-dimensional manifold M, a foliation \mathfrak{F} of codimension r on M and a complementary distribution D to \mathfrak{F} which admits a singular non-extendable rectangle without terminal vertex.

It is natural to ask what kind of foliation admits an Ehresmann connection on a manifold with a geometric structure. On a Riemannian manifold, such a study has been already done by some geometers as follows. Let F^{\perp} be the

orthogonal complementary distribution of a foliation \mathfrak{F} on a Riemannian manifold (M,g). It is known that F^{\perp} is an Ehresmann connection if one of the following conditions holds (see [2], [4], [8], [15]):

- (I) (M, g) is complete and g is bundle-like for \mathfrak{F} ,
- (II) the induced Riemannian metrics on leaves of \mathfrak{F} are complete and \mathfrak{F} is totally geodesic,
- (III) dim $\mathfrak{F} \geq 3$, the induced conformal structures on leaves of \mathfrak{F} are complete and \mathfrak{F} is totally umbilic.
- In [7], for each vertical curve α , we defined a function G_{α}^{\perp} on the set $\operatorname{Rec}(\alpha, \cdot)$ of all rectangles δ such that $\delta_0 = \alpha$ and $\delta_{\cdot 0}$ is a regular curve by $G_{\alpha}^{\perp}(\delta) := l(\delta_{\cdot 1})/l(\delta_{\cdot 0})$ for $\delta \in \operatorname{Rec}(\alpha, \cdot)$, where $l(\cdot)$ is the length of a curve \cdot with respect to g. Also, for each horizontal curve β , we defined a function G_{β}^{T} on the set $\operatorname{Rec}(\cdot, \beta)$ of all rectangles δ such that $\delta_{\cdot 0} = \beta$ and δ_{0} is a regular curve by $G_{\beta}^{T}(\delta) := l(\delta_{1})/l(\delta_{0})$ for $\delta \in \operatorname{Rec}(\cdot, \beta)$. In the paper, we proved that F^{\perp} is an Ehresmann connection if one of the following conditions holds:
- (IV) (M,g) is complete and $\sup_{s \in [0,1)} \sup G_{\alpha|_{[0,s]}}^{\perp} < \infty$ for every vertical curve $\alpha : [0,1) \to M$ without terminal point,
- (V) the induced Riemannian metrics on leaves of \mathfrak{F} are complete and $\sup G_{\beta}^T < \infty$ for every horizontal curve β .

Here we note that $G_{\alpha}^{\perp} \equiv 1$ holds for every vertical curve α if g is bundle-like for \mathfrak{F} and that $G_{\beta}^{T} \equiv 1$ holds for every horizontal curve β if \mathfrak{F} is totally geodesic. Thus these results are generalizations of I and II above. In this paper, we shall furthermore improve one of these results as follows.

Theorem 2. If (M,g) is complete and $\sup G_{\alpha}^{\perp} < \infty$ for every vertical curve α , then F^{\perp} is an Ehresmann connection.

This theorem will be proved by investigating a property of singular non-extendable rectangles without terminal vertex. We shall also give examples showing that this improvement is essential (see §3). Furthermore, we shall give examples showing the topological gap between foliations admitting a Riemannian metric such that $\sup G_\alpha^\perp < \infty$ for every vertical curve α and foliations admitting a bundle-like metric (see §3). The following corollary is directly deduced from Theorem 2 and the sufficient condition (V) for F^\perp to be an Ehresmann connection.

COROLLARY. Let \mathfrak{F} be a foliation on a Riemannian manifold (M,g) satisfying the above condition (V) or the assumption of Theorem 2. Then the following statements (i) and (ii) hold:

- (i) The universal coverings of leaves of \mathfrak{F} are diffeomorphic to one another.
- (ii) If $\operatorname{codim} \mathfrak{F} = 1$, then the universal covering of M is diffeomorphic to $\hat{L}_p^V \times \mathbf{R}$, where p is an arbitrary point of M and \hat{L}_p^V is the universal covering of the leaf of \mathfrak{F} through p.

In §1 and §2, we prove Theorems 1 and 2, respectively. In §3, we give examples of a non-extendable rectangle without terminal vertex and those of a

foliated Riemannian manifold which satisfies the assumption of Theorem 2 but does not satisfy the condition (IV). Furthermore, we give examples of a foliated manifold which admits a Riemannian metric satisfying the assumption of Theorem 2 but does not admit a bundle-like metric.

Proof of Theorem 1

In this section, we shall prove Theorem 1 by constructing a triple (M, \mathcal{F}, D) admitting a singular non-extendable rectangle without terminal vertex. First we shall present a plan of construction of such a triple (M, \mathfrak{F}, D) .

PLAN OF CONSTRUCTION. Let (x_1, \ldots, x_n) be the natural coordinate of an ndimensional affine space \mathbb{R}^n and \mathfrak{F} a foliation on \mathbb{R}^n whose leaves are fibres of the projection $\pi: \mathbb{R}^n \to \mathbb{R}^r$ defined by $\pi(x_1, \dots, x_n) = (x_1, \dots, x_r)$ $(r \ge 2, n \ge r+1)$.

(Step I) First we construct a complementary (C^{∞} -)distribution D_1 to \mathfrak{F} , a C^{∞} -curve $\beta = (\beta_1, \dots, \beta_r) : [0, 1) \to \mathbf{R}^r$ without terminal point and a C^{∞} -curve $\alpha: [0,1] \to \pi^{-1}(\beta(0))$ satisfying the following conditions:

(i) $\lim_{t\to 1-0} \beta(t)$ exists and a continuous curve $\bar{\beta}:[0,1]\to \mathbf{R}^r$ defined by

$$\bar{\beta}(t) := \begin{cases} \beta(t) & (0 \le t < 1) \\ \lim_{t \to 1-0} \beta(t) & (t = 1) \end{cases}$$

is not of class C^1 at t=1.

- (ii) For every $s \in [0, 1]$, there is the D_1 -lift $\tilde{\beta}_s : [0, 1) \to \mathbb{R}^n$ of β starting from $\alpha(s)$. (iii) For every $s \in [0, 1)$, $\lim_{t \to 1-0} \sum_{i=r+1}^n x_i (\tilde{\beta}_s(t))^2 = \infty$.
- (iv) $\lim_{t\to 1-0} \beta_1(t)$ exists.

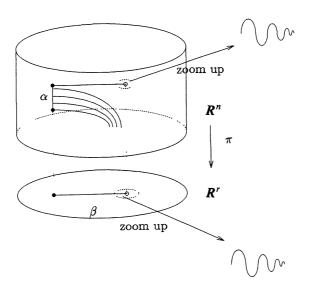


Figure 1.1.

(Step II) Next, we construct a homeomorphism ϕ of \mathbb{R}^n which admits closed sets S_1 and S_2 of \mathbb{R}^n satisfying the following conditions:

 $\pi^{-1}(\lim_{t\to 1-0}\beta(t))\neq\emptyset.$

(vii) Let $\gamma=(\gamma_1,\ldots,\gamma_{n-r}):[0,1]\to \mathbf{R}^{n-r}$ be an arbitrary C^∞ -curve in \mathbf{R}^{n-r} with $\gamma(1)\in\pi'(S_2\cap\pi^{-1}(\lim_{t\to 1-0}\beta(t)))$ and β_γ a continuous curve in \mathbf{R}^n defined by

$$\beta_{\gamma}(t) := \begin{cases} \left(\beta_1(t), \dots, \beta_r(t), \gamma_1(t), \dots, \gamma_{n-r}(t)\right) & (0 \le t < 1) \\ \left(\lim_{t \to 1-0} \beta_1(t), \dots, \lim_{t \to 1-0} \beta_r(t), \gamma_1(1), \dots, \gamma_{n-r}(1)\right) & (t = 1), \end{cases}$$

where π' is the projection of \mathbb{R}^n onto \mathbb{R}^{n-r} defined by $\pi'(x_1,\ldots,x_n)=(x_{r+1},\ldots,x_n)$

where n is the projection of x_n . Then $\phi \circ \beta_{\gamma}$ is of class C^{∞} over [0,1].

(viii) Give $\mathbb{R}^n \backslash S_1$ a C^{∞} -structure $\{(\mathbb{R}^n \backslash S_1, \phi|_{\mathbb{R}^n \backslash S_1})\}$. Denote this C^{∞} -manifold by M. Then \mathfrak{F} becomes a $(C^{\infty}$ -)foliation on M.

(Step III) Furthermore, we construct a complementary (C^{∞} -)distribution D to \mathfrak{F} on M satisfying the following conditions:

(ix) $D = D_1$ on a neighbourhood of $\tilde{\beta}_1([0,1]) \cup \{\lim_{t \to 1-0} \tilde{\beta}_1(t)\}$. (x) For every $s \in [0,1)$, there is the D-lift $\beta_s^L : [0,1) \to M$ of β starting from $\alpha(s)$.

(xi) For every $s \in [0, 1)$, $\lim_{t \to 1-0} \beta_s^L(t)$ exists and $\lim_{t \to 1-0} \pi'(\beta_s^L(t))$ belongs to $\pi'(S_2 \cap \pi^{-1}(\lim_{t \to 1-0} \beta(t)))$.

(xii) Let $\widehat{\pi' \circ \beta_s^L} : [0,1] \to \mathbf{R}^{n-r} (s \in [0,1))$ be a continuous curve in \mathbf{R}^{n-r} defined by

$$\widehat{(\pi' \circ \beta_s^L)}(t) := \begin{cases} (\pi' \circ \beta_s^L)(t) & (0 \le t < 1) \\ \lim_{t \to 1-0} (\pi' \circ \beta_s^L)(t) & (t = 1). \end{cases}$$

Then $\widehat{\pi' \circ \beta_s^L}$ becomes a C^{∞} -curve for every $s \in [0,1)$.

Then we define a map $\delta: ([0,1] \times [0,1] \setminus \{(1,1)\}) \to M$ by

$$\delta(t,s) := \begin{cases} \beta_s^L(t) & (0 \le t < 1, \ 0 \le s < 1) \\ \lim_{t \to 1-0} \beta_s^L(t) & (t = 1, \ 0 \le s < 1) \\ \tilde{\beta}_1(t) & (0 \le t < 1, \ s = 1). \end{cases}$$

It follows from the definition of δ that $\delta_s(s \in [0,1))$ are given by

$$\delta_{s}(t) = \begin{cases} \beta_s^L(t) & (0 \le t < 1) \\ \lim_{t \to 1-0} \beta_s^L(t) & (t = 1), \end{cases}$$

which is a C^{∞} -curve in M by the conditions (vii), (xi) and (xii). Hence

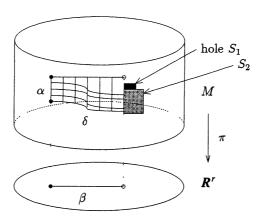


Figure 1.2.

 δ_s $(s \in [0,1))$ are horizontal curves (with respect to D). Also, it follows from the conditions (v), (vi) and (ix) that $\tilde{\beta}_1(=\delta_{-1})$ is a horizontal curve (with respect to D) without terminal point. These facts imply that δ is a rectangle without terminal vertex on (M, \mathfrak{F}, D) . By the condition (iv), $\lim_{t \to 1-0} \delta(t, 1)$ exists. Moreover, by the conditions (i), (v) and (vi), a continuous curve $\bar{\delta}_{-1}: [0, 1] \to M$ defined by

$$\bar{\delta}_{1}(t) = \begin{cases} \delta_{1}(t) & (0 \le t < 1) \\ \lim_{t \to 1-0} \delta(t, 1) & (t = 1) \end{cases}$$

is not of class C^1 at t=1. This fact implies that δ is non-extendable and singular. Thus this triple (M, \mathfrak{F}, D) admits a singular non-extendable rectangle δ without terminal vertex.

Proof of Theorem 1. Following to the above plan of construction, we shall concretely construct a triple (M, \mathfrak{F}, D) which admits a singular non-extendable rectangle without terminal vertex in case of $r \geq 3$. Let \mathfrak{F} , (x_1, \ldots, x_n) , π and π' be as above. First we define a complementary $(C^{\infty}$ -)distribution D_1 to \mathfrak{F} on \mathbb{R}^n , a C^{∞} -curve $\beta = (\beta_1, \ldots, \beta_r) : [0, 1) \to \mathbb{R}^r$ without terminal point and a C^{∞} -curve $\alpha : [0, 1] \to \pi^{-1}(\beta(0))$ by

$$D_{1} := \operatorname{Span}\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}} + x_{3}x_{n} \frac{\partial}{\partial x_{n}}, \frac{\partial}{\partial x_{3}} - x_{2}x_{n} \frac{\partial}{\partial x_{n}}, \frac{\partial}{\partial x_{4}}, \dots, \frac{\partial}{\partial x_{r}}\right\},$$

$$\beta(t) := \left(t - 1, (t - 1)\sin\frac{1}{(t - 1)^{2}}, (t - 1)\cos\frac{1}{(t - 1)^{2}}, 0, \dots, 0\right) \quad (0 \le t < 1),$$

$$\alpha(s) := (-1, -\sin 1, -\cos 1, 0, \dots, 0, s - 1),$$

respectively. Clearly β satisfies the condition (i). The D_1 -lift $\dot{\beta}_s$ of β starting

from $\alpha(s)$ is given by

$$\tilde{\beta}_s(t) = \left(t-1, (t-1)\sin\frac{1}{(t-1)^2}, (t-1)\cos\frac{1}{(t-1)^2}, 0, \dots, 0, \frac{s-1}{(1-t)^2}\right),$$

where $s \in [0, 1]$. Hence $\tilde{\beta}_s(s \in [0, 1))$ is defined over [0, 1). Furthermore, we have

$$\lim_{t \to 1-0} \sum_{i=r+1}^{n} x_i (\tilde{\beta}_s(t))^2 = \lim_{t \to 1-0} \frac{(s-1)^2}{(1-t)^4} = \infty \quad (s \in [0,1)),$$

$$\lim_{t \to 1-0} \tilde{\beta}_1(t) = (0,\dots,0).$$

Thus the conditions (ii)-(iv) hold.

Next we define a homeomorphism $\phi = (y_1, \dots, y_n)$ of \mathbb{R}^n by

$$\phi(x_1,\ldots,x_n):=(x_1,\mu(2x_1+x_2,\lambda(x_n)),\mu(2x_1+x_3,\lambda(x_n)),x_4,\ldots,x_n),$$

where μ is a C^{∞} -function over \mathbb{R}^2 defined by

$$\mu(z, w) := \begin{cases} z \cdot e^{-(w^2/|z|)} & (z \neq 0) \\ 0 & (z = 0) \end{cases}$$

and λ is a C^{∞} -function over \mathbf{R} with $\lambda^{-1}(0) = [-(1/2), \infty)$, $\lambda^{-1}(1) = (-\infty, -1]$ and $0 \le \lambda \le 1$. Now we shall show that ϕ admits closed sets S_i (i = 1, 2) of \mathbf{R}^n satisfying the above conditions (v)–(viii). Define closed sets S_i (i = 1, 2) of \mathbf{R}^n by

$$S_1 := \left\{ (x_1, \dots, x_n) | (2x_1 + x_2)(2x_1 + x_3) = 0 \text{ and } -1 \le x_n \le -\frac{1}{2} \right\}$$

and

$$S_2 := \{(x_1, \dots, x_n) | (2x_1 + x_2)(2x_1 + x_3) = 0 \text{ and } x_n \le -1 \},$$

respectively. Clearly S_1 and S_2 satisfy the conditions (v) and (vi). Take an arbitrary C^{∞} -curve $\gamma=(\gamma_1,\ldots,\gamma_{n-r}):[0,1]\to \mathbf{R}^{n-r}$ with $\gamma(1)\in\pi'(S_2\cap\pi^{-1}(\lim_{t\to 1-0}\beta(t)))$. Let β_{γ} be a continuous curve defined as in (vii). We must show that $\phi\circ\beta_{\gamma}$ is of class C^{∞} over [0,1]. Since $\gamma(1)\in\pi'(S_2\cap\pi^{-1}(\lim_{t\to 1-0}\beta(t)))$ and hence $\gamma_{n-r}(1)<-1$, we see that $\gamma_{n-r}<-1$ holds over $(1-\varepsilon,1]$ for a sufficiently small $\varepsilon>0$. Hence we have $\lambda\circ\gamma_{n-r}=1$ over $(1-\varepsilon,1]$, that is,

$$(\phi \circ \beta_{\gamma})(t) = \begin{cases} \left(t - 1, (t - 1)\left(2 + \sin\frac{1}{(t - 1)^2}\right)e^{-1/|(t - 1)(2 + \sin(1/(t - 1)^2))|}, \\ (t - 1)\left(2 + \cos\frac{1}{(t - 1)^2}\right)e^{-1/|(t - 1)(2 + \cos(1/(t - 1)^2))|}, \\ 0, \dots, 0, \gamma_1(t), \dots, \gamma_{n - r}(t)\right) \\ (0, \dots, 0, \gamma_1(1), \dots, \gamma_{n - r}(1)) \end{cases}$$

$$(1 - \varepsilon < t < 1)$$

$$(t = 1).$$

This implies that $\phi \circ \beta_{\gamma}$ is of class C^{∞} over $(1 - \varepsilon, 1]$ and hence so is it over [0, 1]. Thus S_1 and S_2 satisfy the condition (vii). Since $\phi|_{\mathbf{R}^n\setminus (S_1\cup S_2)}$ is a C^{∞} -diffeomorphism, \mathfrak{F} becomes a foliation on $M\setminus S_2$. Let \mathfrak{F}_1 be a foliation on M whose leaves are the fibres of the projection $\pi_1:M\to \mathbf{R}^r$ defined by $\pi_1(x_1,\ldots,x_n)=(y_1(x_1,\ldots,x_n),\ldots,y_r(x_1,\ldots,x_n))$ $((x_1,\ldots,x_n)\in M)$. Set $W:=\{(x_1,\ldots,x_n)\in M\mid x_n<-1\}$. On W, $\phi(x_1,\ldots,x_n)=(x_1,\mu(2x_1+x_2,1),\mu(2x_1+x_3,1),x_4,\ldots,x_n)$ holds. This implies that $\mathfrak{F}=\mathfrak{F}_1$ on W. Therefore, \mathfrak{F} becomes a foliation on $(M\setminus S_2)\cup W=M$. Thus S_1 and S_2 satisfy the condition (viii).

Next we shall construct a complementary distribution D to \mathfrak{F} on M satisfying the conditions (ix)-(xii). Let $\{U_1, U_2\}$ be an open covering of M defined by

$$U_1 := \{ (x_1, \dots, x_n) \in M \mid x_n \ge -1 \quad \text{or}$$

$$(-2 < x_n < -1 \text{ and } (2x_1 + x_2)(2x_1 + x_3) \ne 0) \},$$

$$U_2 := \{ (x_1, \dots, x_n) \in M \mid x_n < -1 \}$$

and $\{\eta_1, \eta_2\}$ a partition of unity subordinating to $\{U_1, U_2\}$. Set

$$\begin{split} X_1 &:= \frac{\partial}{\partial y_1} + \eta_1 \left(\frac{\partial y_2}{\partial x_1} \frac{\partial}{\partial y_2} + \frac{\partial y_3}{\partial x_1} \frac{\partial}{\partial y_3} \right), \\ X_2 &:= \left(\eta_1 \frac{\partial y_2}{\partial x_2} + \eta_2 \right) \frac{\partial}{\partial y_2} + \eta_1 x_3 x_n \left(\frac{\partial y_2}{\partial x_n} \frac{\partial}{\partial y_2} + \frac{\partial y_3}{\partial x_n} \frac{\partial}{\partial y_3} + \frac{\partial}{\partial y_n} \right) \\ &- \frac{\eta_1 \eta_2 x_3 x_n}{\eta_1 \frac{\partial y_3}{\partial x_3} + \eta_2} \frac{\partial}{\partial y_n}, \\ X_3 &:= \left(\eta_1 \frac{\partial y_3}{\partial x_3} + \eta_2 \right) \frac{\partial}{\partial y_3} - \eta_1 x_2 x_n \left(\frac{\partial y_2}{\partial x_n} \frac{\partial}{\partial y_2} + \frac{\partial y_3}{\partial x_n} \frac{\partial}{\partial y_3} + \frac{\partial}{\partial y_n} \right) \\ &+ \frac{\eta_1 \eta_2 x_2 x_n}{\eta_1 \frac{\partial y_2}{\partial x_2} + \eta_2} \frac{\partial}{\partial y_n}. \end{split}$$

Since $x_i, \partial y_i/\partial x_1, \partial y_i/\partial x_i, \partial y_i/\partial x_n$ (i=2,3) are C^{∞} -functions on $M \setminus S_2$ and $\eta_1 = 0$ on a neighbourhood of S_2 , we see that $\eta_1 x_i, \eta_1(\partial y_i/\partial x_1), \eta_1(\partial y_i/\partial x_i), \eta_1(\partial y_i/\partial x_n)$ (i=2,3) are C^{∞} -functions on M. Also, it is clear that x_n is a C^{∞} -function on M. Furthermore, for i=2,3, we have

$$(1.1) \qquad \frac{\partial y_i}{\partial x_i} = \begin{cases} \left(1 + \frac{\lambda(x_n)}{|2x_1 + x_i|}\right) \cdot e^{-\lambda(x_n)/|2x_1 + x_i|} & (2x_1 + x_i \neq 0) \\ 1 & \left(2x_1 + x_i = 0, x_n \geq -\frac{1}{2}\right) \\ 0 & \left(2x_1 + x_i = 0, x_n < -\frac{1}{2}\right) \end{cases}$$

and hence $\eta_1(\partial y_i/\partial x_i) + \eta_2 > 0$ (i=2,3) hold on M. Thus X_i (i=1,2,3) are C^{∞} -vector fields on M and furthermore $(X_1,X_2,X_3,\partial/\partial y_4,\ldots,\partial/\partial y_n)$ is a frame field on M. Define a $(C^{\infty}$ -)distribution D on M by $D:=\mathrm{Span}\{X_1,X_2,X_3,\partial/\partial y_4,\ldots,\partial/\partial y_r\}$. Since the tangent bundle of $\mathfrak F$ is given by $\mathrm{Span}\{\partial/\partial y_{r+1},\ldots,\partial/\partial y_n\}$, we see that D is a complementary distribution to $\mathfrak F$. First we shall show that D satisfies the condition (ix). Since $\phi|_{R^n\setminus (S_1\cup S_2)}$ is a C^{∞} -diffeomorphism, $\partial/\partial x_i=\sum_{k=1}^n(\partial y_k/\partial x_i)(\partial/\partial y_k)$ $(1\leq i\leq n)$ hold on $M\setminus S_2$. In more detail, we can obtain

(1.2)
$$\frac{\partial}{\partial x_{1}} = \frac{\partial}{\partial y_{1}} + \frac{\partial y_{2}}{\partial x_{1}} \frac{\partial}{\partial y_{2}} + \frac{\partial y_{3}}{\partial x_{1}} \frac{\partial}{\partial y_{3}}, \\
\frac{\partial}{\partial x_{2}} = \frac{\partial y_{2}}{\partial x_{2}} \frac{\partial}{\partial y_{2}}, \quad \frac{\partial}{\partial x_{3}} = \frac{\partial y_{3}}{\partial x_{3}} \frac{\partial}{\partial y_{3}}, \quad \frac{\partial}{\partial x_{1}} = \frac{\partial}{\partial y_{i}} \quad (4 \le i \le r)$$

and

$$(1.3) \qquad \frac{\partial}{\partial x_j} = \frac{\partial}{\partial y_j} \quad (r+1 \le j \le n-1), \quad \frac{\partial}{\partial x_n} = \frac{\partial y_2}{\partial x_n} \frac{\partial}{\partial y_2} + \frac{\partial y_3}{\partial x_n} \frac{\partial}{\partial y_3} + \frac{\partial}{\partial y_n} \frac{\partial}{\partial y_n} + \frac{\partial}{\partial y_n} \frac{\partial}{$$

on $M \setminus S_2$. Since $\eta_1 = 1$ and $\eta_2 = 0$ on $M \setminus U_2$, we have $X_1 = \partial/\partial x_1$, $X_2 = \partial/\partial x_2 + x_3 x_n (\partial/\partial x_n)$ and $X_3 = \partial/\partial x_3 - x_2 x_n (\partial/\partial x_n)$ on $M \setminus U_2$. Hence $D = D_1$ holds on $M \setminus U_2$. Since $M \setminus U_2$ is a neighbourhood of $\tilde{\beta}_1([0,1]) \cup \{\lim_{t \to 1-0} \tilde{\beta}(t)\}$, D satisfies the condition (ix). Next we shall show that D satisfies the conditions (x)–(xii). Let β_s^L (resp. $\tilde{\beta}_s$) be the D-lift (resp. the D_1 -lift) of β starting from $\alpha(s)$. Fix $s \in [0,1)$. Set $t_0 := \sup\{t \mid \beta_s^L \text{ is defined over } [0,t]\}$. Set $t_1 := \sup\{t \in [0,t_0) \mid \beta_s^L([0,t]) \subset M \setminus U_2\}$. Since $D = D_1$ on $M \setminus U_2$, we have $\beta_s^L = \tilde{\beta}_s$ on $[0,t_1)$. From $\lim_{t \to 1-0} x_n(\tilde{\beta}_s(t)) = \lim_{t \to 1-0} (s-1)/(1-t) = -\infty$, we have $t_1 < t_0$. We can express β_s^L as

$$\beta_s^L(t) = \left(t - 1, (t - 1)\sin\frac{1}{(t - 1)^2}, (t - 1)\cos\frac{1}{(t - 1)^2}, 0, \dots, 0, x_{r+1}(\beta_s^L(t)), \dots, x_n(\beta_s^L(t))\right) \quad (t \in [0, t_0)).$$

Then we have

$$(1.4) \qquad \dot{\beta}_{s}^{L}(t) = \frac{\partial}{\partial x_{1}} + \left(\sin\frac{1}{(t-1)^{2}} - \frac{2}{(t-1)^{2}}\cos\frac{1}{(t-1)^{2}}\right)\frac{\partial}{\partial x_{2}}$$

$$+ \left(\cos\frac{1}{(t-1)^{2}} + \frac{2}{(t-1)^{2}}\sin\frac{1}{(t-1)^{2}}\right)\frac{\partial}{\partial x_{3}}$$

$$+ \sum_{t=r+1}^{n} \frac{d(x_{t} \circ \beta_{s}^{L})}{dt}\frac{\partial}{\partial x_{t}} \quad (t \in [0, t_{0})).$$

Set $I := \{t \in [0, t_0) \mid \beta_s^L(t) \in \overline{U}_2\}$. It follows from $y_i = \mu(2x_1 + x_i, \lambda(x_n)) \ (i = 2, 3)$

and $(\lambda \circ x_n)|_{\bar{U}_2} = 1$ that

(1.5)
$$\left(\frac{\partial y_2}{\partial x_n} \circ \beta_s^L\right)(t) = \left(\frac{\partial y_3}{\partial x_n} \circ \beta_s^L\right)(t) = 0 \quad (t \in I).$$

This together with (1.2), (1.3) and (1.4) deduces

$$(1.6) \quad \dot{\beta}_{s}^{L}(t) = \frac{\partial}{\partial y_{1}} + \left\{ \frac{\partial y_{2}}{\partial x_{1}} \Big|_{\beta_{s}^{L}(t)} + \frac{\partial y_{2}}{\partial x_{2}} \Big|_{\beta_{s}^{L}(t)} \right.$$

$$\times \left(\sin \frac{1}{(t-1)^{2}} - \frac{2}{(t-1)^{2}} \cos \frac{1}{(t-1)^{2}} \right) \left\{ \frac{\partial}{\partial y_{2}} + \left\{ \frac{\partial y_{3}}{\partial x_{1}} \Big|_{\beta_{s}^{L}(t)} + \frac{\partial y_{3}}{\partial x_{3}} \Big|_{\beta_{s}^{L}(t)} \left(\cos \frac{1}{(t-1)^{2}} + \frac{2}{(t-1)^{2}} \sin \frac{1}{(t-1)^{2}} \right) \right\} \frac{\partial}{\partial y_{3}}$$

$$+ \sum_{t=t+1}^{n} \frac{d(x_{t} \circ \beta_{s}^{L})}{dt} \frac{\partial}{\partial y_{t}} \quad (t \in I).$$

Since this vector belongs to $D_{\beta_s^L(t)}$, we can obtain $d(x_i \circ \beta_s^L)/dt = 0$ $(r+1 \le i \le n-1)$ and

(1.7)
$$\frac{d(x_{n} \circ \beta_{s}^{L})}{dt}$$

$$= (x_{n} \circ \beta_{s}^{L})(t) \cdot \left(\frac{\eta_{1}^{2}(\partial y_{2}/\partial x_{2})(\partial y_{3}/\partial x_{3})}{(\eta_{1}(\partial y_{2}/\partial x_{2}) + \eta_{2})(\eta_{1}(\partial y_{3}/\partial x_{3}) + \eta_{2})}\right) (\beta_{s}^{L}(t))$$

$$\times \left\{2\eta_{2}(\beta_{s}^{L}(t)) \cdot (t-1)\left(\cos\frac{1}{(t-1)^{2}} - \sin\frac{1}{(t-1)^{2}}\right) + \frac{2}{1-t}\right\}$$

on I, where we use $\partial y_i/\partial x_1(\beta_s^L(t))=2(\partial y_i/\partial x_i)(\beta_s^L(t))$ $(i=2,3,\ t\in I)$. In particular, if $\beta_s^L(t)$ is a boundary point of U_2 , then $\eta_2(\beta_s^L(t))=0$ and hence $(d(x_n\circ\beta_s^L)/dt)(t)=(x_n\circ\beta_s^L)(t)\times 2/(1-t)\le -2/(1-t)<0$. This implies that $\beta_s^L(t)\in U_2$ holds for every $t\in (t_1,t_0)$. Suppose that there is $t_2\in [t_1,t_0)$ with $(x_n\circ\beta_s^L)(t_2)\le -2$. Then, since $\beta_s^L(t_2)\in M\backslash U_1$ and hence $\eta_1(\beta_s^L(t_2))=0$, by (1.7), we have $d(x_n\circ\beta_s^L)/dt|_{t=t_2}=0$. This implies that $(x_n\circ\beta_s^L)(t)\ge -2$ for every $t\in [0,t_0)$, which furthermore implies $t_0=1$. That is, β_s^L is defined over [0,1). Also, we have $I=[t_1,1)$. It follows from (1.1) and $(\lambda\circ x_n)|_{\bar{U}_2}=1$ that

$$(1.8) \quad \frac{\partial y_2}{\partial x_2}(\beta_s^L(t)) = \left(1 + \frac{1}{(1-t)(2+\sin(1/(t-1)^2))}\right)e^{-1/((1-t)(2+\sin(1/(t-1)^2)))} > 0,$$

$$(1.9) \quad \frac{\partial y_3}{\partial x_3}(\beta_s^L(t)) = \left(1 + \frac{1}{(1-t)(2+\cos(1/(t-1)^2))}\right)e^{-1/((1-t)(2+\cos(1/(t-1)^2)))} > 0$$

for $t \in I = [t_1, 1)$. Therefore, from (1.7), (1.8), (1.9) and $(x_n \circ \beta_s^L)(t) \le -1$ $(t \in I)$

 $I=[t_1,1)$), we see that $d(x_n\circ\beta_s^L)/dt\leq 0$ holds on $[\max\{t_1,1-1/(\sqrt[4]{2})\},1)$. This together with $x_n\circ\beta_s^L\geq -2$ implies that $\lim_{t\to 1-0}(x_n\circ\beta_s^L)(t)$ exists and $\lim_{t\to 1-0}(x_n\circ\beta_s^L)(t)<-1$, which furthermore implies $\lim_{t\to 1-0}\pi'(\beta_s^L(t))\in\pi'(S_2\cap\pi^{-1}(\lim_{t\to 1-0}\beta(t)))$. Since $\lim_{t\to 1-0}\beta_s^L(t)\in M\setminus U_1$, there is a sufficiently small positive number ε with $\eta_1(\beta_s^L(t))=0$ for $t\in [1-\varepsilon,1)$. It follows from (1.7) that $d(x_n\circ\beta_s^L)/dt=0$ over $[1-\varepsilon,1)$. This together with $x_i\circ\beta_s^L\equiv 0$ $(r+1\le i\le n-1)$ implies that a continuous curve $\widehat{\pi'\circ\beta_s^L}:[0,1]\to \mathbf{R}^{n-r}$ defined as in (xii) is a C^∞ -curve. Thus D satisfies the conditions (x)-(xii). That is, this triple (M,\mathfrak{F},D) admits a singular non-extendable rectangle without terminal vertex. In this example, it is sufficient that $r\ge 3$ and $n\ge r+1$. Therefore, Theorem 1 has been proved.

It is natural to consider the following problem.

PROBLEM. Is there a triple (M, \mathfrak{F}, D) admitting a singular non-extendable rectangle without terminal vertex for r = 2 and $n \ge 3$?

2. Proof of Theorem 2

In this section, we shall prove Theorem 2 by investigating a property of a singular non-extendable rectangle without terminal vertex. First we prepare the following lemma.

LEMMA. Let \mathfrak{F} be a foliation on a Riemannian manifold (M,g) and take the orthogonal complementary distribution F^{\perp} of \mathfrak{F} as a complementary distribution to \mathfrak{F} . If δ is a singular non-extendable rectangle without terminal vertex, then $\lim_{t\to 1-0} l(\delta_{\cdot 1}|_{[0,t]}) = \infty$ holds.

Proof. Set $p_0:=\lim_{t\to 1-0}\delta(t,1)$. Take a foliated coordinate neighbourhood $(\tilde{U},\tilde{\phi}=(x_1,\ldots,x_n))$ around p_0 with $\tilde{\phi}(p_0)=(0,\ldots,0)$ and $\tilde{\phi}(\tilde{U})=(-2,2)^n$, where $n=\dim M$ and the foliatedness of $(\tilde{U},\tilde{\phi})$ implies that fibres of the submersion $\pi:=(x_1,\ldots,x_r):\tilde{U}\to R^r$ $(r=\operatorname{codim}\mathfrak{F})$ are leaves of $\mathfrak{F}|_{\tilde{U}}$. Let D be a complementary distribution to \mathfrak{F} on \tilde{U} spanned by $\partial/\partial x_1,\ldots,\partial/\partial x_r$. Denote by $L^V_{p_0}$ the leaf of $\mathfrak{F}|_{\tilde{U}}$ through p_0 and $L^D_{p_0}$ the maximal integral manifold of D through p_0 . Let $\pi_V:\tilde{U}\to L^V_{p_0}$ (resp. $\pi_D:\tilde{U}\to L^D_{p_0}$) be the projection whose fibres are the maximal integral manifolds of D (resp. leaves of $\mathfrak{F}|_{\tilde{U}}$). Give \tilde{U} a flat Riemannian metric g_0 defined by $g_0(\partial/\partial x_t,\partial/\partial x_j)=\delta_{ij}$ $(i,j=1,\ldots,n)$ and denote by d_0 the distance function induced from g_0 , where δ_{ij} is the Kronecker's delta. Set $U:=\tilde{\phi}^{-1}((-1,1)^n)$. Take increasing sequences $\{t_k\}_{k=1}^\infty$ and $\{s_k\}_{k=1}^\infty$ in [0,1) satisfying $\lim_{k\to\infty}t_k=\lim_{k\to\infty}s_k=1$, $\delta_{-1}([t_k,1))\cup\delta_{t_k}([s_k,1])\subset U$, $\max_{t\in[t_k,1)}d_0(\pi_D(\delta(t,1)),p_0)<1/k$ and $\max_{s\in[s_k,1]}d_0(\pi_V(\delta(t_k,s)),p_0)<1/k$ (see Figure 2.1).

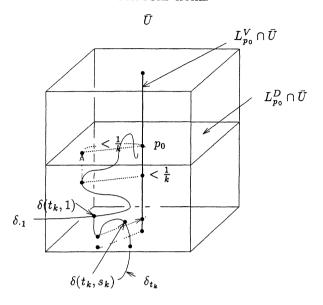


Figure 2.1.

We can show that $\delta_{\cdot s_k}([t_k,1])$ is not contained in \tilde{U} for every k. In fact, if $\delta_{\cdot s_k}([t_k,1])\subset \tilde{U}$ for some k, then the existence of the F^\perp -lift of $\pi\circ\delta_{\cdot s_k}|_{[t_k,1]}$ starting from $\delta(t_k,1)$ is assured because $\lim_{t\to 1-0}\delta_{\cdot 1}(t)=p_0\in \tilde{U}$ and hence δ is extendable. This contradicts the fact that δ is non-extendable. Thus $\delta_{\cdot s_k}([t_k,1])\not\subset \tilde{U}$ for every k. That is, $\delta_{s_k}([t_k,1])\cap\partial U\neq\emptyset$ holds for every k, where ∂U is the boundary of U in M. Set $t_k':=\min\{t\in[t_k,1]\,|\,\delta_{\cdot s_k}(t)\in\partial U\}$. Take $(t_k'',s_k')\in(t_k,t_k'']\times[s_k,1]$ satisfying $\delta([t_k,t_k'']\times[s_k',1])\cap\partial U=\{\delta(t_k'',s_k')\}$ (see Figure 2.2).

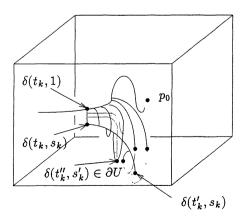


Figure 2.2.

Denote by $S(\overline{U})$ the unit tangent bundle of \overline{U} with respect to g_0 and F the tangent bundle of \mathfrak{F} , where \overline{U} is the closure of U. Define $\beta_k:[t_k,t_k'']\to M$ by $\beta_k(t):=\delta_{s_k'}(t)$ for $t\in[t_k,t_k'']$ and $X_k(t):=\dot{\beta}_k(t)/\|\dot{\beta}_k(t)\|\in S(\overline{U})$, where $\|\dot{\beta}_k(t)\|=\sqrt{g_0(\dot{\beta}_k(t),\dot{\beta}_k(t))}$. Take $t_k'''\in[t_k,t_k'']$ such that

$$\frac{\|X_{k}(t_{k}''')^{V}\|}{\|X_{k}(t_{k}''')^{D}\|} = \max_{t \in [t_{k}, t_{k}'']} \frac{\|X_{k}(t)^{V}\|}{\|X_{k}(t)^{D}\|},$$

where $X_k(t)^V$ (resp. $X_k(t)^D$) is the F-component (resp. the D-component) of $X_k(t)$. It follows from the compactness of $S(\overline{U})$ that there is a convergent subsequence $\{Y_k\}_{k=1}^{\infty}$ of $\{X_k(t_k''')\}_{k=1}^{\infty}$. Set $Y_0:=\lim_{k\to\infty}Y_k$. Since $Y_k\in F^{\perp}$ for every k, we have $Y_0\in F^{\perp}$. Suppose $\lim_{k\to\infty}\|X_k(t_k''')^V\|/\|X_k(t_k''')^D\|=\infty$. Then, we have $\lim_{k\to\infty}\|Y_k^V\|/\|Y_k^D\|=\infty$, which implies $Y_0\in F$. Thus $Y_0\in F\cap F^{\perp}$, that is, $Y_0=0$ is deduced. This contradicts $Y_0\in S(\overline{U})$. Therefore, $\lim_{k\to\infty}\|X_k(t_k''')^V\|/\|X_k(t_k''')^D\|=\infty$ does not hold. Hence, for a sufficiently large positive number c, there is a subsequence $\{X_{a(k)}(t_{a(k)}''')\}_{k=1}^{\infty}$ of $\{X_k(t_k''')\}_{k=1}^{\infty}$ such that $\|X_{a(k)}(t_{a(k)}''')^V\|/\|X_{a(k)}(t_{a(k)}''')^D\|< c$ for every k. Since $\|X_{a(k)}(t)^V\|/\|X_{a(k)}(t)^D\|< c$ $(t\in [t_{a(k)},t_{a(k)}''])$ by the definition of $t_{a(k)}'''$, we have

(2.1)
$$l_0(\pi_D \circ \beta_{a(k)}) > \frac{1}{c} l_0(\pi_V \circ \beta_{a(k)}),$$

where $l_0(\cdot)$ is the length of a curve \cdot with respect to g_0 . Also, it follows from $\max_{s \in [s_{a(k)}, 1]} d_0(\pi_V(\delta(t_{a(k)}, s)), p_0) < 1/a(k)$ and $\delta(t''_{a(k)}, s'_{a(k)}) \in \partial U$ that $d_0(\pi_V(\delta(t_{a(k)}, s'_{a(k)})), p_0) < 1/a(k)$ and $d_0(\pi_V(\delta(t''_{a(k)}, s'_{a(k)})), p_0) \ge 1$, respectively. Hence we have

$$(2.2) l_{0}(\pi_{V} \circ \beta_{a(k)}) > d_{0}(\pi_{V}(\delta(t_{a(k)}, s'_{a(k)})), \pi_{V}(\delta(t''_{a(k)}, s'_{a(k)})))$$

$$\geq d_{0}(\pi_{V}(\delta(t''_{a(k)}, s'_{a(k)})), p_{0}) - d_{0}(\pi_{V}(\delta(t_{a(k)}, s'_{a(k)})), p_{0})$$

$$> 1 - \frac{1}{a(k)}$$

$$\geq 1 - \frac{1}{k}.$$

Since $\delta_{t} \mid_{[s'_{a(k)}, 1]} (t \in [t_{a(k)}, t''_{a(k)}])$ are vertical curves in U by $\delta([t_{a(k)}, t''_{a(k)}] \times [s'_{a(k)}, 1]) \cap \partial U = \{\delta(t''_{a(k)}, s'_{a(k)})\}$, we have $\pi_D \circ \delta_{\cdot 1} \mid_{[t_{a(k)}, t''_{a(k)}]} = \pi_D \circ \beta_{a(k)}$. Therefore, it follows from (2.1) and (2.2) that $l_0(\pi_D \circ \delta_{\cdot 1} \mid_{[t_{a(k)}, t''_{a(k)}]}) \geq (1/c)(1 - 1/k)$. We may assume that $t''_k \leq t_{k+1}$ holds for every k by retaking $\{t_k\}_{k=1}^\infty$ if necessary. Hence we obtain

$$\lim_{t \to 1-0} l_0(\delta_{\cdot 1}|_{[t_{a(1)}, t]}) \ge \lim_{t \to 1-0} l_0(\pi_D \circ \delta_{\cdot 1}|_{[t_{a(1)}, t]})$$

$$\ge \sum_{k=1}^{\infty} l_0(\pi_D \circ \delta_{\cdot 1}|_{[t_{a(k)}, t''_{a(k)}]})$$

$$\ge \sum_{k=1}^{\infty} \frac{1}{c} \left(1 - \frac{1}{k}\right)$$

$$= \infty$$

Define a function ρ on the projective bundle $Pr(T\tilde{U})$ of $T\tilde{U}$ by

$$\rho(W) := \sqrt{\frac{g(X,X)}{g_0(X,X)}}$$

for $W \in Pr(T\tilde{U})$, where X is a non-zero vector belonging to W. It is clear that ρ is continuous. Since $\delta_{\cdot 1}([t_{a(1)},1)) \cup \{p_0\}$ is compact, so is also $Pr(T\tilde{U})|_{\delta_{\cdot 1}([t_{a(1)},1)) \cup \{p_0\}}$. Therefore, the minimum of ρ on $Pr(T\tilde{U})|_{\delta_{\cdot 1}([t_{a(1)},1)) \cup \{p_0\}}$ exists. Denote by c' this minimum. Clearly we have c'>0. Then, it is easy to show that $l(\delta_{\cdot 1}|_{[t_{a(1)},t]}) \geq c'l_0(\delta_{\cdot 1}|_{[t_{a(1)},t]})$ for every $t \in [t_{a(1)},1)$. Therefore, we obtain

$$\lim_{t \to 1-0} l(\delta_{-1}|_{[t_{a(1)},\,t]}) = c' \lim_{t \to 1-0} l_0(\delta_{-1}|_{[t_{a(1)},\,t]}) = \infty,$$
 that is, $\lim_{t \to 1-0} l(\delta_{-1}|_{[0,\,t]}) = \infty.$

Now we shall prove Theorem 2 in terms of this lemma.

Proof of Theorem 2. Suppose that F^{\perp} is not an Ehresmann connection. Then there is a non-extendable rectangle δ without terminal vertex. If δ is non-singular, then $\lim_{t\to 1-0} l(\delta_1|_{[0,t]})=\infty$ is deduced from the completeness of (M,g). Also, if δ is singular, then $\lim_{t\to 1-0} l(\delta_1|_{[0,t]})=\infty$ is deduced from Lemma. Whether δ is non-singular or not, we obtain $\lim_{t\to 1-0} l(\delta_{\cdot 1}|_{[0,t]})=\infty$. This deduces $\lim_{t\to 1-0} G^{\perp}_{\delta_0}(\delta|_{[0,t]\times[0,1]})=\infty$. Hence $\sup G^{\perp}_{\delta_0}<\infty$ does not hold, which contradicts the assumption. Therefore, F^{\perp} is an Ehresmann connection. \square

3. Examples

In this section, we shall first give examples of non-singular non-extendable rectangles without terminal vertex.

EXAMPLE 1. Let $B:=\{(x_1,\ldots,x_n)\in \mathbf{R}^n\,|\,x_1^2+\cdots+x_n^2<1\}\ (n\geq 2)$ and $\mathfrak F$ a foliation of codimension r on B whose leaves are fibres of the projection $\pi:B\to \mathbf{R}^r$ defined by $\pi(x_1,\ldots,x_n)=(x_1,\ldots,x_r)$ for $(x_1,\ldots,x_n)\in B$, where $1\leq r\leq n-1$. Let $D=\mathrm{Span}\{\partial/\partial x_1,\ldots,\partial/\partial x_r\}$, where we regard (x_1,\ldots,x_n) as a co-

ordinate of B. Define a rectangle δ without terminal vertex by $\delta(t,s) := (t/\sqrt{2}, 0, \dots, 0, s/\sqrt{2})$. It is clear that δ is non-extendable and non-singular (see Figure 3.1).

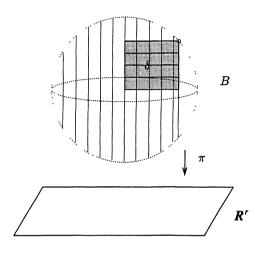


Figure 3.1.

EXAMPLE 2. Let \mathfrak{F} be a foliation of codimension one on an *n*-dimensional affine space \mathbb{R}^n $(n \ge 2)$ whose leaves are

$$\left\{ (x_1, \dots, x_{n-1}, k - \exp\left(1 - \sum_{i=1}^{n-1} x_i^2\right)^{-1} \middle| \sum_{i=1}^{n-1} x_i^2 < 1 \right\} \quad (k \in \mathbf{R})$$

and

$$\left\{ (x_1, \dots, x_n) \middle| \sum_{i=1}^{n-1} x_i^2 = k^2, x_n \in \mathbf{R} \right\} \quad (k \ge 1).$$

Let D be the orthogonal complementary distribution of $\mathfrak F$ with respect to the Euclidean metric g of $\mathbb R^n$ defined by $g(\partial/\partial x_t,\partial/\partial x_j)=\delta_{ij}$, where we regard (x_1,\ldots,x_n) as a coordinate of $\mathbb R^n$ and δ_{ij} is the Kronecker's delta. Let α be a vertical curve defined by $\alpha(s)=((1-s)/2,0,\ldots,0,k-e^{4/((3-s)(1+s))})$ for $s\in[0,1]$ and β be a horizontal curve defined by $\beta(t)=((1+t)/2,0,\ldots,0,(1/32)\int_0^t(((t+3)^2(t-1)^2)/(t+1))e^{4/((t+3)(t-1))}\,dt+k-e^{4/3})$ for $t\in[0,1]$. It is clear that there is a rectangle δ without terminal vertex satisfying $\delta_0=\alpha$ and $\delta_{0,0}=\beta$ but it is non-extendable and non-singular (see Figure 3.2).

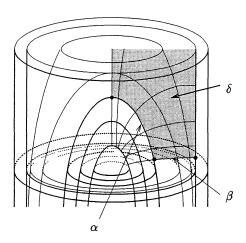


Figure 3.2.

Next we shall give examples of a foliated Riemannian manifold which satisfies the assumption of Theorem 2 but does not satisfy the condition (IV) in Introduction.

EXAMPLE 3. Let M be a hypersurface of an (n+1)-dimensional Euclidean space \mathbf{R}^{n+1} $(n \geq 2)$ defined by the equation $x_1^2 + \cdots + x_{r+1}^2 - x_{r+2}^2 - \cdots - x_{n+1}^2 = 1$ $(1 \leq r \leq n-1)$ and give M the Riemannian metric g induced from the Euclidean metric of \mathbf{R}^{n+1} , where (x_1,\ldots,x_{n+1}) is a Euclidean coordinate system of \mathbf{R}^{n+1} . It is clear that (M,g) is complete. Let \mathfrak{F} be a foliation on (M,g) whose leaves are the intersections of M and (n-r+1)-dimensional halfplanes

$$\{(tc_1,\ldots,tc_{r+1},x_{r+2},\ldots,x_{n+1})|(x_{r+2},\ldots,x_{n+1})\in \mathbf{R}^{n-r},\ t\geq 0\}$$

$$((c_1,\ldots,c_{r+1})\in S^r(1)=\{(x_1,\ldots,x_{r+1})|x_1^2+\cdots+x_{r+1}^2=1\}).$$

Then the orthogonal complementary distribution F^{\perp} of \mathfrak{F} is an integrable distribution whose maximal integral manifolds are the intersections of M and (r+1)-dimensional planes

$$\{(x_1,\ldots,x_{r+1},c_{r+2},\ldots,c_{n+1})|(x_1,\ldots,x_{r+1})\in \mathbf{R}^{r+1}\}$$

$$((c_{r+2},\ldots,c_{n+1})\in \mathbf{R}^{n-r}).$$

It is shown that $G_{\alpha}^{\perp} \equiv \sqrt{\alpha_1(1)^2 + \cdots + \alpha_{r+1}(1)^2} / \sqrt{\alpha_1(0)^2 + \cdots + \alpha_{r+1}(0)^2}$ holds for each vertical curve α (see Figure 3.3), where $\alpha = (\alpha_1, \dots, \alpha_{n+1})$.

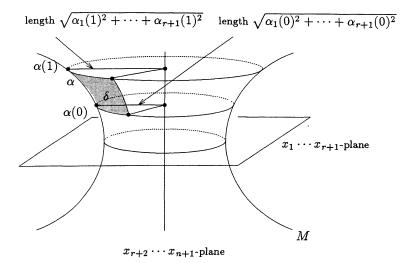


Figure 3.3.

Thus $\mathfrak F$ satisfies the assumption of Theorem 2. Let α_0 be a vertical curve without terminal point defined by $\alpha_0(s):=(1/(1-s),0,\dots,0,\sqrt{2s-s^2}/(1-s))$ for $s\in[0,1)$. From $G_{\alpha_0|_{[0,s]}}^\perp\equiv\sqrt{(\alpha_0)_1(s)^2+\dots+(\alpha_0)_{r+1}(s)^2}/\sqrt{(\alpha_0)_1(0)^2+\dots+(\alpha_0)_{r+1}(0)^2}=1/(1-s)$, we have $\lim_{s\to 1-0}\sup G_{\alpha_0|_{[0,s]}}^\perp=\infty$ and hence $\sup_{s\in[0,1)}\sup G_{\alpha_0|_{[0,s]}}^\perp<\infty$ does not hold. Thus $\mathfrak F$ does not satisfy the condition (IV).

In this example, the base manifold M is not compact. Next we shall give an example such that the base manifold is compact.

Example 4. Let $\tilde{\mathfrak{F}}$ be a foliation on a 2-dimensional Euclidean space \mathbf{R}^2 whose leaves are

$$\left\{ (x_1, \, \tan x_1 + c) \left| \frac{(2k-1)\pi}{2} < x_1 < \frac{(2k+1)\pi}{2} \right\} \quad (c \in \mathbf{R}, k \in \mathbf{N}) \right\}$$

and

$$\left\{ \left(\frac{(2k+1)\pi}{2}, x_2 \right) \middle| x_2 \in \mathbf{R} \right\} \quad (k \in \mathbf{N}).$$

Let ϕ_1 be a translation of \mathbf{R}^2 defined by $\phi_1(x_1, x_2) = (x_1 + \pi, x_2)$ for $(x_1, x_2) \in \mathbf{R}^2$ and ϕ_2 a translation of \mathbf{R}^2 defined by $\phi_2(x_1, x_2) = (x_1, x_2 + 1)$ for $(x_1, x_2) \in \mathbf{R}^2$. Denote by G the transformation group of \mathbf{R}^2 generated by ϕ_1 and ϕ_2 . Denote by G the orbit space \mathbf{R}^2/G of G. Since G is an isometry group of \mathbf{R}^2 , the Euclidean metric \tilde{g} of \mathbf{R}^2 induces a Riemannian metric on G, which we denote by G. Also, since G preserves $\tilde{\mathfrak{F}}$, $\tilde{\mathfrak{F}}$ induces a foliation on G, which we denote by G. Denote by G. Denote by G. Denote by G. The orthogonal complementary distribution of G.

(resp. \mathfrak{F}) and $\tilde{\mathfrak{F}}^{\perp}$ (resp. \mathfrak{F}^{\perp}) the foliation whose leaves are the maximal integral manifolds of \tilde{F}^{\perp} (resp. F^{\perp}). Denote by $\Gamma(\cdot)$ the space of all cross sections of a vector bundle \cdot . We define $h \in \Gamma((\tilde{F}^{\perp})^* \otimes (\tilde{F}^{\perp})^* \otimes \tilde{F})$ by $h(X,Y) := (\tilde{\nabla}_X Y)_{\tilde{F}}$ for $X,Y \in \Gamma(\tilde{F}^{\perp})$, where \tilde{V} is the Levi-Civita connection of \tilde{g} and $(\tilde{\nabla}_X Y)_{\tilde{F}}$ is the \tilde{F} -component of $\tilde{\nabla}_X Y$. Let $S\tilde{F}^{\perp}$ (resp. $S\tilde{F}$) be a sphere bundle consisting of all unit vectors belonging to \tilde{F}^{\perp} (resp. the tangent bundle \tilde{F} of $\tilde{\mathfrak{F}}$). Then, it is easy to show that $\|h(X,X)\| < 1$ holds for every $X \in S\tilde{F}^{\perp}$, where $\|h(X,X)\|$ is the norm of h(X,X) (see Fig. 3.4). Also, it is shown that $\|P^B_{\tilde{F}}Y\| \leq \sqrt{2}$ holds for every horizontal curve \tilde{F} in R^2 and every $Y \in S\tilde{F}_{\tilde{F}(0)}$, where $P^B_{\tilde{F}}$ is the parallel translation along \tilde{F} with respect to the Bott connection on the orthogonal complementary distribution F of $\tilde{\mathfrak{F}}^{\perp}$ (see Figure 3.4).

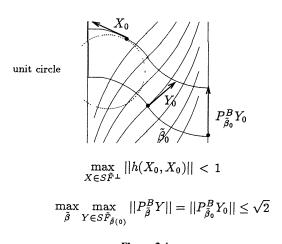


Figure 3.4.

Therefore, we can obtain

$$\sup_{\tilde{\beta} : \text{horizontal curve}} \ \sup_{X \in SF_{\tilde{\beta}(1)}^{\perp}, \ Y \in SF_{\tilde{\beta}(0)}} |\tilde{g}(P_{\tilde{\beta}}^{B}Y, h(X, X))| \leq \sqrt{2} < \infty.$$

Set

$$A:=\sup_{\tilde{\beta} \text{ . horizontal } \text{ curve }} \sup_{X \in SF_{\tilde{\beta}(1)}^{\perp}, \ Y \in SF_{\tilde{\beta}(0)}} |\tilde{g}(P_{\tilde{\beta}}^{\textit{B}}Y, h(X,X))|.$$

Then we can show that $\sup G_{\tilde{\alpha}}^{\perp} \leq \exp(A \cdot l(\tilde{\alpha}))$ holds for every vertical curve $\tilde{\alpha}$ in \mathbb{R}^2 , where $l(\tilde{\alpha})$ is the length of $\tilde{\alpha}$ with respect to \tilde{g} (see the proof of Corollary 3.10 in [11]). Take an arbitrary vertical curve α in M and an arbitrary rectangle δ with $\delta_0 = \alpha$. Let α^L be one of lifts of α to \mathbb{R}^2 and δ^L the lift of δ to \mathbb{R}^2 with $\delta_0 = \alpha^L$. Clearly we have $G_{\alpha}^{\perp}(\delta) = G_{\alpha^L}^{\perp}(\delta^L)$, which implies $\sup G_{\alpha}^{\perp} \leq \sup G_{\alpha^L}^{\perp}$ by

the arbitrariness of δ . Therefore, we can obtain

$$\sup G_{\alpha}^{\perp} \leq \sup G_{\alpha^{L}}^{\perp} \leq \exp(A \cdot l(\alpha^{L})) = \exp(A \cdot l(\alpha)),$$

where $l(\alpha)$ is the length of α with respect to g. Thus $\mathfrak F$ satisfies the assumption of Theorem 2. Define a vertical curve $\tilde{\alpha}_0$ in $\mathbb R^2$ without terminal point by $\tilde{\alpha}_0(s):=(-\pi/2,1/(1-s))$ for $s\in[0,1)$ and let $\tilde{\beta}_0$ be the horizontal curve in $\mathbb R^2$ satisfying $\tilde{\beta}_0(0)=\tilde{\alpha}_0(0)$ and $(\tilde{\beta}_0)_1(t)=t-(\pi/2)(t\in[0,1])$, where $\tilde{\beta}_0=((\tilde{\beta}_0)_1,(\tilde{\beta}_0)_2)$. Take a sequence $\{t_k\}_{k=1}^\infty$ in (0,1] satisfying $l(\tilde{\beta}_0|_{[0,t_k]})<1/k$ $(k\geq 1)$. For each t_k , there is $s_k\in[0,1)$ satisfying $l((\delta_{\tilde{\alpha}_0|_{[0,s_k]}\tilde{\beta}_0|_{[0,t_k]}})_1)>\pi/2$ (see Figure 3.5), where $\delta_{\tilde{\alpha}_0|_{[0,s_k]}\tilde{\beta}_0|_{[0,t_k]}}$ is the rectangle with $(\delta_{\tilde{\alpha}_0|_{[0,s_k]}\tilde{\beta}_0|_{[0,t_k]}})_0=\tilde{\alpha}_0|_{[0,s_k]}$ and $(\delta_{\tilde{\alpha}_0|_{[0,s_k]}\tilde{\beta}_0|_{[0,t_k]}})_1=\tilde{\beta}_0|_{[0,t_k]}$. Then we have

$$G_{\tilde{a}_0|_{[0,s_k]}}^{\perp}(\delta_{\tilde{a}_0|_{[0,s_k]}\tilde{\beta}_0|_{[0,t_k]}}) = \frac{l((\delta_{\tilde{a}_0|_{[0,s_k]}}\tilde{\beta}_0|_{[0,t_k]})}{l(\tilde{\beta}_0|_{[0,t_k]})} > \frac{\pi/2}{1/k} = \frac{k\pi}{2}.$$

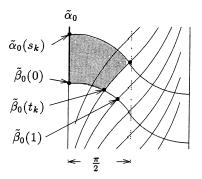


Figure 3.5.

Set $\alpha_0 := \pi \circ \tilde{\alpha}_0$ and $\beta_0 := \pi \circ \tilde{\beta}_0$, where π is the projection of \mathbf{R}^2 onto \mathbf{M} . From $G^\perp_{\alpha_0|_{[0.s_k]}}(\delta_{\alpha_0|_{[0.s_k]}\beta_0|_{[0.t_k]}}) = G^\perp_{\tilde{\alpha}_0|_{[0.s_k]}}(\delta_{\tilde{\alpha}_0|_{[0.s_k]}}\tilde{\beta}_0|_{[0.t_k]})$, we have $\lim_{k \to \infty} G^\perp_{\alpha_0|_{[0.s_k]}}(\delta_{\alpha_0|_{[0.s_k]}}\beta_0|_{[0.t_k]}) = \lim_{k \to \infty} k\pi/2 = \infty$ and hence $\sup_{s \in [0,1)} \sup G^\perp_{\alpha_0|_{[0.s]}} < \infty$ does not hold. Thus \mathfrak{F} does not satisfy the condition (IV).

From these examples, it is guessed that there are a lots of examples of a foliated Riemannian manifold which satisfies the assumption of Theorem 2 but does not satisfy the condition (IV). Thus we can recognize the essential gap between the assumption of Theorem 2 and the condition (IV).

Next we shall give examples showing the topological gap between Riemannian foliations (i.e., foliations admitting a bundlelike metric) and foliations admitting a Riemannian metric satisfying the assumption of Theorem 2.

Example 5. Let (M, \mathfrak{F}) be a foliated manifold in Example 4. The above Riemannian metric g satisfies the assumption of Theorem 2. However, \mathfrak{F} is not

a Riemannian foliation. In fact, for an arbitrary Riemannian metric on M, $G_{\alpha_0}^{\perp}(\delta_0) > 1$ holds, where α_0 and δ_0 are as in Figure 3.6.

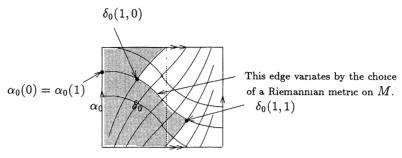


Figure 3.6.

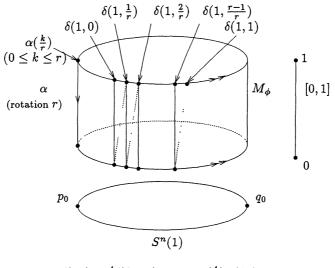
EXAMPLE 6. Let p_0 be a point of the *n*-dimensional unit sphere $S^n(1)$ and q_0 the antipodal point of p_0 , where we give $S^n(1)$ the standard Riemannian metric. Denote by g_1 the standard Riemannian metric. Define a map ϕ of $S^n(1)$ into itself by

$$\phi(p) := \begin{cases} \exp_{p_0}(f(\|X\|)X) & (p \neq q_0) \\ q_0 & (p = q_0) \end{cases}$$

for $p \in S^n(1)$, where \exp_{p_0} is the exponential map of $S^n(1)$ at p_0 , $\|\cdot\|$ is the norm of \cdot with respect to g_1 , X is the tangent vector of $S^n(1)$ at p_0 satisfying $\exp_{p_0} X = p$ and $\|X\| < \pi$ and f is a C^{∞} -function over $[0,\pi)$ satisfying $1 \le f \le 4/3$ over $[0,\pi)$, $f^{-1}(4/3) = [0,\pi/4]$, $f^{-1}(1) = [3\pi/4,\pi)$ and $f' > -1/\pi$ over $[0,\pi)$. Then, $(f(t)t)' = f(t) + f'(t)t \ge 1 - (t/\pi) > 0$ holds over $[0,\pi)$, that is, f(t)t is an increasing function over $[0,\pi)$. Also, we have $\lim_{t\to\pi-0} f(t)t = \pi$. These facts imply that ϕ is a diffeomorphism. Let M_{ϕ} be the mapping torus of ϕ and \mathfrak{F} a foliation on M_{ϕ} induced naturally from the foliation \mathfrak{F} on $S^n(1) \times [0,1]$ whose leaves are the fibres of the projection of $S^n(1) \times [0,1]$ onto $S^n(1)$. Denote by π the quotient map of $S^n(1) \times [0,1]$ onto M_{ϕ} and P (resp. Q) the projection of $S^n(1) \times [0,1]$ onto $S^n(1)$ (resp. [0,1]). Also, denote by g_2 the standard Riemannian metric of [0,1]. Define a Riemannian metric g_0 on M_{ϕ} by

$$g_0(X,Y) := ug_1(P_*\tilde{X}, P_*\tilde{Y}) + (1-u)(\phi^*g_1)(P_*\tilde{X}, P_*\tilde{Y}) + g_2(Q_*\tilde{X}, Q_*\tilde{Y})$$

for $X,Y\in T_{\pi(p,u)}M_{\phi}$, where \tilde{X} (resp. \tilde{Y}) is the tangent vector of $S^n(1)\times [0,1]$ at (p,u) with $\pi_*\tilde{X}=X$ (resp. $\pi_*\tilde{Y}=Y$) and ϕ^*g_1 is the Riemannian metric induced from g_1 by ϕ . It is clear that g_0 is well-defined. Take an arbitrary vertical curve α in M_{ϕ} . Since $g_1(\phi_*X;\phi_*X)\leq (4/3)^2g_1(X,X)$ for every $X\in TS^n(1)$, we see that $G^{\perp}_{\alpha}(\delta)\leq (4/3)^{[l(\alpha)]+1}$ for every $\delta\in \operatorname{Rec}(\alpha,\cdot)$, that is, $\sup G^{\perp}_{\alpha}\leq (4/3)^{[l(\alpha)]+1}<\infty$, where $l(\alpha)$ is the length of α with respect to g_0 and $[\cdot]$ is the Gauss's symbol of \cdot (see Figure 3.7).



 $l(\delta_{\cdot 1}) \leq \frac{4}{3} l(\delta_{\cdot \frac{r-1}{r}}) \leq \cdots \leq (\frac{4}{3})^r l(\delta_{\cdot 0})$

Figure 3.7.

Thus \mathfrak{F} satisfies the assumption of Theorem 2 with respect to g_0 .

Take an arbitrary Riemannian metric g on M_{ϕ} . Let α_0 be a vertical curve defined by $\alpha_0(s) = \pi(p_0, 1-s)$ and β_0 be a horizontal curve (with respect to g) satisfying $\beta_0(0) = \alpha_0(0)$, $\beta_0(1) \in \pi(P^{-1}(\exp_{p_0}(\pi/4)X_0))$ and $\beta_0([0,1]) \subset$

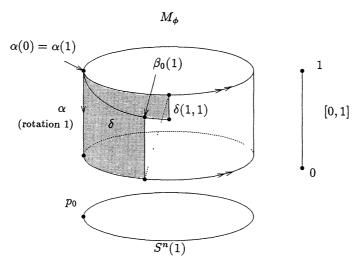


Figure 3.8.

 $\pi(P^{-1}(\{\exp_{p_0}((\pi t/4)X_0)|t\in[0,1]\}))$, where X_0 is some unit tangent vector of $S^n(1)$ at p_0 . Let δ be the rectangle with $\delta_0 = \alpha_0$ and $\delta_{0} = \beta_0$. Then we have $G_{\alpha_0}^{\perp}(\delta) > 1$ (see Figure 3.8). Thus any Riemannian metric g on M_{ϕ} is not bundle-like for \mathfrak{F} , that is, \mathfrak{F} is not a Riemannian foliation.

Similarly, we can give examples showing the topological gap between totally geodesicable foliations and foliations admitting a Riemannian metric satisfying the condition (V) in Introduction.

REFERENCES

- R. A. Blumenthal and J. J. Hebda, De Rham decomposition theorems for foliated manifolds, Ann. Inst. Fourier (Grenoble), 33 (1983), 183-198.
- [2] R. A. BLUMENTHAL AND J. J. HEBDA, Ehresmann connection for foliations, Indiana Univ. Math. J., 33 (1984), 597-612.
- [3] R. A. BLUMENTHAL AND J. J. HEBDA, Complementary distributions which preserve the leaf geometry and applications to totally geodesic folations, Quart. J. Math. Oxford Ser. (2), 35 (1984), 383-392.
- [4] R. A. Blumenthal and J. J. Hebda, An analogue of the holonomy bundle for a foliated manifold, Tôhoku Math. J., 40 (1988), 189–197
- [5] R. Bott, Lectures on characteristic classes and foliations, Lecture Notes in Math, 279, Springer-Verlag, 1972, 1–80.
- [6] G. CAIRNS, Totally umbilic Riemannian foliations, Michigan Math. J., 37 (1990), 145-159.
- [7] C. EHRESMANN, Les connexions infinitésimales dans un éspace fibré différentiable, Colloque de Topologie, Bruxelles, 1950, Georges Thone, Liege; Masson et Cie., Paris, 1951, 29-55.
- [8] R. HERMANN, On the differential geometry of foliations, Ann. of Math., 72 (1960), 445–457
- [9] D. L. JOHNSON AND L. B. WHITT, Totally geodesic foliations, J. Differential Geom., 15 (1980), 225-235.
- [10] N. KOIKE, Totally umbilic foliations and decomposition theorems, Saitama Math. J., 8 (1990), 1–18.
- [11] N. KOIKE, Foliations on a Riemannian manifold and Ehresmann connections, Indiana Univ. Math. J., 40 (1991), 277-292.
- [12] N. KOIKE, Totally umbilic orthogonal nets and decomposition theorems, Saitama Math. J., 10 (1992), 1–19.
- [13] N. KOIKE, Ehresmann connections for a foliation on a manifold with boundary, SUT J. Math., 30 (1994), 147–158.
- [14] P MOLINO, Riemannian Foliations, Progress in Math., 73, Birkhäuser, 1988.
- [15] B. REINHART, Foliated manifolds with bundle-like metrics, Ann. of Math., 69 (1959), 119– 132.
- [16] V ROVENSKII, Foliations on Riemannian Manifolds and Submanifolds, Birkhäuser, Boston, 1998.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE SCIENCE UNIVERSITY OF TOKYO 26 WAKAMIYA SHINJUKU-KU TOKYO 162-0827 JAPAN