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EHRESMANN CONNECTIONS FOR A FOLIATED MANIFOLD AND
CERTAIN KINDS OF RECTANGLES WITHOUT TERMINAL VERTEX

Naoyukl KoOIKE

Abstract

We define the notion of a non-extendable rectangle without terminal vertex for a
foliated manifold (M, &) with a complementary distribution D and classify them into
non-singular ones and singular ones. It 1s easy to show that D 1s an Ehresmann
connection 1n the sense of R. A. Blumenthal and J. J. Hebda if and only if there 1s no
non-extendable rectangle without terminal vertex. One of our purposes 1s to nvestigate
the existence of singular non-extendable rectangle without terminal vertex. Another
purpose 1s to obtain a new sufficient condition for the orthogonal complementary
distribution of a foliation on a Riemanman manifold to be an Ehresmann connection by
investigating a property of singular non-extendable rectangles without terminal vertex.

Introduction

Throughout this paper, unless otherwise mentioned, we assume that all
objects are smooth (i.e., of class C®) and all manifolds are connected ones
without boundary. For a foliated manifold (M,J) with a complementary
distribution D, R. A. Blumenthal and J. J. Hebda considered a piecewise smooth
map J : [0, 1] x [0,1] — M such that, for every fixed so, the curve d ;, :=J(-, ) is
a horizontal curve, and, for every fixed #, the curve J,, :=d(t,-) is a vertical
curve, where a horizontal curve is a piecewise smooth map from [0,1] to M
whose velocity vector field lies in D and a vertical curve is a piecewise smooth
map from [0, 1] to a leaf of §. They called such a piecewise smooth map J a
rectangle. If, for every vertical curve o and every horizontal curve £ with
a(0) = B(0), there is the rectangle J with dy. = « and J.9 = f3, then they called D
an Ehresmann connection for § (see [2]). They proved the following so-called
global stability theorem and decomposition theorem (see [2]):

(1) If & admits an Ehresmann connection, then the universal coverings of leaves
of & are diffeomorphic to one another.

(i) If D is an integrable Ehresmann connection for §, then for each pe M,

there is a covering map m of the product manifold I:;; X ﬁf onto M satisfying
n.(TL)) = F and n,(TLY) = D, where L) (resp. LI is the universal covering of
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a leaf of & through p (resp. that of the maximal integral manifold of D through p),

7. is the differential of =, Tﬁ; (resp. Tﬁf ) is the tangent bundle of the foliation
ﬁ;’ x {-} (resp. {} x ﬁf) on l:;f X ﬁf and F is the tangent bundle of §.

Thus we can apply the study of an Ehresmann connection to those of
the global stability of a foliation and the decomposition of a manifold into a
product manifold (furthermore, the geometric decomposition of a manifold with
a geometric structure). Therefore, it is very interesting to investigate what kind
of foliation admits an Ehresmann connection.

In this paper, we consider a piecewise smooth map J : [0, 1] x [0, I\{(1,1)} —
M such that, for every fixed so € [0, 1), the curve J.5, is a horizontal curve, for
every fixed # €[0,1), the curve §,, is a vertical curve and d.; (resp. d; ) is a
horizontal (resp. vertical) curve without terminal point. We shall call such a
piecewise smooth map J a rectangle without terminal vertex. If there is not
a rectangle J satisfying d|o 1<, 1)\{(1,1)}) =9 then we shall say that 6 is non-
extendable. By imitating the proof of Proposition 2.3 of [13], it is shown that D
is an Ehresmann connection for § if and only if there is no non-extendable
rectangle without terminal vertex. Thus the study of a non-extendable rectangle
without terminal vertex leads to that of an Ehresmann connection. According to
Lemma 3.5 of [11], if § is a non-extendable rectangle without terminal vertex,
then lim;_,;-¢d(1,s) does not exist. However, lim,,;_¢d(¢, 1) is possible to exist.
If lim,—,1_0d(¢, 1) exists (resp. does not exist), then we shall say that ¢ is singular
(resp. non-singular).

Remark. If ¢ is singular, then a continuous curve c: [0,1] — M defined by
o(t,1) 0=<t<l)
c(t) = { lim 6(s,1) (t=1)
t—1-0

is not of class C! at t =1. In fact, it is shown in terms of a foliated coordinate
neighbourhood about c(1) that J is extendable if ¢ is of class C! at = 1.

If codim & = 1, that is, dim D = 1, then D is integrable and hence all non-
extendable rectangles without terminal vertex are non-singular. It is very im-
portant to investigate the existence of a singular non-extendable rectangle without
terminal vertex in case of codim >2. In this paper, we shall prove the following
result related to its existence.

THEOREM 1. For every r > 3 and every n > r+ 1, there is a triple (M, &, D)
of an n-dimensional manifold M, a foliation & of codimension r on M and a
complementary distribution D to § which admits a singular non-extendable rectangle
without terminal vertex.

It is natural to ask what kind of foliation admits an Ehresmann connection
on a manifold with a geometric structure. On a Riemannian manifold, such a
study has been already done by some geometers as follows. Let F! be the
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orthogonal complementary distribution of a foliation § on a Riemannian
manifold (M,g). It is known that F! is an Ehresmann connection if one of the
following conditions holds (see [2], [4], [8], [15]):

(I) (M,g) is complete and g is bundle-like for &,

(II) the induced Riemannian metrics on leaves of § are complete and & is
totally geodesic,

(II) dim & > 3, the induced conformal structures on leaves of & are
complete and & is totally umbilic.
In [7], for each vertical curve «, we defined a function G- on the set Rec(a,-) of
all rectangles J such that d. =« and J.¢ is a regular curve by G, () :=1(d1)/
1(6.9) for 6 e Rec(a,-), where /(-) is the length of a curve - with respect to g.
Also, for each horizontal curve B, we defined a function G on the set Rec(,f)
of all rectangles 0 such that 6. =f and &y. is a regular curve by GT(5) =
(61 )/1(d.) for 6 € Rec(-,B). In the paper, we proved that F! is an Ehresmann
connection if one of the following conditions holds:

(IV) (M,g) is complete and sup;. o 1) Sup G , < for every vertical curve
«:[0,1) — M without terminal point,

(V) the induced Riemannian metrics on leaves of § are complete and
sup GﬁT < oo for every horizontal curve f.
Here we note that G- = 1 holds for every vertical curve o if g is bundle-like for
& and that GT =1 holds for every horizontal curve f if § is totally geodesic.
Thus these results are generalizations of I and II above. In this paper, we shall
furthermore improve one of these results as follows.

THEOREM 2. If (M, g) is complete and sup G+ < oo for every vertical curve a,
then F* is an Ehresmann connection.

This theorem will be proved by investigating a property of singular non-
extendable rectangles without terminal vertex. We shall also give examples
showing that this improvement is essential (see §3). Furthermore, we shall give
examples showing the topological gap between foliations admitting a Riemannian
metric such that sup G- < oo for every vertical curve « and foliations admitting a
bundle-like metric (see§3). The following corollary is directly deduced from Theorem
2 and the sufficient condition (V) for F* to be an Ehresmann connection.

COROLLARY. Let § be a foliation on a Riemannian manifold (M, g) satisfying
the above condition (V) or the assumption of Theorem 2. Then the following
statements (1) and (ii) hold:

(i) The universal coverings of leaves of § are diffeomorphic to one another.

(il) If codim § = 1, then the universal covering of M is diffeomorphic to LV

R, where p is an arbitrary point of M and LV is the universal covering of the leaf of
& through p.

In §1 and §2, we prove Theorems 1 and 2, respectively. In §3, we give
examples of a non-extendable rectangle without terminal vertex and those of a
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foliated Riemannian manifold which satisfies the assumption of Theorem 2 but
does not satisfy the condition (IV). Furthermore, we give examples of a foliated
manifold which admits a Riemannian metric satisfying the assumption of Theorem
2 but does not admit a bundle-like metric.

1. Proof of Theorem 1

In this section, we shall prove Theorem 1 by constructing a triple (M, &, D)
admitting a singular non-extendable rectangle without terminal vertex. First we
shall present a plan of construction of such a triple (M, §, D).

PLAN OF CONSTRUCTION. Let (xi,...,x,) be the natural coordinate of an n-
dimensional affine space R" and § a foliation on R” whose leaves are fibres of the
projection 7 : R" — R" defined by z(xi,...,xn) = (x1,...,%) (r=2,n=>r+1).

(Step I) First we construct a complementary (C*-)distribution D; to &, a
C®-curve = (f,...,5,) :[0,1) - R" without terminal point and a C®-curve
a:[0,1] — n~1(B(0)) satisfying the following conditions:

(i) lim,_;_o B(¢) exists and a continuous curve f:[0,1] — R" defined by

(B 0=i<D)
plo) = {hm B (t=1)

t—1-0
is not of class C! at r=1. }
(ii) Foreverys € [0, 1], thereis the D;-lift §; : [0,1) — R of /)’ starting from a(s).
(iii) For every se[0,1), lim—;_o 30", ., x(f,(0)* =
(iv) lim,— 10 f;(2) exists.

zoom up

Figure 1.1.
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(Step II) Next, we construct a homeomorphism ¢ of R" which admits closed
sets S; and S of R" satisfying the following conditions:

(V) ¢lrm\(s,us,) 18 @ C°°-d1ﬂ'eomorphlsm

(V) (St U ) N (@ '(4([0,1)) U {lim—i0fi(n}) = 0 and S N
n_l(lim,_‘l_oﬁ(t)) # ().

(vii) Let y = (y1,--+s¥n_y) : [0,1] = R"™" be an arbitrary C®-curve in R"™"
with (1) € 7/(S2 Nz~ (lim,~1_ B(z))) and B, a continuous curve in R" defined by

Br(0)s -, B (1), 11 (0), -, 7y (0)) (O=<z<1)
ﬂy(t) - ( lim ﬂl( ) ,IEF—IO ﬁr(t)’yl(l)" "’yn—r(l)) (t = l)a

=10
where 7’ is the projection of R"” onto R"™" defined by n'(xi,...,%s) = (Xr41,-- -,
Xn). Then ¢op, is of class C* over [0,1].

(vii) Give R™\S; a C*®-structure {(R"\Si,d|gns )}. Denote this C*-
manifold by M. Then § becomes a (C*-)foliation on M.

(Step III) Furthermore, we construct a complementary (C®-)distribution D
to § on M satisfying the following conditions:

(ix) D=Dj on a nelghbourhood of ([0, 1))U{llmH1 NAGY

(x) For every s € [0,1), there is the D-lift B~ : [0,1) — M of f starting from
als).

(xi) For every se[0,1), lim,;_o#%(¢) exists and lim,_,;_o7'(8%(¢)) belongs
to n’(Szﬂn"(lim,_,l_oﬁ(t))).

(xii) Let 7’ oBL:[0,1 — R""(s€[0,1)) be a continuous curve in R"™"
defined by

o (@epht  0si<y)
PO = im0 BB (= 1),

Then mSL becomes a C®-curve for every se [0,1).
Then we define a map J: ([0, 1] x [0, 1]\{(1,1)}) = M by

B (2) O0<t<1,0<s<1)
S(t,s):=§ tim () (1=1,0<s<1)
Bi () O<t<l,s=1).

It follows from the definition of J that J ((s€[0,1)) are given by

By (0<t<l)
2= tim gr(y (1=1),

t—1-0

which is a C®-curve in M by the conditions (vii), (xi) and (xii). Hence
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Figure 1.2.

05 (s€[0,1)) are horizontal curves (with respect to D). Also, it follows from the
conditions (v), (vi) and (ix) that §,(=d.1) is a horizontal curve (with respect to D)
without terminal point. These facts imply that § is a rectangle without terminal
vertex on (M, &, D). By the condition (iv), lim,,;_¢d(¢,1) exists. Moreover, by

the conditions (i), (v) and (vi), a continuous curve 0. : [0,1] — M defined by

i 0 1(2) 0<r<l)
0L s 0

is not of class C! at t=1. This fact implies that J is non-extendable and
singular. Thus this triple (M, &, D) admits a singular non-extendable rectangle ¢
without terminal vertex.

Proof of Theorem 1. Following to the above plan of construction, we shall
concretely construct a triple (M, &, D) which admits a singular non-extendable
rectangle without terminal vertex in case of r > 3. Let &, (x1,...,X,), = and 7’
be as above. First we define a complementary (C®-)distribution D; to & on R",
a C®-curve B = (f,,...,0,) :10,1) — R" without terminal point and a C*-curve

o+ [0,1] — n71(B(0)) by

D) = Span{—a—,—gmkxgxnﬁ,—a——xzxni,i,...,i},
Ox1 0x; 0x, 0x3 0x, 0x4 0x,
p(t) = (z— 1, (t— l)sin—l——z,(t—— l)cos—lz—,O,...,0> 0<t<,
(t=1) (t=1)
a(s) := (—1,—sinl,—cos 1,0,...,0,s — 1),
respectively. Clearly f§ satisfies the condition (i). The D;-lift ﬁ} of f§ starting
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from «(s) is given by

~ 1 1 s—1
H=1|t-1,(t—1)sin——,(t—1)cos——,0,...,0,——— |,
Ao ( (= Dsine— o (= Deos— s (1_1)2)
where s € [0,1]. Hence f,(s € [0,1)) is defined over [0,1). Furthermore, we have
. (=1 _
tEPEOIXH; XI(BS(I)) — 1{nO(l 1)4 = (eloD),

tEPEO Bl(t) = (Oa o 30)

Thus the conditions (ii)—(iv) hold.
Next we define a homeomorphism ¢ = (y;,...,»,) of R" by

d(x1,. .y Xn) = (x1, 8(2x1 + x2, A(x4)), (2x1 + X3, A(%4)), X4, - - -, Xn),
where u is a C®-function over R? defined by

e~ 2/lel)
u(z,w) :={Z “ f i

(z
0 (z=0)
and 1 is a C®-function over R with A~1(0) = [—(1/2), ), A7}(1) = (-0, —1]

and 0 <A <1. Now we shall show that ¢ admits closed sets S; (i =1,2) of R"
satisfying the above conditions (v)—(viii). Define closed sets S; (i = 1,2) of R” by

S = {(xl,...,xn)|(2x1 +x)(2x1+x3) =0 and —1 < x, < —%}

and
Sy = {(x1,. .., X0)|(2x1 + x2)(2x1 + x3) =0 and x, < —1},

respectively. Clearly S; and S, satisfy the conditions (v) and (vi). Take
an arbitrary C®-curve y= (y1,...,%_,) : [0,1] = R*™ with yp(1)en'(S:N
“!(lim,_;_oB(z))). Let B, be a continuous curve defined as in (vi. We
must show that gop, 1s of class C* over [0,1]. Since y(1)en'(S2N

~I(lim,_1_o A(¢))) and hence Yu—r(1) < =1, we see that y,_, < —1 holds over
(l — ¢, 1] for a sufficiently small ¢ > 0. Hence we have Aoy, ,=1 over (1 —¢g,1],
that is,

,
(=1, (1= 1) 24 sin—— | e-Vit-D@rsn(/G-1)
(t=1)°

(t=1) (2 +cos ( 1 1)2) e—l/l(t-1)(2+COS(1/(1—1)2))|’
t_

0""70’y1(t)a"')yn—r(t)> (1-£<t<1)

\(07"'7O’y1(1)7'-'a7n—r(1)) (t=1)'
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This implies that ¢ o 8, is of class C* over (1 — ¢, 1] and hence so is it over [0, 1].
Thus S; and S satisfy the condition (vii). Since ¢|gn(s,us,) is @ C*-diffeo-
morphism, & becomes a foliation on M\S,. Let &, be a foliation on M whose
leaves are the fibres of the projection 7 : M — R” defined by = (x;,...,x,) =
iCety oo xn)y ey Y (x1y oo x0)) ((%1,-0 2, x0) €M), Set We={(x1,...,xs)eM
| xa <=1}, On W, ¢(x1,...,%5) = (%1, 4(2x1 + x2, 1), u(2x1 + x3,1), X4, . .., Xn)
holds. This implies that § = &, on W. Therefore, & becomes a foliation on
(M\S,)UW =M. Thus S; and S, satisfy the condition (viii).

Next we shall construct a complementary distribution D to § on M
satisfying the conditions (ix)—(xii). Let {U;, U,} be an open covering of M
defined by

Uy :={(x1,...,xn)eM|x, > -1 or
(=2 <xy < —1 and (2x1 + x2)(2x1 + x3) #0)},
U :={(x1,.‘.,x,,)eM|x,,<—1}

and {#,,7,} a partition of unity subordinating to {U;, U,}. Set

0 0y, 0  0yy 0
X :=——+r/<y2 + 2= 23 )

0y 0x1 0y, Ox1 0y,
. %) 0 0y, 0 0y; 0O 0
= <’71 0x2 " }72) 0y, R (6 5)’2 " 0xn 0y3 " 0Yu
_ MiMX3Xs d

" ah +11, 09’

9y d dy, @ dy; a9
XYoo= mz 0x3 2 0y, T X2 G 0y, +0xn dy +6y,,
2 3

MNyX2Xy 0
+_T—'é—.
Mo, + 1, Vn
Since x,,0y;/0x1,0;/0x,,0y,/0x, (i =2,3) are C®-functions on M\S, and
n; =0 on a neighbourhood of S,, we see that #;x,, n,(0y;/0x1), n,(0y;/0x,),

n1(0y;/0x,) (i =2,3) are C*-functions on M. Also, it is clear that x, is a C*-
function on M. Furthermore, for i = 2,3, we have

A(Xn

. 1
(L.1) (—3&= 1 (2x1+x,=0, Xp = ~§)

1
0 <2x1+x,=0,x,,<—§)
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and hence #n,(0y;/0x,) +#n, >0 (i=2,3) hold on M. Thus X, (i=1,2,3) are
C®-vector fields on M and furthermore (X1, X2, X3,0/0y,,...,0/0y,) is a frame
field on M. Define a (C®-)distribution D on M by D := Span{X], X3, X,
0/0y4y...,0/0p,}. Since the tangent bundle of & is given by Span{d/dy,.,...,
0/0y,}, we see that D is a complementary distribution to §. First we shall show
that D satisfies the condition (ix). Since ¢|gn (s,us,) is a C*-diffeomorphism,
0/0x; = 410y, /0x,)(8/3y,) (1 <i<n) hold on M\S,. In more detail, we
can obtain

09y 0y @
dx;  dy, | 0x; 0y,  0x1 dy;’

(1.2) 5 o s S o,
0 _Op o 0 _Ody3 0 0 _ 0 .
Oxy  0xy 0y’ Ox3  0x3 dy;’ 0x, 0y, 4<i<r)
and
13 29 ii<jen ), 2o o0 @

ox; 0y, 0x, 0x, 0y, Vs | Oxy Oy 0y,

on M\S,. Since #; =1 and 7,=0 on M\U,, we have X, =0/0x;, X,=0/0x2 +
X3%,(0/0x,) and X3 = 0/0x3 — x2x,(0/0x,) on M\U,. Hence D = D; holds on
M\U,. Since M\U, is a neighbourhood of £, ([0, 1)) U {lim,_,;_o B(¢)}, D satisfies
the condltlon (ix). Next we shall show that D satisfies the conditions (x)—(xii).
Let BL (resp. f,) be the D-lift (resp. the Di-lift) of f starting from a(s). Fix
se [0,1). Set to:=sup{¢|BF is defined over [0,7]}. Set 1y :==sup{te[0,1)]|

BE([0,7]) =« M\U,}. Since D = D; on M\U,, we have g~ =B on [0,7;). From
lungl —0Xn(B;(2)) = lim,—,; o(s—1)/(1—t) = —o0, we have t; <#. We can express

. as

ﬂf(z):(z—l,(t—l)sin—l——z,(t—l)cos ! 5

-1 -1
o,...,o,xrﬂwf(t)),.”,xn(/ff(t») (te [0, 0)).

Then we have

oL _ O 12 1 K

(1.4) By (1) = + (sm(t_ TEANTINIE cos(t_ 1)2> e
+ | cos 1 + 2 sin ! 9
(=12 (=12 (1—1)%) 0x3

+Z x’°/’)) a (t [0, 10)).

1=r+1

Set I := {t€(0,%)|BL(t) e Uy}. Tt follows from y; = u(2x) + x,, A(x,)) (i = 2,3)
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and (Aox,)|5 =1 that

(15) (28t ) 0= (F2opt )0 =0 (en,

n

This together with (1.2), (1.3) and (1.4) deduces

(m)ﬁm:i+F& L3

proy 0%

| o BE)

X | sin ! — 2 cos ! _6_
(t-1D* (-1 @-1)%)[n

0ys 0ys 1 2 .1 ]
+495— - cos 5+ 5 Sin 5 073
oxilgry  Oxslgr\ (=1 (=1*  (t=1)°) ) s
" d(x, o,[)’SL) 0
+ ’;1 di gy—l (l € I)

Since this vector belongs to Dyc(,), we can obtain d(x, o Bhydt=0 r+1<i<
n—1) and ’

° L
(1 7) d(x"dt ﬂs )

= (o0 ;

13(8,/0x2)(9p3/0x3) i
M (6y2/8x2) + 772)(;71 (0y3/ax3) + ,’2)> (ﬁs (t))

1 . 1 2
X {2772(ﬂsL(t)) : ([ - 1) (COS (t_ 1)2 — Sln(t__ 1)2) + - t}

on I, where we use dy;/0x;(fE(2))=2(dy;/0x,)(BE(2)) (i=2,3,tel). In par-
ticular, if f~(s) is a boundary point of U,, then #7,(8%(f)) =0 and hence
(d(xy 0 BE)/dt) (1) = (x40 BE) (1) x 2/(1 —1) < —2/(1 — 1) < 0. This implies that
ﬁSL(t)e U, holds for every te(t;,4)). Suppose that there is 2, € [f,%) with
(X2 0 BE)(t2) < —2. Then, since p(1,) e M\U; and hence #,(B5(2)) =0, by
(1.7), we have d(x,opF)/dt|,_, =0. This implies that (x,oSr)(f) > —2 for
every t € [0, 1), which furthermore implies #p = 1. That is, ﬁsL is defined over
[0,1). Also, we have I = [f;,1). It follows from (1.1) and (10 x,)|g, =1 that

9V2 Loy 1 11— @ +sin(1/(-1))))
(18) 0x) 6, 0) (1 - (1 —£)(2+sin(1/(¢ - 1)2))>e >0

0Y3 pLi 1 S1/((1=0)(2+cos(1/ (1))
(19) 53, B-(0) (1 A0 oos(1/(1 = 1)2))>e >0

for tel=[t,1). Therefore, from (1.7), (1.8), (1.9) and (x,o0BL) (1) < -1 (te
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I=1n,1)), we see that d(x,opr)/dt <0 holds on [max{t,1— 1/(V2)},1).
This together with x, 0% > —2 implies that lim,;_o(x, o BX)(f) exists and
lim,_1_o(x» o B5)(2) < —1, which furthermore implies lim,_,;_o 7' (8()) € #'(S> N
a1 (lim,1_o B(¢))). Since lim,;_oB%(f) e M\U,, there is a sufficiently small
positive number ¢ with 7, (8X(¢)) = 0 for te [l —¢,1). It follows from (1.7) that
d(xn0BE)/dt =0 over [l —e,1). This_together with xofl=0 (r+1<i<
n — 1) implies that a continuous curve 7’ o f~: [0,1] — R"" defined as in (xii) is
a C%-curve. Thus D satisfies the conditions (x)—(xii). That is, this triple
(M, $,D) admits a singular non-extendable rectangle without terminal vertex.
In this example, it is sufficient that » >3 and n > r+ 1. Therefore, Theorem 1
has been proved. O

It is natural to consider the following problem.

PROBLEM. Is there a triple (M,$,D) admitting a singular non-extendable
rectangle without terminal vertex for r =2 and n > 3?7

2. Proof of Theorem 2

In this section, we shall prove Theorem 2 by investigating a property of a
singular non-extendable rectangle without terminal vertex. First we prepare the
following lemma.

LemMA. Let § be a foliation on a Riemannian manifold (M, g) and take the
orthogonal complementary distribution F+ of & as a complementary distribution
to § If 0 is a singular non-extendable rectangle without terminal vertex, then
lim;1-01(d.1]jp,4) = 0 holds.

_ Proof. Set py:=1lim, ;1 6(¢,1). Take a foliated coordinate neighbourhood
(U, = (x1,...,xn)) around p, with ¢(p,) = (0,...,0) and @(U)= (-2,2)",
where n=dimM and the foliatedness of (U,$) implies that fibres of the
submersion 7 := (xi,...,x,): U — R" (r =codim &) are leaves of &|;. Let D
be a complementary distribution to § on U spanned by 0/0xy,...,0/0x,. De-
note by Lp’; the leaf of §|; through p, and ng the maximal integral manifold of
D through p,. Let ny: U — Lp‘; (resp. np : U — L]fg) be the projection whose
fibres are the maximal integral manifolds of D (resp. leaves of &|;). Give U a
flat Riemannian metric gy defined by go(d/0x,,0/0x,) =d; (i,j=1,...,n) and
denote by dy the distance function induced from go, where J;; is the Kronecker’s
delta. Set U:=¢ '((=1,1)"). Take increasing sequences {#};°; and {s;};,
in [0,1) satisfying limg_co tx =limgooo sk =1,  0.1([tx, 1)) Uy, ([sk, 1]) = U,
max,e,, 1) do(7p(d(t, 1)), po) < 1/k and maxc(, 1) do(ny ((t,s)), po) < 1/k (see
Figure 2.1).
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Ly n0

b~
L2 nU

N

6.1 ]

5(tk7 Sk) 5!1:

Figure 2.1.

We can show that d., ([, 1]) is not contained in U for every k. In fact, if
.5 ([tk,1]) = U for some k, then the existence of the F'-lift of mod.y, |
starting from &(#, 1) is assured because lim,1-¢d.1(f) = py € U and hence ¢ is
extendable. This contradicts the fact that J is non-extendable. Thus J.g, ([, 1])
¢ U for every k. That is, 6, ([tx,1]) NdU # @ holds for every k, where dU is
the boundary of Uin M. Set #; := min{t e [t,1]]d.,, (1) e 0U}. Take (1{,s}) €
(tis ti] X [sk, 1) satisfying o([#x, 2] x [s;, 1)) NoU = {6(¢/,s;)} (see Figure 2.2).

5(tk,1)

5(tk,s

5(¢, 5) € OU -y,

8(tL, sx)

Figure 2.2.
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Denote by S(U) the unit tangent bundle of U with respect to go and F the
tangent bundle of &, where U is the closure of U. Define f; : [tx,t;] = M by
Bilt) =3 (1) for € [, f] and Xi(2) := Be(1)/ 1B (1)l| € S(T), where [|.(1)] =

9o(Bi(2), B (£)). Take 1 € [t, t] such that

AV . AC]
1)1 et 1))

where X ()" (resp. Xi(1)”) is the F-component (resp. the D-component) of X; ().
It follows from the compactness of S(U) that there is a convergent subsequence
(Y}, of {Xi(t))}iey. Set Yo -zlimk_,00 Yr. Since Y; € F* for every k, we
have Y,e F1. Suppose limy_, | Xk(z ’”) 1/ 11 X (2 ’”) || = 0. Then, we have
limk_,oo||Yk I/ Y2|| = oo, which implies Yo e F. Thus Ype FﬁFl that is,
Yo=0 1s deduced. This contradicts Yy € S(U). Therefore, hmk_,oo||Xk( ’”) | /
(| X (2 )?|| = oo does not hold. Hence, for a sufficiently large positive number ¢,
there is a subsequence { Xagw) (15 )}k , of {Xk( )} ey such that || X, (t;’(’k)) Il/

1 Xage (22 Pl < ¢ for everyk “Since 1 X (07 1/ 1 X ()Pl < te[ta(k), Law)))
by the deﬁmtlon of t’” )» We have

1
(2.1) Io(mp o Bary) > - Io(my © Baky)s

where /() is the length of a curve - with respect to 9o- Also, it follows
from maxse[sa(k)’” do(my (0(tary, 5)), Po) < 1/alk) and (14, 5,4)) € OU  that

do(my (0(tagiy, S (k))),po) <1/a(k) and do(ny(S(ty4),S4x))), Po) = 1, respectively.
Hence we have

(2.2)  Io(my o Bay) > dO(nV(a(ta(kbs:z(k)))a ﬂV(é(tZI(k),S;(k))))

> do(7ty (0(t4(0» Sagry))s Po) — do(my ((tagry, Sqix)))s Po)

>1 _1__
a(k)
1
I—E.

Since 6"|[5'(k)’11 (1 € [tae), typy]) are vertical curves in U by 6([faw), Ly X
.[s"l(k), 1h)nouUu = {5(t"z’(k),s"1(k))}, we have 7p 05.1|[,a(k)7,:(k)] = 7p o Buu)- Therefore,
it follows from (2.1) and (2.2) that 10(”005'1|[t.z<k),t;’(k)]) > (1/e)(1 —1/k). We

may assume that 7 <t holds for every k by retaking {#};~, if necessary.
Hence we obtain
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,EEQZO(dII[[ﬂ(I)’t]) = ,E{IEOIO(RD )
> Z lo(mp 0 6.4 |[’a(’<)”¢lzl(k)])
=
1 1
>y —(1—=
> ;c( k)
= 0.

Define a function p on the projective bundle Pr(TU) of TU by

_ |9, X)
p( W) o gO(X’ X)

for W e Pr(TU), where X is a non-zero vector belonging to W. It is clear
that p is continuous. Since 0.1([ta1),1))U{po} is compact, so is also
Pr(TU)ls (1,0 1)u(po}- Therefore, the minimum of p on Pr(TU)ls, (0, 1)u(r0}
exists. Denote by ¢’ this minimum. Clearly we have ¢/ > 0. Then, it is easy
tc;)tshow that 1(5.1|[,a(1)),]) > c’lo(é.ll[,amy,]) for every te€ [t,1),1). Therefore, we
obtain

Jim 1O g ,0) = € limho(Galy,, ) = o0,
that is, lim;1-0 /(6 1]p 4) = oo. 0
Now we shall prove Theorem 2 in terms of this lemma.

Proof of Theorem 2. Suppose that F* is not an Ehresmann connection.
Then there is a non-extendable rectangle 6 without terminal vertex. If J is non-
singular, then lim,;—o /(9 1[jp ;) = oo is deduced from the completeness of (M, g).
Also, if 6 is singular, then lim,.; ¢/(0 ll[o,z]) = oo is deduced from Lemma.
Whether ¢ is non-singular or not, we obtain lim,_;_g 1(5.1|[0, ,]) = 00. This de-
duces lim,—1-0 Gy, (9]g jxo,1) = ©- Hence sup G5, < oo does not hold, which
contradicts the assumption. Therefore, F' is an Ehresmann connection. []

3. Examples

In this section, we shall first give examples of non-singular non-extendable
rectangles without terminal vertex.

ExampLe 1. Let B:= {(x1,...,x,) €R"|[x} +---+x2< 1} (n>2) and §
a foliation of codimension r on B whose leaves are fibres of the projection = :
B — R" defined by n(xy,...,x,) = (x1,...,x,) for (x1,...,x,) € B, where 1 <r <
n—1. Let D=Span{d/dx,,...,0/0x,}, where we regard (xi,...,x,) as a co-



416 EHRESMANN CONNECTIONS FOR A FOLIATED MANIFOLD

ordinate of B. Define a rectangle § without terminal vertex by d(z,s) := (¢/Vv2,
.,0,5/+/2). Tt is clear that J is non-extendable and non-singular (see Figure
3.1).

Figure 3.1.

ExaMPLE 2. Let & be a foliation of codimension one on an n-dimensional
affine space R" (n > 2) whose leaves are
} (keR)

{(xl,...,x,,_l, —exp( Zx)
-1
Z xneR} (k>1).

{xl,...,

Let D be the orthogonal complementary distribution of § with respect to the
Euclidean metric g of R" defined by g(@/@x,,@/@xj) djj, where we regard
(x1,...,x,) as a coordinate of R" and J; is the Kronecker’s delta. Let a be a
vertical curve defined by a(s) = ((1 —5)/2,0,...,0,k — ¥ ((=90+)) for s [0, 1]
and f be a_ horizontal curve deﬁned by B() = ((1+1)/2,0,...,0,
(1/32) fo (1432 = 1))/t +1)e¥ D) dr 4 | — *3) for te0,1]. It is
clear that there is a rectangle J without terminal vertex satisfying dy. = o and
0.0 = f but it is non-extendable and non-singular (see Figure 3.2).

and
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Figure 3.2.

Next we shall give examples of a foliated Riemannian manifold which
satisfies the assumption of Theorem 2 but does not satisfy the condition (IV) in
Introduction.

ExampLE 3. Let M be a hypersurface of an (n + 1)-dimensional Euclidean

space R™' (n>2) defined by the equation x? + - +x2,; — x4, —---—x2, =
1 (1<r<n-1) and give M the Riemannian metric g induced from the
Euclidean metric of R""!', where (xi,...,x,41) is a Euclidean coordinate

system of R™!' 1t is clear that (M,g) is complete. Let § be a foliation on
(M,g) whose leaves are the intersections of M and (n— r+ 1)-dimensional
halfplanes

{([Cl,. ..,tcr+1,x,+2,...,x,,+1)|(xr+2,... ,Xn+1) eRn_’, t> 0}
(e erp1) eS'(1)= {(xlv~'-7xr+1)|x12 +"'+xr2+1 = 1}).

Then the orthogonal complementary distribution F- of § is an integrable
distribution whose maximal integral manifolds are the intersections of M and
(r + 1)-dimensional planes

{01,y X1, €2y e oy Cug1)| (X1y -+ Xog1) € R™TTY

((Cr+2, ey C,,+1) € RnAr).

It is shown that Gy = /oy (1)2+- +o1(1)2A/21(0)2 + - + 2,41(0)2 holds
for each vertical curve a (see Figure 3.3), where a = (ay,...,0,41).
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length /01 (1)? + - + ar41(1)?  length /o1 (0)2 + -+ + atrg1 (0)?

Ty .- .’L‘r+1-pla.ne

Tpg e .Z'n+1-pla.ne

Figure 3.3.

Thus § satisfies the assumption of Theorem 2. Let « be a vertical curve without
terminal point defined by ag(s) := (1/(1-s),0,...,0,v2s—s2/(1~s)) for s € [0,1).
From G =v/(@)1(5)2 + -+ (@0)r+1(8)*/v/(@0)1(0)2 + - + (20)r41(0)2 = 1/
(1 —1s), we have lim,_;_osup Galol(o = 0 and hence sup 1) sup G, < oo does
not hold. Thus & does not satisfy the condition (Iv).

In this example, the base manifold M is not compact. Next we shall give an
example such that the base manifold is compact.

I (0,5

ExaMPLE 4. Let & be a foliation on a 2-dimensional Euclidean space R?
whose leaves are

(2k — D)z 2k + 1)n
Ty <M<

{((ZkJ2r U",xz)

Let ¢, be a translation of R? defined by ¢, (x1,x2) = (x1 + 7, x2) for (x1,x2) € R?
and ¢, a translation of R? defined by $y(x1,x2) = (x1,x2+ 1) for (x1,x;) € R%.
Denote by G the transformation group of R? generated by ¢, and ¢,. Denote
by M the orbit space R?/G of G. Since G is an isometry group of R?, the
Euclidean metric § of R? induces a Riemannian metric on M, which we denote
by g. Also, since G preserves &, & induces a foliation on M, which we denote
by §. Denote by F* (resp. F*) the orthogonal complementary distribution of &

{(x1,tanx1—l—c) } (ceR,keN)

and

X7 eR} (ke N).
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(resp. &) and ?}l (resp. §*) the foliation whose leaves are the maximal integral
manifolds of F1 (resp. F*). Denote by I'(-) the space of all cross sections of a
vector bundle -. We define 2 e T((F1)* ® (FY)* ® F) by h(X,Y) := (Vx Y); for
X, Y e(F 1), where V is the Levi-Civita connection of § and (Vy Y)y is the F-
component of VyY. Let SF* (resp. SF) be a sphere bundle consisting of all
unit vectors belonging to F- (resp. the tangent bundle F of §). Then, it is easy
to show that [|A(X,X)|| <1 holds for every X e SF*, where ||h(X,X)| is the
norm of A(X,X) (see Fig. 3. 4). Also, it is shown that ||PB Y| < v2 holds for

every horizontal curve ﬂ in R? and every Y e SF B0y where P2 is the parallel
translation along § with respect to the Bott connection on’ the orthogonal

complementary distribution F of i} (see Figure 3.4).

unit circle

B
Pg Yo

|A(Xo, X
ax [[A(Xo, Xo)ll < 1

max_mex [|PEY|| = [PEYsl| <3
B YeSFy,,

Figure 3.4.

Therefore, we can obtain

sup sup |g7(P£ Y, h(X, X)) < V2 < .

p:honizontal curve X GSFM1 Y eSFy,

Set

A= sup sup |g(P/§ Y,h(X,X))|.

B .horizontal curve X eSF: )’ , Y e SFy,

Then we can show that sup G < exp(4 - /(%)) holds for every vertical curve & in
R?, where [(&) is the length of & with respect to § (see the proof of Corollary 3.10
in [11]) Take an arbitrary vertical curve o in M and an arbitrary rectangle &
with dy. = a. Let o be one of lifts of o to R? and 6% the lift of § to R? with
0¢ = al. Clearly we have G} (3) = G5 (%), which implies sup G, < sup G; by
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the arbitrariness of . Therefore, we can obtain
sup G < sup Gy <exp(4-l(at)) = exp(4 - (),

where /(«) is the length of « with respect to g. Thus & satisfies the assumption
of Theorem 2. Define a vertical curve & in R? without terminal pomt by
Go(s) := (=m/2,1/(1 —5)) for s€[0,1) and let §, be the horizontal curve in R?

Satlsfymgﬁo( ) = ao(0) and (By), (1) = t = (r/2)(t€ [0, 1]), where fo = ((fo) > (Bo)2)-
Take a sequence {t},2,; in (0,1] satisfying /(S| ) < 1/k (k=1). For each
tx, there is s; € [0,1) satisfying 1((5&(,'[0 ol ]),1) > /2 (see Figure 3.5), where
. . %k "k ~
5~5‘0|[o.s,(]ﬁ~o|[mk] is the rectangle with (65‘0|[o.:k]ﬁo|[o.:k] 0- = aol[O’sk] and (5&0|{o<sk]ﬂ.o|[o<,k])'0 =

Boljo,r- Then we have

GL 6. ) )= 1((5do|[o.xk]/§o|[o.zk]) 1) S 775_/2 _ @
0‘0|[0Ask] “Ol[oAsk]ﬂoho,zk] l(ﬁol[O,tk}) l/k 2

Set «p := mo &y and f := 7o fi,, where 7 is the projection of R* onto M. From

3 1
we have limg_ o G“ollo,sk] (5a0|[0‘5k]ﬂ0|[0’,k])

1 — Gt "
G“Ol[o sl (5“"' 0.1l ’k]) G°‘0|[o 2l (5°‘O|[o setBolpo. ])’
= limk_., kn/2 = oo and hence supo 1) squ <@ does not hold. Thus &

does not satisfy the condition (IV).

From these examples, it is guessed that there are a lots of examples of a
foliated Riemannian manifold which satisfies the assumption of Theorem 2 but
does not satisfy the condition (IV). Thus we can recognize the essential gap
between the assumption of Theorem 2 and the condition (IV).

Next we shall give examples showing the topological gap between
Riemannian foliations (i.e., foliations admitting a bundlelike metric) and folia-
tions admitting a Riemannian metric satisfying the assumption of Theorem 2.

ExaMPLE 5. Let (M, &) be a foliated manifold in Example 4. The above
Riemannian metric g satisfies the assumption of Theorem 2. However, § is not
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a Riemannian foliation. In fact, for an arbitrary Riemannian metric on M,
G,-(d0) > 1 holds, where o and Jy are as in Figure 3.6.

60(1a0)

| — This edge variates by the choice

of a Riemannian metric on M.

. — 60(1, 1)

Olo(O) = 010(1)

Figure 3.6.

ExaMPLE 6. Let p, be a point of the n-dimensional unit sphere S"(1) and
go the antipodal point of p,, where we give S”(1) the standard Riemannian
metric. Denote by g; the standard Riemannian metric. Define a map ¢ of
S”(1) into itself by

_ Jexp, (fUIXINX) (P # q0)
)= {‘IO ’ (2 = q0)

for p € $"(1), where exp,, is the exponential map of S”(1) at py, || - || is the norm
of - with respect to g1, X is the tangent vector of S"(1) at p, satisfying exp, X =
p and || X|| <7 and fis a C®-function over [0,n) satisfying 1 < f <4/3 over
0,7), £7'(4/3) = [0,7/4], f~'(1) = [3n/4,7) and f’ > —1/z over [0,7). Then,
(f(O)r) = f(&) + f'()t =1~ (t/n) >0 holds over [0,7), that is, f(¢)¢ is an
increasing function over [0,7). Also, we have lim,, ¢ f(¢) =n. These facts
imply that ¢ is a diffecomorphism. Let M, be the mapping torus of ¢ and & a
foliation on M}y induced naturally from the foliation & on S”(1) x [0, 1] whose
leaves are the fibres of the projection of S”(1) x [0, 1] onto S”(1). Denote by =
the quotient map of S”(1) x [0,1] onto My and P (resp. Q) the projection of
S"(1) x [0,1] onto S”(1) (resp. [0,1]). Also, denote by g, the standard Rie-
mannian metric of [0,1]. Define a Riemannian metric go on M, by

gO(X7 Y) = ugl(P*X/y P, fl) + (1 - u)(¢*gl)(P*X7P* Y) +92(Q*X/a Q* Y)

for X, Y € Ty, . My, where X (resp. Y) is the tangent vector of S”(1) x [0, 1] at
(p,u) with 7,X = X (resp. 7. ¥ = Y) and ¢*g, is the Riemannian metric induced
from g, by ¢. It is clear that gy is well-defined. Take an arbitrary vertical
curve « in My. Since g,(4.X;9.X) < (4/3)*g1(X, X) for every X e TS"(1), we
see that G- () < (4/3)"™! for every 6 € Rec(a, -), that is, sup G- < (4/3)/@H! <
oo, where /() is the length of « with respect to go and [-] is the Gauss’s symbol
of - (see Figure 3.7).
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6(1,%) 6(1,2) 41, =2

r

8(1,0) 8(1,1)
a(%)
(0<k<r 1
a M(# [0) 1]

(rotation T)

"0
Po 9
5™(1)

(5.2) < $16.222) < -+ < (4)7U(8)

Figure 3.7.

Thus § satisfies the assumption of Theorem 2 with respect to go.

Take an arbitrary Riemannian metric ¢ on My. Let oy be a vertical
curve defined by oy(s) = 7(py, 1 —s) and B, be a horizontal curve (with respect
to g) satisfying £o(0) = 20(0), Bo(1) € n(P~!(exp,, (1/4)Xs)) and fo([0,1])

My

a(0) = a(1)

87
(rotation 1)

Po

S™(1)

Figure 3.8.
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n(P~!({exp,, ((nt/4)Xo)|t € [0,1]})), where X, is some unit tangent vector of
S"(1) at py. Let 0 be the rectangle with dy. = o9 and 8.9 = f,. Then we have
G:)(&) > 1 (see Figure 3.8). Thus any Riemannian metric g on M, is not
bundle-like for §, that is, § is not a Riemannian foliation.

Similarly, we can give examples showing the topological gap between totally
geodesicable foliations and foliations admitting a Riemannian metric satisfying
the condition (V) in Introduction.
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