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GEOMETRY OF F-HARMONIC MAPS

MITSUNORI ARA

1. Introduction

Harmonic maps are critical points of the energy functional defined on the
space of smooth maps between Riemannian manifolds. There are many studies
on harmonic maps. Also, /7-harmonic maps and exponentially harmonic maps
have been developed. Baird and Eells [BE], and Takeuchi [T] studied some
conformal properties of harmonic maps and /?-harmonic maps, respectively. They
showed that if the dimension of the target manifold is equal to 2 (resp. p), then
the fibers of harmonic morphisms (resp. horizontally conformal /^-harmonic maps)
are minimal submanifolds in the domain manifold. Leung [L], Cheung and
Leung [CL], and Koh [K] discussed the stability of harmonic maps, /?-harmonic
maps and exponentially harmonic maps, respectively.

We would like to construct a unified theory for several varieties of harmonic
map. We give the notion of F-harmonic maps, which is a generalization of
harmonic maps, /^-harmonic maps or exponentially harmonic maps.

In this paper, we discuss some conformal properties and the stability of in-
harmonic maps. Our results are extensions of [BE], [T] for conformal properties,
and [L], [CL], [K] for the stability. We can see results for harmonic maps, p-
harmonic maps or exponentially harmonic maps in a different viewpoint.

Let F : [0, oo) -> [0, oo) be a C 2 function such that F' > 0 on (0, oo). For a
smooth map φ : (M, g) —> (iV, h) between Riemannian manifolds (Λf, g) and
(N,h), we define the F-energy EF(φ) of φ by

where \dφ\ denotes the Hilbert-Schmidt norm of the differential dφ e
Γ(Γ*M (x) φ~ιTN) with respect to g and A, and vg is the volume element of
(M,g). It is the energy, the ^-energy, the α-energy of Sacks-Uhlenbeck [SU]
and the exponential energy when F{t) = t, (2ήp/2/p (p > 4), ( l + 2 ί ) α (α > 1,
dim M — 2) and e\ respectively. We shall say that φ is an F-harmonic map if
it is a critical point of the F-energy functional, which is a generalization of
harmonic maps, p-harmonic maps or exponentially harmonic maps.

This paper is organized as follows. In Section 2, we derive the first
variation formula for inharmonic maps, and have a certain relation between
inharmonic maps and harmonic maps through conformal deformations. In
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Section 3, we study the following problem; for a smooth given map φ : M —> N,
does there exist an F-harmonic map φ is homotopic to φΊ In Section 4, we deal
with the stress energy tensor for the F-energy functional, and discuss weakly
conformal inharmonic maps. In Section 5, we discuss horizontally conformal in-
harmonic maps, which is a generalization of harmonic morphisms (cf. [B], [BE])
or horizontally conformal ^-harmonic maps (cf. [BG], [T]). In Section 6, we derive
the second variation formula for F-harmonic maps. In Section 7, we study the
stability of F-harmonic maps to unit spheres. One of our main results is as follows.

THEOREM 7.1. Let φ:M-^Sn be an F-harmonic map from a compact
Riemannian manifold M to the n-dimensίonal unit sphere Sn. Assume that

Then φ is unstable.

In the case of nonconstant harmonic maps, the condition (*) implies that
n > 2, since F' = 1, F" = 0. Similarly, in the case of nonconstant /7-harmonic
maps, nonconstant exponentially harmonic maps, the condition (*) implies that
n > p,n — 2> \dφ\2, respectively. Therefore, Theorem 7.1 is an extension of [L],
[CL] and [K] for the stability of harmonic maps, ^-harmonic maps and ex-
ponentially harmonic maps, respectively.

COROLLARY 7.2. Assume that (i) F" < 0 and n>3, or (ii) F" < 0 and n = 2.
Then any stable F-harmonic map from a compact Riemannian manifold M to Sn is
constant.

We remark that Corollary 7.2 (i) is also an extension of the result of [L] for
harmonic maps.

The author wishes to thank Professor Y. Hatakeyama, Professor Ta.
Takahashi, Professor M. Sakaki and Professor H. Urakawa for their constant
encouragement and valuable advice.

2. The first variation formula

Let F : [0, oo) -» [0, oo) be a C 2 function such that F' > 0 on (0, oo). Let
φ : M —> N be a smooth map from an ra-dimensional Riemannian manifold
(Λf, g) to a Riemannian manifold (TV, h). We call φ an F-harmonic map if it is a
critical point of the F-energy functional. That is, φ is an F-harmonic map if and
only if

jtEF(φt)\t=0 = 0

for any compactly supported variation φt : M —> N (-ε < t < ε) with φ0 = φ.
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Let V and ^V denote the Levi-Civita connections of M and N, re-
spectively. Let V be the induced connection on φ~ιTN defined by VχW =
^V^jίf, where X is a tangent vector of M and W is a section of φ~λTN. We
choose a local orthonormal frame field {e/}^ on M. We define the F-tension
field τF(φ) of φ by

where τ(^) = Σ ^ i ^ A ^ ~~ Φ*^et^ί) is the tension field of ^.
Under the notation above we have the following:

THEOREM 2.1 (The first variation formula).

jtEF(φt)\is4 = -\ h(VMΦ))Vg,

where V = dφt/dt\t=0.

Therefore a smooth map φ : M —> N is an F-harmonic map if and only if the
intension field τp{φ) = 0.

Example, (i) Harmonic maps with constant energy density are inharmonic
maps. In particular, in the case where φ is a isometric immersion, the following
properties are equivalent:

a) φ is minimal;
b) φ is harmonic;
c) φ is F-harmonic.
(ii) In the case where φ is a Riemannian submersion, the following properties

are equivalent:
a) The fibers of φ are minimal submanifolds;
b) φ is harmonic;
c) φ is F-harmonic.
(iii) The map φ : Rm - {0} -> S""-1 defined by ^(x) = x/\x\ is an F-harmonic

map.
(iv) We choose a C3 function F such that F7(ί) + 2tF"(t) is not identically

zero. For m > 2, let ^(r) (0 < Λ < r < b) be a solution of the ordinary dif-
ferential equation
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for a suitable initial condition. Set A — {x e Rm \a< \x\ < b}. Then the map
φ : A —> R defined by φ{x) = ψ(\x\) is an F-harmonic map.

Proof of Theorem 2.1. Let Φ : (-ε,ε) x M -> N be defined by Φ{t,x) =
φt(x), where (—ε, ε) x M is equipped with the product metric. We extend the
vector fields d/dt on (—ε,ε), X on M naturally on (—ε,ε) x M, and denote those
also by d/dt,X. Then

/=0

We shall use the same notations V and V for the Levi-Civita connection on
(-ε,ε) x M and the induced connection on Φ~ιTN.

We compute

where we use that

d/dt * * et * d t * | ^ , ,j

for the third equality.
Let Xt be a compactly supported vector field on M such that g(Xh Y)

h(Φ*(d/dή,Φ*Y) for any vector field Y on M. Then
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e,X,ei) + g{Xι,Ve,ei)}

-F'

) - F'

= dJF'Ml)xλ-9 Xt,mάH >

By (2.1) and Green's theorem, we get

d (\dφt\*

„ \dΦY

Φ

2 r*
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Next we give a certain relation between F-harmonic maps and harmonic
maps through conformal deformations, which is an extension of [BG, Lemma 1.2]
for /7-harmonic maps and [H, Theorem 2] for exponentially harmonic maps.

PROPOSITION 2.2. Let φ : (M, g) —> (N, h) be a smooth map from an
m-dimensional Riemannian manifold (M, g) (m > 3) to a Riemannίan manifold
(N,h). In the case where F'(0) = 0, we assume that dφx φ 0 for any x in M.
Then φ is F-harmonic if and only if φ is harmonic with respect to the conformally
related metric g given by

Proof Let g be a metric on M, conformally related to g by g = λ2 g for
some positive smooth function λ on M. If τ(φ) denotes the tension field of the
map φ : (M,g) —> (N^h), then the tension field τ(φ) with respect to the metric g is
given by

Putting λ = {F'(\dφ\2/2)γl(m-2\ we have

The proposition follows from this equation.

3. Existence of F-harmonic maps

In this section we assume that {M,g) and (N,h) are compact Riemannian
manifolds, and J f is a homotopy class of a smooth given map {M,g) —» (N,h).
The following result is due to Eells and Ferreira.

THEOREM 3.1 (cf. [EF]). Suppose that m = dimM > 3. Then there is a
smooth metric g on M conformally equivalent to g, and a map φ e 2tf such that
φ : (M, g) —> (N, h) is harmonic.

Yoshida [Y] and Hong [H] gave the /^-harmonic version and the expo-
nentially harmonic version of the above theorem, respectively. We would like to
derive the F-harmonic version.

THEOREM 3.2. Suppose that m = dimΛf > 3. Let F : [0, oo) —• [0, oo) be a
smooth function such that F' > 0 on [0, oo) and F"(0) Φ 0. Then there is a
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smooth metric g on M conformally equivalent to g, and a map φ e J f such that
φ : (M, g) —> (TV, h) is F-harmonίc.

Remark. Theorem 3.2 is an extension of [H, Theorem 1] for expon-
entially harmonic maps.

In order to prove Theorem 3.2, we introduce some lemmas.

LEMMA 3.3. Suppose that m > 3. Let F : [0, oo) —> [0, oo) be a smooth
function such that F' > 0 on [0, oo) and (m - 2)F'{t) - 2tF"{t) φ 0, F"{t) φO on
[0, ε) for some positive constant ε. Then there is a smooth function Φ(y) on [0, ε')

for some positive constant εf such that F'{(Φ{y))2y) — (Φ(y))m~2.

Proof Since F"{t) φ 0 on [0,ε), F'{t) on [0,e) has a smooth inverse
function G. So we have

G(F'(t)) = t on[0,β),

G\F\t))F"{t) = \ on[0,ε).

We shall consider the function

_ G(xm~2)

x2

The derivative of y is

d y l Si™ 9λv«-2r//vifi-2N 9rrv«-2u—r~ = —^ \ [ m — Z ) X C r [ X ) — Z L r i X ) r .

dx x3 u ; y J v n

Thus

% ((Ff(ή) ι/(m-V) = - J — {(m - 2)F\t) - 2tF"{t)} φ 0

ώc (F'{t)γ/{m-2)F"{t)

for te [0,e).

Hence we have

^Φ0 on x between ( F ; ( 0 ) ) 1 / ( m - 2 ) and (F\e)γ/lm'2).

Therefore, there is a smooth function Φ(y) on [0,e;) for some positive constant ε
such that y= G((Φ(y))m-2)/(Φ(y))2, and F'((Φ(y))2y) = ( Φ ( j ) ) m " 2

We can see the following lemma in [H].
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LEMMA 3.4 (cf. [H, Lemma 2]). Suppose that the map φ : (M,g) —• (TV, A) is
harmonic. Then for any ε > 0, there exists a smooth metric g conformally
equivalent to g such that φ : {M,g) —• (TV, A) is harmonic and \dφ\g < ε, where \dφ\g

is the Hilbert'Schmidt norm with respect to g and h.

We prove the following theorem in a way analogous to [H, Theorem 3].

THEOREM 3.5. Suppose that m = dimM > 3, and that φe Jf and φ : (M,g)
—> (TV, A) is harmonic. Let F be a smooth function such that F' > 0 on [0, oo) and
F"(0) φ 0. Then there is a smooth metric g on M conformally equivalent to g
such that φ : (M, g) —> (TV, A) is F-harmonic.

Proof Since m > 3, F'(0) φ 0 and F"(0) φ 0, there exists a positive
constant ε such that (m - 2)Ff\t) - 2tF"(t) φ 0, F"{t) φ 0 on [0,ε). By Lemma
3.4, we can suppose that φ : (M,#) —• (TV, A) is harmonic and \dφ\2/2 < ε' where
ε' is given in Lemma 3.3.

Since φ : (M, g) —> (TV, A) is harmonic,

τ(φ) = 0.

Write g = λ~2g for a smooth positive function λ : M -+ R. We have

0 = τ(φ) =-L{λm-2i(φ) + ^(grad^OT-2))}.

Since \dφ\2/2 < εf, we can define the above λ by

>0,

where Φ(y) is given in Lemma 3.3. This yields that

Therefore we have

This proves Theorem 3.5.

Proof of Theorem 3.2. Combining Theorems 3.1 and 3.5, we can prove
Theorem 3.2.

THEOREM 3.6. Suppose that m = dimM > 3. Let F : [0, oo) —• [0, oo) be a
smooth function such that F' > 0 on (0, oo) and (m - 2)F'{t) - 2tF"{t) φ 0, F"{t)
φQ on (0, ε) for some positive constant ε. Then there is a smooth metric g on M+
conformally equivalent to g, and a map φ e J f such that φ : (M+,g) —> (N,h) is
F-harmonic, where M+ = {x e M; \dφ(x)\ φ 0}.
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Remark, (i) Theorem 3.6 is an extension of [Y] for /?-harmonic maps.
(ii) The assumption (m - 2)F'{t) - 2tF"{t) Φ 0 on (0,e) for some positive

constant ε in this theorem is not satisfied in the case of m-harmonic maps.

Proof. We can prove this theorem in a way analogous to Theorem 3.2.

4. The F-stress energy tensor

Let φ : (M, g) —> (TV, h) be a smooth map from an m-dimensional Rie-
mannian manifold (M,g) to a Riemannian manifold (iV,A). The stress energy
tensor SF(Φ) of φ associated to the F-energy functional Ep (which we call, the
F-stress energy tensor of φ, in short) is given by

(cf. [B, Chapter 3]).

PROPOSITION 4.1 (cf. [B, Chapter 3]). Under the notation above,

(divSF(φ))(X) = -h(τF(φ)J,X)

for any vector field X on M.

Therefore, if φ is an F-harmonic map, then div*S>(^) = 0. Conversely, if φ
is a submersion almost everywhere and divSX^) = 0, then φ is an F-harmonic
map.

This proposition is included in [B, Chapter 3]. But here, we give its ele-
mentary proof.

Proof Let V and ^V denote the Levi-Civita connections of M and N,
respectively. Let V be the induced connection on φ~ιTN. We choose a local
orthonormal frame field {βj}^ on M with Veιej\x = 0 at a point xe M.

Let X be a vector field on M. At x, we compute

(dϊvSF(φ))(X) = Σ
l=\

m

Σ - SF(φ)(VeιehX) - SF(φ)(ehVeX)}
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2\ m

- e , [ F
, \dΦY \h{φ.ehφ,X)

-F
v (\dΦV

+ F
, \dΦY \h{φ.e,,φJ7e,X)\

2\ m

-F'\
2\ m

1=1

At x, we have

and
ι=l

+βi + φ+[euX] -

Thus we get

{<HvsF{φ))(x) = -F'{

V V
=-h{τF(φ),φ.X).
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PROPOSITION 4.2. Let φ : (M, g) —> (iV, h) be a weakly conformal F-harmonic
map from an m-dimensional Riemannian manifold (M, g) to a Rίemannian manifold
(N,h). Assume that the zeros of (m - 2)F'{t) - 2tF"(t) are isolated. Then φ is
a homothetίc map.

Remark, (i) If F" < 0 and m > 3, or F" φO and m = 2, then the as-
sumption for F in this proposition is satisfied.

(ii) This proposition is an extension of [BE, Example 3.3] for harmonic maps
and [T, Corollary 4] for /?-harmonic maps.

Proof Let {̂ /}̂ i be a local orthonormal frame field on M. As φ is
weakly conformal, there is a nonnegative smooth function λ2 on M such
that φ*h = λ2g. So we have SF(φ) = (F(mλ2/2) - λ2F'(mλ2/2)) g. Let X be a
vector field on M. Since φ is F-harmonic, by Proposition 4.1 we have

0 = diw SF(φ){X)

ei, X)

Thus λ2 is constant, and φ is homothetic.

5. Horizontally conformal F-harmonic maps

Let φ : (M, g) —> (N, h) be a smooth map between Riemannian manifolds
(M,g) and (N,h). For each x e M satisfying dφx φ 0, set Vx = KQΐdφx and let
Hx be the orthogonal complement of Vx in TXM. We call Vx the vertical space
at x, and Hx the horizontal space at x. For X e TXM, we may decompose X =
XH + XV, where XH e Hx and Xv e Vx.

We say that φ is horizontally conformal if there exists a positive smooth
function λ on M such that h{φ*X, φ* Y) = λ2 #(X, 7) for all X,YeHx and x e
M. The function Λ, is called the dilation of φ.

THEOREM 5.1. Let φ : (M,g) —> (N,h) be a horizontally conformal F-
harmonic map with dilation λ from an m-dimensional Riemannian manifold (M, g)
to an n-dimensional Riemannian manifold (N,h), where m> n. Assume that the
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zeros of (n — 2)F'(t) — 2tF"(t) are isolated. Then the following properties are
equivalent:

(i) The fibers of φ are minimal submanifolds',
(ii) grad(/l ) is vertical,
(iii) the horizontally distribution has mean curvature grad(Λ2)/2/l2.

Remark, (i) If F" < 0 and n > 3, or F" # 0 and n = 2, then the as-
sumption for F in this theorem is satisfied.

(ii) This theorem is an extension of [BE, Theorem 5.2] for harmonic
morphisms and [T, Proposition 7] for horizontally conformal /^-harmonic maps.

Proof. For xe M, we choose a local orthonormal frame field {e,-}™! near
x with e\,...,en horizontal and en+\, ...,em vertical. As φ is horizontally
conformal with dilation λ, we have \dφ\2 = nλ2 and Sp(φ) — F(nλ2/2) -g —
Ff(nλ2/2) φ*h. Since φ is F-harmonic, by Proposition 4.1 we have

(5.1) 0 = (dϊvSF(φ))(ej)

ι=l

ej)) - SP{φ){Veιehej) - SF(φ){ehVe,ej)}
ι=l

• k(φ,Ve,eh φ.ej) + F'(£λ2) • h{φ.e,,

ι=l

For j (1 < j < ή) we have

(5.2) 0 =

ι=l

n

(=1
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,ei)H,ej)+g(eh(yetej)H)}

ι=l

~2^2{KΦ*(^e^i)H ^ Φ*€j) + KΦ*eii Φ*(^e^j)H)}

l ^
hVefr, Φ*ej) + KΦ*eh ΦJlefij)

By (5.1) and (5.2), for j (1 < j < ή)

-λ2 Σ
/ ι=n+l

i=n+l

The mean curvature vector H\ of the fiber of φ is given by

1 ^ ^

j=\ ι=n+\

Thus we get

0 = I {(„ - 2)F'(^λή - nλ2F"(^λή }(grad(A2))^ + („ -

From this equation we can see that (i) is equivalent to (ii).
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Using (5.1) for j (n -f1 < j < m), we have

0 = F'(^λή hej(λ2)

For / (1 < i < «),

h{φ.ei,φj!e,ej) = h{φtehφt(Veιej)H) = λ2g{eh

= λ2g{ei,We,ej) = - 2

So we have

Hence the mean curvature Hi of the horizontally distribution is given by

1 m n i nί

^ Λ % > /T-7 \ •*• V "^ / 1 2\

j=n+\ z=l ^ j=n+l

_ (grad(Λ2))F _ grad(Λ2) - (grad(A2))//

~ 2Ϊ2 " ϊλ2 "
From this equation we can see that (ii) is equivalent to (iii).

6. The second variation formula

In this section, we calculate the second variation of the ^-energy functional.
Let φ : (M, g) —• (TV, h) be a smooth map from an m-dimensional Rie-

mannian manifold (M,g) to a Riemannian manifold (N,h).

THEOREM 6.1 (The second variation formula). Let φ:M^>N be an
F-harmonic map. Let φSjt : M —> N (—ε < s,t < ε) be a compactly supported
two-parameter variation such that φ0 0 = φ, and set V = dφs t/dt\s ί = 0 , W —
dφct I'ds\ p,_n. Then

,φfei)φteh W)\vg,



GEOMETRY OF F-HARMONIC MAPS 257

where <,> is the inner product on T*M ®φ XTN and NR is the curvature tensor
of N.

We put

An inharmonic map φ is called stable if / ( F , V) > 0 for any compactly supported
vector field V along φ.

Proof. Let Φ : (-ε,ε) x (-fi,e) x M -> N be defined by Φ(Λ , /,X) = φSJ(x),
where (—ε,e) x (—e,ε) x M is equipped with the product metric. We extend the
vector fields d/dt on (—ε,ε),d/ds on (—ε,ε), X on M naturally on (—ε,ε)x
(—ε,ε) x M, and denote those also by d/dt,d/ds,X. Then

(6.1)
s,t=O

We shall use the same notations V and V for the Levi-Civita connection on
(-ε,ε) x (-fi,fi) x M and the induced connection on Φ~ιTN.

Using (2.1) we have

• - . . i 3

,y,ί=0

fs,t\

J\dφJ
ί,ί=0

-Va/a, \F'\

where we use the F-harmonicity for the last equality. We compute
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J 2 N

where we use [d/ds, ei\ = 0.
The first term in the right-hand side of (6.3) is

(6.4)

The second term in the right-hand side of (6.4) is

, , 5 ,
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Let X\ and X2 be compactly supported vector fields on M such that

g(Xχ, Y) =F"(^ψ\<yW,dφy-h{φtY, V),

for any vector field Y on M, respectively. For the first term in the right-hand
side of (6.4) and the last term in the right-hand side of (6.3), we have

(6.6, | φ ( ( ^ ) ) A )

( ( \dfk | 2

e, h ί F" ί l-^f-

7 = 1
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When s = t = 0, (6.6) becomes

m m m m

Σ e< • »(*'«) - Σ ^( χ ' ' v ^ e ' ) + Σ e ' 0(*2 «') - Σ β(χi
ι=l ι=l ι=l ι=\

m m

= Σ 9(Ve,Xι, et) + Σ βWe.Xi, e,)
ι=\ (=1

By Green's theorem the integral of (6.7) vanishes. The theorem follows from
(6.1M6.7).

THEOREM 6.2. Let φ : M —> N be an F-harmonic map from a Riemannian
manifold M to a Riemannian manifold N. Assume that F" > 0 and N has
nonpositive curvature. Then φ is stable.

Proof It follows immediately from Theorem 6.1.

Remark. Theorem 6.2 is an extension of the well known fact for harmonic
maps (cf. [EL]).

7. Stability of inharmonic maps to Sn

We consider Sn as a submanifold in Rn+X. Let RV and SV denote the Levi-
Civita connections on Rn+ι and Sn

9 respectively.
For a vector F i n /?M+1 at x e Sn, we decompose V = Vτ + V1, where Vτ is

the tangential part to Sn and VL = <F,x>x is the normal part to Sn.
Let B denote the second fundamental form of Sn in Rn+ι. Then for tangent

vectors X and Y of Sn at x, B(X, Y) = -<Ar, Y)x. For a normal vector field W
on Sn, the shape operator Aw corresponding to W is defined by

where X is a tangent vector of Sn. Then it satisfies

<AW{X), Y> = <B(X, Y), wy = -{x, YXX, wy

for tangent vectors X and Y of Sn at x.

THEOREM 7.1. Le/ φ : M -^ Sn be an F-harmonic map from a compact
Riemannian manifold M to the n-dimensional unit sphere Sn. Assume that

Then φ is unstable.
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Proof. We use the above notation. We assume that M is ra-dimensional.
Let { ^ j , V and SR denote a local orthonormal frame field on M, the induced
connection on φ~ιTSn and the curvature tensor of Sn, respectively. Let {Va}"=l
be a parallel orthonormal frame field in Rn+ι. We shall consider the second
variation

ί
/ι 7 #ι2\ / m \ 2

•pit I \aΨ\ 1 ( V V v Vτ ώ eΛ I υ

^ \ 2 / \ t ί /
+LF'(fLF'(r f)

Now we discuss at x = φ(p). As Va is parallel in R n+\

So we have

and

We have also

Λ+l «+l

|V,,Fα

τ|2 = \Ar'(φ,e,)\2 = Σ<Ayϊ{φ^), Vbγ = £
b=\ b=\

n+\ yι+1

and

n-f 1 m

(7-3)
α = l i=l

Since

φ,ei, Vj} = \φte,\2 • \Vj\2 - <φ.eh Vj}2
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we have

n + l m w+1

Φ,ei)φtei, Vj) = \dφ\2

a=l ι=\ α=l

By (7.1)-(7.4) we get

Λ+1 Λ ( ί\dώ\2\

a=\ ^M \ \ /

By (7.5) and the assumption, we have

Λ+l

a=l

and φ is unstable.

COROLLARY 7.2. Assume that (i) F" < 0 and n>3, or (ii) F" < 0 and n = 2.
Then any stable F-harmonίc map from a compact Rίemannian manifold M to Sn is
constant.

Remark. The assumption F" < 0 in this corollary is not satisfied in the case
of the /7-energy, the exponential energy and the α-energy.

Proof Suppose that φ is not constant. Then by the assumption and
Theorem 7.1, φ is unstable, which is a contradiction. Thus φ is constant.
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