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ON THE EXISTENCE OF CERTAIN QUADRATIC DIFFERENTIALS ON

FOUR TIMES PUNCTURED SPHERES AND ONCE PUNCTURED TORI

HlDEKI MlYACHI

Let R be a Riemann surface. Let {fy J jLi be a set of homotopically
nontrivial Jordan curves on R which are mutually disjoint and belong to different
free homotopy classes. We consider the following problem.

PROBLEM. Find conditions of non-negative numbers l\,..., lp such that there
exists the holomorphic quadratic differential φ with closed trajectories on R which
has following properties:

(a) Each of closed trajectories of φ is homotopic to one of the curves {y7 }Li
(b) For any j — 1,...,/?, φ has closed trajectories homotopic to γj.
(c) For y = 1,...,/?, the ^-length of closed trajectories homotopic to yy is

equal to lj.

In this paper, we shall give answers for this problem in the case where R is
either a four times punctured sphere or a once punctured torus (see Sections 3
and 5). An essential tool in obtaining our results is the deformation space of
Riemann surfaces with nodes due to Bers.

This problem is related to the following StrebePs result (cf. Theorem 23.5 in
[18, p. 150]).

THEOREM. Given a Riemann surface R with marked points Pj,j = 1,...,/?
p > 2 and R = R\{Pj} not the twice punctured sphere. We consider the quadratic
differentials φ on R with closed trajectories the characteristic ring domains of which
are punctured discs Rj, with punctures P}. Then, the lengths aj > 0 of the closed
trajectories ctj around the Pj can be prescribed arbitrarily. The solution φ is
uniquely determined.

Strebel proved this result by using the convexity of the surface of reduced
moduli (cf. [18, p. 148]). This theorem implies that our problem is solved in the
case where every γj is homotopic to a small loop around a puncture. In this
case, constants l\,...,lp are prescribed arbitrarily. Therefore we only consider
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our problem in the case where for some y = 1,...,/?, ^ is essential (cf. Section
1.2).

This paper is organized as follows. In Section 1, we recall the definition of
the deformation space of Riemann surfaces with nodes and give some notations
used in this paper. Section 2 contains a detailed discussion of the deformation
space of Riemann surfaces of type (0,4) with a node. We shall treat this space
by using a plumbing procedure. In Section 3, our problem is solved in case
where a given Riemann surface R is a four times punctured sphere. As in
Sections 2 and 3, Section 4 deals with the deformation space of Riemann surfaces
of type (1,1) with a node, and Section 5 contains an answer for our problem in
case where R is a once punctured torus. In Section 6, we give results related to
our problem.

The author would like to express his hearty gratitude to Professor Yoichi
Imayoshi for his constant encouragement and advice. He is indebted to Pro-
fessor Masahiko Taniguchi for the variable comments for the original version of
this paper. He also thanks the referee for reading carefully, pointing out some
erroneous arguments, and his/her useful comments.

1. Preliminaries

1.1. We recall the deformation space of Riemann surfaces with nodes (cf.
[2], [3], and [4]). A Riemann surface with nodes, 5, is a connected complex space
such that every P e S has either a fundamental system of neighborhoods iso-
morphic to the unit disc \z\ < 1, or a fundamental system of neighborhoods
isomorphic to the set z\zι — 0 in the unit bicylinder \z\\ < 1, \z2\ < 1. In the
latter case P is called a node. Every component Σ of the complement of the set
of nodes is called a part of S, and S is called stable if every part has the upper
half-plane as its universal covering surface, and therefore carries a canonical
Poincare metric.

By a Riemann surface S of finite type we mean a stable Riemann surface
with or without nodes, such that either n = 0 and S is compact, or n > 0 and S is
compact expect for n punctures. (A puncture can never be at a node.) Such an
S has finitely many parts Σ 1 , . . . ,Σ r , each part ΣJ is compact of some genus pj,
except for nj punctures, 3pj - 3 - «, > 0 (this is the stability condition), and

7=1

where k is the number of nodes. Also, the total Poincare area of S equals

7=1

The genus p of S is defined by the relation

A = 2π{2p-2
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If one "thickens" each node so as to obtain a smooth surface S,S is homeo-
morphic to a compact surface of genus p with n punctures. The pair

(P,n)
is called the type of S.

Let S and S' be two Riemann surfaces of the same type. A continuous
surjection / : S' —> S is called a deformation if the inverse image of every node of
S is either a node of S' or a Jordan curve on a part of S", if, for every part Σ of
S, the restriction Z " 1 ^ is an orientation preserving homeomorphism onto / - 1 ( Σ ) ,
and if every puncture of Sf corresponds, under /, to a puncture of S. A
holomorphic deformation is called an isomorphism.

The equivalence class [/] of a deformation / : Sf —• S consists of all de-
formations S" —» S of the form φ o f oφ~ι where φ : S' —> S" is a deformation
isotopic to an isomorphism and φ : 5 —• 5 is a deformation isotopic to the
identity. The deformation space D(S) consists of all equivalence classes [/] of
deformations onto S. It is known that D(S) carries the natural complex
structure compatible with that of the Teichmuller spaces (see [4, Section 16]).

1.2. Let R be a Riemann surface and γ a simple closed curve on R. In this
paper, γ is called essential or an essential curve if γ does not bound either a disc
or a punctured disc on R. For an essential curve γ on R, we denote by mod^(y)
the modulus of the family of the curves homotopic to γ on R, that is, the
reciprocal of the extremal length of the family of curves homotopic to γ on R (cf.
[10, p. 13] and [1, p. 220]). In this paper, mod/^y) is said to be the modulus of y
for short. For a doubly connected domain D on a Riemann surface, mod(Z))
denotes the modulus of a simple closed curve in D which separates the boundary
components of D. We know that if D = {z e C\r < \z\ < 1}, it holds that
mod(Z)) = -( l/2π) logr (cf. [10, p. 17, Theorem 2.4]).

We know that for an essential curve γ on R, there exists a quadratic
differential φ on R with the following properties: (1) The non-critical horizontal
trajectories of φ are closed and homotopic to γ: (2) The modulus of its char-
acteristic ring domain is equal to the modulus of γ (cf. Theorem 21.1 in [18, p.
107]). In this paper, such a quadratic differential is said to be the JS (Jenkins-
Strebel) differential on R with respect to γ. Throughout this paper, we shall take
the notation of [IS] for granted, and restrict our attention to quadratic differentials
that are holomorphic.

2. The deformation space of Riemann surfaces of type (0,4) with a node

2.1. We consider a global coordinate of the deformation space of Riemann
surfaces of type (0,4) with a node as follows.

We first construct a Riemann surface So of type (0,4) with a node. Let Σ 1

and Σ 2 be two copies of a three punctured sphere C\{—1,1}. Then So is
obtained by identifying the puncture oo of Σ 1 and the puncture oo of Σ 2 . We
denote by NQ the node of Sίo
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Next, for / e Δ* := {0 < \z\ < 1}, we construct a Riemann surface St of type
(0,4) by a "plumbing procedure". Let Uι and U2 be two copies of a domain
C\{teR\ - \<t< 1}. For k = 1,2, we regard C/* as a subset of Σk. Let
Z*(z) = z - Λ/Z2 - 1, where the branch of the square root is taken as
0 < Zk(ή < 1 for t > 1. Zk is defined on Uk U {oo} by Zk(oo) = 0 and maps
conformally Uk U {oo} onto Δ := {z e C \ \z\ < 1}. For k = 1,2, we define E/* -
{P e £/* | |Z*(P)| > M} and Sk = Uk U {* e R \ - 1 < t < 1}. A Riemann sur-
face St is obtained by introducing an equivalence relation on the disjoint union
S] US2. A point P e U} is identified with a point Q e Uf if and only
if Zι(P)Z2(Q) = t. Let σt be a central curve {Pe U} \ \ZX(P)\ = \t\ι/2} =
{Pe U2 I |Z 2(P)| = \t\ι/2} in St. For |/| < 1 and k = 1,2, we denote by P2k~ι

and P2 / : the punctures of St corresponding to 1 and — 1 in Sk respectively. Then
there exists the deformation ft from St to So with ft(P™) = P™ for m = 1,... ,4
and f~ι(No) = σt. We define a holomorphic mapping Ψ from Δ to D(So) by

(1) Ψ(0 = [/,]•

We can observe that Ψ is a biholomorphic mapping from Δ to D(So), and
hence Ψ is a global coordinate of D(So). Indeed, the injectivity of Ψ follows
from Lemma 5 in Section 3.3, and the surjectivity of that is given by the "open
up" process in [13, Section 5.1].

2.2. For k = 1,2, let (Vk, Wk) be a local uniformizing parameter at oo, the
puncture of Σk, such that Wk{Vk) = Δ* and that oo corresponds to the origin.
For ίeΔ*, a Riemann surface Mt of type (0,4) is obtained by a plumbing
procedure using given coordinates {(Vk,Wk)}k=l2' We also obtain the ca-
nonical deformation gt from Mt to So as in Section 2.1. Thus, we define the
holomorphic mapping Φ from Δ to D(So) by

(2) Φ(0 = [g,].

In this paper, we call Φ the representation of pluming constructions using
kwk)}

2.3. To compute the derivative of T(t) := Ψ" 1 oφ(ί) at the origin (see
Proposition 2 of Section 2.4), we shall give some notation and prove a lemma.

Let ik be the canonical inclusion from Sk to St. Since (ZkY(—dZ2/Z2) =
φk := —dz2/(z2 — 1) for k = 1,2, Zk maps a closed trajectory of \j/k to a circle
with center 0 in Δ. Thus the J-S differential ψt on St with respect to σt is
obtained by setting (tf)*(ψt) = ψk on the image under ίk. The characteristic
ring domain Ut of φt coincides with if(Uk). We define a conformal mapping Z,
from Ut to an annulus A\t\ := {\t\ < \z\ < 1} by Zt{ij(P)) = Zι(P) for Pe U}.
Then, for t e A\

(3)
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Let Vk = {PeVk \\Wk(P)\ > \t\} and Mk = VkUΣk\Vk. We denote by
j k the canonical inclusion from Mk to Mt. Let Vt be the image of Vk under j k .
A conformal mapping Wt from Vt to an annulus A\t\ is defined by Wt(j)(P)) —
WX(P) for P G V}. Let y, denote the central curve in Vt. For |/| < 1 and k =
1,2, we denote by Q2k~ι and β ^ punctures of Mt corresponding to 1 and —1 in
Mk respectively. Then, by definition, the deformation gt satisfies gt(Q?) = P™
for m = 1,... ,4 and g;ι(N0) - γr

Let /̂f be the J-S differential on Mt with respect to γt such that the //^-length
of closed trajectories homotopic to yt is equal to 2π. Suppose that s/t is the
characteristic ring domain of ηt. Then, (1), (2), and (3) imply

(4) mod(^,) = modM ί iyt) = raoάSm (σT{ή) = - — log| T{t) \,

for ί eΛ* . We denote by ζt a, conformal mapping from aίt to ^|r(/)|

LEMMA 1. (i) Let l(ή be the ηrlength of γr Then l(t) = 0(1) as \t\ -> 0.
(ii) For any 0 < r < 1, there exists δ\ > 0 w/YA δ\ < r2 such that

γtΓ\{Pej*t\\T{t)\/r< \ζt(P)\ < r} # 0 whenever 0 < |r| <<?i.

(iii) Γ/zere exw^ (5o > 0 such that γt a srft whenever 0 < |ί| < δo.

Proof, (i) Fix teA*. Suppose that ηt has the representation ηt(w)dw2 in
terms of the local uniformizing parameter (Vt, Wt). We set

L(x) = f \ηt
J\w\=x\w\=x

for |/| < x < 1. Since ηt(w) is a holomorphic function on A\t\, L(x) is a convex
function of logx. Therefore, we obtain

for | ί | ^ 2 < x < 1. Integration over \t\1^2 < x < 1 yields

1/2

Hence we have

l(t) < 2π{log(l/|Γ(ί)|)}1/2/{log(l/|ί |)} I / 2 - 0(1), as
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(ii) Assume that there exist 0 < ro < 1 and a sequence {tn}%L\ such that

(5) \tn\ —> 0 as n —• oo,

and that y/n Π { P e <*/,„ | |Γ(/π)|/r 0 < \ζίn{
p)\ < ro} = 0 Then, some component

CΛ of Mtn\{P e srftn \\T(tn)\/ro < \ζtn(P)\ < ro} contains one of the conponents of
Mtn\ytn. By definition, ηtn\Cn ^n ^ e ^"^ differential on Cn with_respect to a
simple closed curve τn homotopic to the boundary contour CnΠ{P e stt \
\T(tn)\/r0 < \ζtn(P)\ < ro} of Cn. Hence

(6) modCw(τw) = - — Iog|r0 |.
In

On the other hand, since Cn contains some component of Mtn\γtn, there
exists an injective holomorphic mapping hn from A, ,1/2 to Cn such that

1/4
h({ ,t ,1/21 \\ \\ }) i h i T h f

1/4
hn({w e A,t ,1/21 \w\ — \tn\ ' }) is homotopic to τn. Therefore

- 6 , . Λ | 1 / 2 .

By (5), this contradicts (6).
(iii) By (i), there exists δ\ and L > 0 such that l(t) < L for \t\ < δ\. Let r =

e~2L. In view of (ii), we obtain a number δo with 0 < δo < min{<Si,r2} such that

(7) γtf]{Pe^t\ \T(t)\/r < \ζt(P)\ < r} Φ 0, whenever 0 < \t\ < δ0.

Let dηt be the ̂ -distance on Mt. We denote by <€t the union of critical
trajectories of ηv Then for x e {P e srft \ \T(ή\/r < \ζt(P)\ < r} Π yt and y e %>t,
we have dVt(x,y) >2L. By the definition of the constant L, (7) implies that
points xe{Pes/t\ \T(t)\/r < \ζt(P)\ < r] Π γt and zeγt satisfy dVt(x,z) < L.
Therefore we have dηt(y,z) > L > 0, for ye%>t and zeγt. Thus γtΓ)<gt = Q
whenever O<\t\<δo. Since s&t — Mt\βu γt is contained in stft whenever
0 < |ί| <^o D

2.4.
PROPOSITION 2. For k = 1,2, let (Vk, Wk) be a local parameter around oo in

Σk such that Wk(Vk) = Δ* and that oo corresponds to the origin. Let Φ be the
representation of plumbing constructions using {{Vk,Wk)}k=ll- Suppose that
Wk has the expansion

in terms of the global coordinate z of Σk near oo. Then the derivative of T
Ψ " 1 oφ at the origin is given by
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Proof. By definition, for ί e Δ * , there exists a biholomorphic mapping ht

from Mt to ST{t) such that ht{Qψ) = P^t) for / w = l , . . . , 4 and that ht{yt) is
homotopic to σr(0

We first show that there exists δ, ro > 0 such that

ht({Pe Vt\\t\/r0 < \Wt(P)\ < r0}) cz Uτ{t)

whenever §<\t\<δ. Since UT(ή is the characteristic ring domain of ψT(ή,
Lemma 1 guarantees that there exists <50 > 0 such that ht(γt) c UT(t) whenever
0<\t\<δ0. This implies ht(jk (Afβ 1/2)) c / ^ ( S ^ ) . Here, we regard M§i/2
as a subset of M/\ We remark that yβi/2 = jf\Mkι/2. Hence, for A: = 1 , 2
and O<\t\<δo, an injective holomoφhic mappingx hk from Mβi/2 to SL^
is defined by hk = ( j ^ ) " 1 ohto jfcι/2.

Since {^(/)}0<uι<(50 and {Mfti/2}o<uι«5o are exhaustions of Σ^ and λf(l) = 1
and Af(—1) = — 1, Af converges uniformly to the identity mapping of Σ^ on every
compact set of Σ^ as t —> 0. Therefore there exist δ and ro > 0 such that
Af (K,*(r0)) c ^n/) whenever 0 < \t\ < δ, where K*(r0) := {P e Affii/21 | ί | 1 / 2 <
| ^ ( P ) | < ro}. Since j}MVt(ro))\JjW(V?{ro)) = { ^ K,| |/|/r0 < | ^ ( P ) | <
ro} and iτ(t)(^τ(ή) = Uτ(t)> w e have the first assertion.

For k= 1,2, a holomorphic mapping JΪ"Λ from Df := {(t,w) \0 < \t\ < δ
and |ί|/ro < \w\ < ro} to Δ* is defined by

Since {(iτ(ή) l ° ht o jk}0<ltl<δ tends to the identity mapping on Σ^ as t —» 0,
{Pe Vk\ \Wk(P)\ < ro} is contained in Uk and 7/^ is extended holomoφhically
on D:={(t,w)\\t\ < δy \t\/r0 < \w\ < r0} by setting Hk(0, w) = Zk o (Wk)'ι(w).

Suppose that the Laurent development of Hk forms

(8) Hk(t,w)= J2 flm(^m

m=— oo

We remark that for every integer m and fc=l,2, Λ ^ ( 0 is holomoφhic on
{/eΔ | | ί |<<5} .

Here, we assume the following equation which will be proved later.

(9) <*m(ήtm = o(l), ast->Ofork= \,2 and meZ.

The definition of Sτ(ή implies

T{t)=H\t,w)H2{t,t/w) =
m,/=—00

on D. Since the left-hand side of this equality is independent on the parameter
w, we obtain

Σ a}{t)a]{t)t'
l=-oo
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on {|ί| <δ}. Therefore the assumption (9) shows

1^1 = ^(0)^(0)+ o(l) = ^ ^ + 0(1). D

Now, to prove Proposition 2, it remains to show the following lemma.

LEMMA 3. The equation (9) holds.

Proof. We may assume that k = I. Fix 0 < |H>| < min{δ,δ/ro}. By the
definition of Sh if 0 < \t\ < ro\w\, then (t,w),(t,t/w) eD and

Since H2(0,w) φ 0, (8) implies

as t —» 0. Since w is arbitrary, we conclude (9). •

2.5.
COROLLARY 1. Let {(Vk,Wk)}k=l2 be as in Proposition 2. Let R be a

Riemann surface of type (0,4). Suppose that there exists an essential curve γ on R
such that

sinh(2πmodtf(y))/2πmod*(y) > 4\AιA2\.

Then R is obtained by the plumbing construction using {(Vk, Wk)}l=ι. Namely,
R is biholomorphic to Mt for some teA*.

From (4) and the following lemma, we obtain this corollary by an argument
similar to that of the proof of Theorem 1 (see Section 3.4). Hence we omit the
proof.

LEMMA (cf. [15, p. 233]). Let f be a holomorphic mapping on \z\ < 1 such
that /(0) = 0 and \f(z)\ < 1 on \z\ < 1. If f leaves out a value α such that |α| <
1, then

1/(0)1 <2|α | log(l/ |α |)/( l- |α | 2 ) .

We know that every Riemann surface of type (0,4) has an essential curve
whose modulus is more than or equal to Λ/3/4 (see (i) of Lemma 12). Therefore
we have the following.

COROLLARY 2. Let {{Vk, Wk)}k=l2 be as in Proposition 2. Assume that

\AιA2\ < sinh(v/3π/2)/2v/3π = 0.694....
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Then every four times punctured sphere is obtained by the plumbing construction
using coordinates {(Vk, Wk)}k=ι.

3. A Solution to the problem in case of four times punctured spheres

In this section, we solve our problem in case of four times punctured spheres.

3.1.
THEOREM 1. Let R = C\{P\,... ,^4}. Let γ be a simple close curve on R

which separates {P\,P2} and {P 3 ,P 4 }. Assume that non-negative numbers
l\,..., U and a positive number L satisfy by condition

Jί(h/LJ2/LJ3/LJ4/L) < 2πmod*(y).

Then there exists a unique quadratic differential φ with closed trajectories on R with
following conditions'.

(a) φ has a closed trajectory homotopic to γ and the φ-length of this trajectory
is equal to L.

(b) For the local uniformizing parameter w at Pj such that w(Pj) = 0, the
respective development of φ = φ(w) dw2 is

Here, the function Jί is defined by Jί(x,y,z,w) = m(D(x,y) - D(z,w)), where

m(D) = log(2 - D + 2VΊ - D) - logD,

and

D(x, y) = *—

with 0° - 1.

This theorem will be proved in Section 3.4. The uniqueness of such a
differential follows from Theorem 23.1 in [18, p. 143]. Hence we prove only the
existence of the differential. Further, if φ is the quadratic differential on R which
satisfies the conditions in Theorem 1 for constants l\/L, ,k/L, and 1, L2φ is
the quadratic differential on R satisfying the conditions in Theorem 1 for
constants / i , . . . , ^ , and L. Therefore, we may assume that L = 1.

3.2. We define a quadratic differential φk on Σk by

(10) φk = φk(z)dzI = -—.z ^ Zk , v lk , — Ldzι.
K } Ψ Ψ K } 4 π 2 ( z + l ) 2 ( z - I ) 2
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φk has closed trajectories homotopic to a loop around oo with ^-length one.
Moreover, if lm {m — 2k—\ or 2k) is positive, then φk has closed trajectories
homotopic to small loops around either 1 if AW is odd, or —1 if m is even.

Let Vk be the characteristic ring domain of φk with respect to oo and Wk a
conformal mapping from F*U{oo} to Δ such that Wk(cc) = 0. We take
notations made in Sections 2.2 and 2.3 for granted. For f = (l\,h,h,k) e^>o>
we denote by Φ/ the representation of plumbing constructions using
{{Vk,Wk)}k=l2. By definition, we obtain the following.

LEMMA 4. There exists a quadratic differential φt on Mt with conditions in
Theorem 1 for a curve γt, punctures {P™}m=ι 4 , constants i and L= 1.

3.3. The following is a key step to proving Theorem 1.

LEMMA 5. Φ/ is injective.

Proof. For t\yt2sA, we assume that Φs(t\) — Φ/(^2) We may also as-
sume that U φ 0 for / = 1,2. Then, by definition, there exists the biholomorphic
mapping h from Mh to Mh such that h{P™) = P™ for m = 1,... ,4 and that
h{γh) is homotopic to yh. Let η2 = h*(φt2). By Theorem 23.1 in [18, p. 143], η2

coincides with φtχ. This implies that h(Vh) = Vh. In the sequel, h leads the
biholomorphic mapping hk from Mk to M* such that hk(Vk) = Vk for
k = 1,2. Since Λ*(p,2) = ^ , (hk)\φk) = φk. Therefore, Wk o hk = eiΘWk on
F^ for some ^ e /?. Hence, hk can be extended to an automoφhism of Σk such
that λ*(l) = 1, A*(-l) = - 1 and A*(cx>) = oo by setting {Wk)~ι(ewWk(x)) for
x e F^. Thus hk is the identity mapping of Σk. Therefore for xk e Vk such
that ^ 1 ( 1 ) ^ 2 ( 2 )

t2 = W\h\xι))W2(h2{x2)) = W\xx)W2(x2) = tx. Π

LEMMA 6. Suppose that Wk has the expansion as in Proposition 2. Then

for k= 1,2, where £)(—,—) w defined as in Theorem 1.

/ Fixfc=l,2. We put a = -2(/2\ - Z ^ ) , ft = 2 / ^ ! + 2l2

k - 1, and
zo := (—a + Vα2 — 4ft)/2 where the branch of the square root is taken as VT = 1.
Since Wk{co) = 0, we may assume that

V* 2 +OX

Here, we only prove the case where hk + hk-i Φ\ and \hk — hk-\\Φ^
Another cases are proved by the similar arguments.
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A direct calculation gives that for z e Vk,

197

a + 2z + 2\/z2 + az + b

a + 2b + (2 + a)z + 2>/l +a + b^z2 + az + b v l + f l + */ 2

Vl-a+b/2

a-2b + (2-a)z- 2V1 -a + b Vz2 + az + b

= \a2-4b\ι/2lι(z)xl2(z)xh(z).

Since liiri|zHoo /] (z) = 1/4,

lim h(z) = |(2 + a + 2vΊ + β
|z|-oo

we have that

\Ak\= lim |
|z|-»co

β -

lim 73(z) = | ( V α 2 - -a-

l - 4 + 4-i-

and

Since for x,yeR, l+x4 + y4 - 2(x2 + y2 + x2y2) = (x - y - 1)0 + y - 1)
(x-y+l)(x + y+l) and 1 + x 2 - y2 - 2x = (x- y - l)(x + ̂  - 1), we have
1^1 = 1/2^/2^/2^0. •

3.4. Let us prove Theorem 1. Fix non-negative numbers h,kih, and U,
We put ί = (A,..., /4). Let Γ = Ψ"1 o Φ Λ Then Γ(0) = 0 and \T(ή\ < 1 on
Δ. By Proposition 2 and Lemma 6, we have

§<•> = D(lul2)D(h,k).
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Therefore, by Lemma 5 and Theorem 1 in [6], the image of Δ under T contains a
disc

(11) B := {w e CI \w\ < exp(-.

Let R = C\{/>i,...,/>4} and γ a simple closed curve which separates
{P\,Pι} and {i^,/^}. We denote b y / a deformation from R to So such that
f(γ)=N0 and that f(Pm) = Pg for m = 1,... ,4. We assume that ^ ( / ) <
2πmod*(y). Then, by (4) and (11), we have ψ-\[f\)eB. Thus, [/] is
contained in the image under Φ/. Namely, there exists teA such that
[/] = [gt]. Therefore there exists an isomorphism h from Mt to R such that h(γt)
is homotopic to γ and that h(Q™) = Pm for m = 1,... ,4.

Finally, let #? = h*(φt). Then, by Lemma 4, #? is the quadratic differential on
R with conditions in Theorem 1 for γ, /, and L = 1. We have thus proved the
theorem. •

4. The deformation space of Riemann surfaces of type ( 1 , 1 ) with a node

4.1. As in Section 2.1, we construct a global coordinate of the deformation
space of Riemann surfaces of type (1,1) with a node.

We first construct a Riemann surface So of type (1,1) with a node. Let Σ =
C\{—1,1}. Then So is obtained by identifying —1 and 1 in Σ. We denote by
No the node of So.

Next, for teA*, we construct a Riemann surface St of type (1,1) by a
plumbing procedure. Let Uι (resp. U2) denote the right (resp. left) half-plane in
Σ. Let Z\z) = ( z - l ) / ( z + l ) and Z2(z) = (1 + z ) / ( l - z). For 0 < \t\ < 1
and k = 1,2, let Ut

k = {PeUk\ \Zk(P)\ > \t\}. Identifying U} and Uf by the
mapping ZxZ2 = t, we obtain a Riemann surface St of type (1,1). This
identification also gives a ring domain Ut in St. We can observe that Ut is the
characteristic ring domain of the J-S differential with respect to the central curve
γt of Ut. Let ft denote a deformation from St to So such that ft(yt) = No. We
define a holomorphic mapping Ψ from Δ to D(So) by

ψ(0 = [/J
Then, as in Section 2.1, Ψ becomes a global coordinate of D(So).

4.2. We denote by / the involution of Σ defined by J(z) = —z. Let V1

(resp V2) be an open neighborhood of 1 (resp. — 1) in C such that J(Vι) = V2

and that F 1 ΠV2 = 0. Let Wx be a conformal mapping from F 1 to Δ such that
0^(1) = 0. We set W2=WιoJon V2. For 0 < |ί| < 1, we denote by Mt a
Riemann surface obtained by a plumbing procedure by using coordinates
{{Vk,Wk)}k=l2- We define a deformation gt from Mt to So as in the pre-
vious section. By the representation Φ of the plumbing constructions using
{(Vk, Wk)}k=ll we mean a holomorphic mapping
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4.3. As in Section 2.4, we compute the derivative T := Ψ " 1 o Φ at the origin.

PROPOSITION 7. Let {(Vk, Wk)}k=l2 be as in Section 4.2. Suppose that for

k = 1,2, the Laurent development of Wk near the puncture has the form

Wx(z) = A(z - 1) + and W2(z) = -A(z + 1) + . . . ,

where z is the global coordinate of Σ. Then

The proof is completely analogous to that of Proposition 2. Thus, to obtain
Proposition 7, it suffice to show the following lemma.

LEMMA 8. Let At be the characteristic ring domain of the J-S differential on
Mt with respect to yt. Then there exists δo > 0 such that for \t\ < δo, it holds that

ϊt c At-

P r o o f F o r k = 1 , 2 , l e t Vk = { P e Vk \ \ W k ( P ) \ > \t\} a n d M[ = \ ^ {

{P e Vk 11 Wk(P)\ < \t\}. We denote by j t the canonical surjection from M[ to
Mt. Let Vt be an image of Vk under j t . We define a conformal mapping
Wt from Vt to A]ή by Wt{jt{P)) = W}{P) for PeU}. A central curve yt of Vt

is a closed curve in Mt defined by {P e Vt\\Wt(P)\ = \t\ι/2}.
By the definition of Mu there exists an involution Jt of Mt such that jtoj =

Λ ° Λ Moreover, Jt is satisfies that Jt(γt) = γt. Hence it is easy to see that
there exist two fixed points of Jt on γt.

Let ηt denote the J-S differential on Mt with respect to yt. We denote by σt

a central trajectory in At. Then, as in case γt, we have Jt{σt) = σt, and hence
there exist two fixed points of Jt on σt. Here, we can check that the cardinality
of the set of fixed points of /, is equal to three. Therefore σt intersects yt.

Finally, we can prove Lemma 8 by an argument similar to that of the proof
of (iii) of Lemma 1. •

4.4. As in Section 2.5, we obtain the following corollary.

COROLLARY 3. Let {(Vk,Wk)}k=l2 be as in Proposition 7. Let R be a
Riemann surface of type (1,1). Suppose that there exists an essential curve y on R
such that

sinh(2πmodΛ(y))/2πmod*(y)

Then R is obtained by the plumbing construction using {(Vk, Wk)}k=l2.

Since every Riemann surface of type (1,1) has an essential curve whose
modulus is more than or equal to Λ/3/2 (see (i) of Lemma 12), we have

COROLLARY 4. Let {{Vh, Wk)}k==ι 2 be as in Proposition 7. Assume that

\A\ < {sinh(V3π)/4V3π}1/2 = 2.302...,
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then every once punctured torus is obtained by the plumbing construction using

5. A Solution to the problem in case of once punctured tori

In this section, we give an answer of our problem in case of once punctured
tori. Almost all results in this section are obtained by arguments similar to those
of Section 3. Hence we omit proofs for several results.

5.1.
THEOREM 2. Let R be a once punctured torus. Let γ be an essential curve on

R. Assume that a non-negative number I and a positive number L has the
condition that

JT(l/L) <2πmodR(γ).

Then there exists a unique quadratic differential φ with closed trajectories on R
such that

(a) φ has the closed trajectory homotopic to y and the φ-length of this
trajectory is equal to L.

(b) For a coordinate w at the puncture, the respective development of φ =
φ(w) dw2 is

where Jf{x) := m(16D(l,x)2) and the functions />(—,—) and m(-) are given in
Theorem 1.

As in the case of type (0,4), we may assume that L = 1.

5.2. We define the quadratic differential φ on Σ by

, w 2 1 / V + (4 - I2) , 2φ = φ(z) dzz : = - —=• ψ ^ dzz.ΨKJ 4 π 2 ( z _ i ) 2 ( z + i ) 2

φ is a differential with closed trajectories and has the closed trajectories around
either —1 or 1 with ^-length one. Moreover, if / is positive, then φ has the
closed trajectory around oo with the ^-length /.

Let V1 and V2 be the characteristic ring domains of φ with respect to —1
and 1 respectively and Wk be a conformal mapping from Vk to Δ* such that
W2oJ= Wx and that Wk maps a puncture to the origin. We define Mu gt

and γt as the previous section. The representation of the plumbing construction
using {(Vk,Wk)}k==l2 is denoted by Φ.

By definition, we have the following.

LEMMA 9. There exists a quadratic differential φt on Mt with be conditions in
Theorem 2 for γt, /, and L = 1.

By the same argument as that in the proof of Lemma 5, we have the
following lemma.
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LEMMA 10. Φ is injectίυe.

Here, we show the following.

LEMMA 11. Suppose that Wι and W2 have the expansion as in Proposition 7.
Then

where D(—, —) is defined as in Theorem 1.

Proof. We only show the case k=\. The case where k = 2 is obtained by
the similar way.

Let r(z) — 1 + 4/(z — 1). Then r is an automorphism of Σ such that r(l) =
oo, r(oo) = 1, and r(— 1) = — 1. By assumpution, we have W1 o r(z) =
4^4/z H for |z| > M, where Λf > 0 is taken to be sufficiently large.

We put φ:=r*φ and F* i ^ r ' ^ K 1 ) . By the definition of φ, φ has the
closed trajectories around either — 1 or oo whose ι/f-length is equal to one.
Moreover, if / > 0, then φ has the closed trajectories around 1 whose ^-lengths
are equal to /. Since V* is the characteristic ring domain of φ with respect to oo
and Wx or is a conformal mapping from F* to Δ such that Wι or(oo) = 0,
by Lemma 6, we have 4\A\ = \/2D(\,l). Hence we conclude that \A\ =

). D

Then we can prove Theorem 2 by an argument similar to that of Section 3.4.

6. Some results related to the problem

6.1. The aim of this Section is to prove the following theorem which will be
proved in Section 6.3.

THEOREM 3. There exists the best possible constants Z/0,4, L\^\ > 0 such that
for I < Lo,4 (resp. I < L\,\) and a Rίemann surface R of type (0,4) (resp. of type
(1,1)), there exists a simple closed curve γ on R such that R has the quadratic
differential with the conditions in Theorem 1 for γ,U = I for i — 1,..., 4 and L = 1.
(resp. in Theorem 2 for γ, /, and L = 1). Furthermore, it holds that 0.506 < Lo 4 <
0.835 and that 2.379 < L u < 3.338.

6.2. To prove Theorem 3, we show several lemmas.

LEMMA 12. (i) Every Riemann surface of type (0,4) (resp. of type (1,1)) has
an essential curve such that its modulus is more than or equal to Λ/3/4 (resp.
V3/2).

(ii) There exists a Riemann surface S of type (0,4) (resp. of type (1,1)) such

that every essential curve σ satisfies moάs(σ) < Λ/3/4 (resp. \/3/2).
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Proof We only show the case of Riemann surfaces of type (0,4). The
case of Riemann surfaces of type (1,1) is proved in a similar fashion.

(i) Let R = C\{±eπi'A,±e-πi/A\ We denote by T(R) the Teichmύller
space of R (cf. [7, Chapter 5] and [14, Chapter two]). Let γ be a simple closed
curve J?U {oo} on R. Then we have mod^y) = 1/2 (see Section 6.4, Example).

Let φ be the J-S differential on R with respect to γ. For t e Jt :=
{t e C\ Imt > 0}, we denote by ft the quasiconformal mapping from R to a
Riemann surface Rt of type (0,4) which has the Beltrami coefficient

M
μt t + i φ

It is known that χ : tf 3 t —> [Λ/,/J e Γ(JR) is biholomorphic (cf. [14, Section
2.6.5]). A direct computation gives (cf. [13, Section 1.3])

(12) modRt(ft(γ)) = Imt mod*(y) = InU/2.

We denote by Mod(i^) the Teichmϋller modular group of R (cf. [14, Section
2.3]). It is easy to observe that (see [5, p. 165]).

χ-ιMod(R)χ =

This implies that for any Riemann surface S of type (0,4), there exists te
{teJ^\lmt> V3/2} such that S is biholomorphic to Rt. By (12), ft(γ) is a
simple closed curve on Rt whose modulus is more than or equal to Λ/3/4. We
have thus proved (i).

(ii) Let S = R\/2+y/3i/2 a n d ^et σ be a n essential curve on S. Then we can
check that there exists a quasiconformal mapping g from R = Rt to S such that
g(γ) is freely homotopic to σ.

We take t e Jf such that [Rhft] = [S,g\. Then there exists τ e mod(i?) such
that

By (i), there exists A e PSL2{Z) such that t = A(l/2 + >/3i/2). This implies

(13) Imt = ΊmA(l/2 + y/3i/2) < V3/2.

By (12) and (13), we have

mods(σ) = mods(g{γ)) = modRt(ft(γ)) = Imtjl < Λ/3/4. Q

LEMMA 13. Let L>0 and I > L/2. Let R = C\{PU... ,P4} αra/ y ^
simple closed curve which separates {P\,Pι} and {^3^4}. Suppose that there
exists the quadratic differential φ on R with the conditions in Theorem 1 for γ, U =
/ for i = 1,..., 4 and L. Then

y) > K(cos(πL/4l))/2K(sm(πL/4l)),

where K(k) is the complete elliptic integral of the first kind for a modulus k.
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Proof. We may assume that L = 1. We first recall the geometry of certain
quadratic differentials on the three punctured sphere Σ = C\{~ 1,1}. Fix />
1/2. We define a quadratic differential φ on Σ by

ΨyJ 4 π 2 ( z _ l ) 2 ( z + l ) 2

Then φ is the quadratic differential with closed trajectories on Σ that has the
closed trajectories of length one around oo and of length / around either —1 or 1.
Let A be the characteristic ring domain of φ with respect to oo. Then it is clear
that the interior Dι of Σ\A U{t e R\ — l < ί < l } i s a doubly connected domain.
Here, we assume the following equation which is proved later.

(14) mod(A) = K(cos(π/4l))/4K(sin(π/4l)).

Take R, γ and φ as in the assertion of this lemma. Let si be the char-
acteristic ring domain of φ with respect to γ. By the structure of trajectories of
φ, there exist injective holomorphic mappings h\ and hi from Z>/ to R such that
hι(Dι)nh2(Dι)=0, hk(Dι)Πsi = 0 for Λ: = 1,2, and that the core curve of

is freely homotopic to γ. By (2) in [17, Proposition 1.5], we have

> mod(Ai(A)) +

> K(cos(π/4l))/2K(sin(π/4l)). •

To prove Lemma 13, it remains to show the following lemma.

LEMMA 14. The equation (14) holds.

Proof. We use the notation defined in Lemma 13 frequently. Let D\ and
D-\ be characteristic ring domains of φ with respect to 1 and —1 respectively.
We denote by α (Imα > 0) a zero of φ. We note that α is also that of φ. Since
the interval {t e R\ \t\ < 1} is a (singular) vertical trajectory of φ, there exists a
conformal mapping fx (resp. f_x) from D\ (resp. Z>_i) to Δ such that /i(l) = 0
(resp. /_i(-l) = 0) and that

fλ(Dι\{teR\ -\<t< \})=E[ :=A\{seR\ - 1 < s < 0}

(resp./_ 1(/)_i\{ίeΛ| - I < t < I}) = E^ := A\{s e R\0 < s < 1}).

We note that the domains of fx and f_u are extended to the closure of D\ and
that of Z>_i respectively and that

/, (α) = -ertV-W, fχ («) = -e*>&
(15)

/_! (α) = e^2 /-')/2 /, and /, (α) = e

Indeed, the extendabilities of /, and f_x are trivial, since D\ and D_i have
piecewise real analytic boundaries.
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Here, we will only show that /i(α) = — e

πi(<ι~21^21. The another equations in
(15) are obtained by the similar arguments. By the definition of D\, we have

Let β := {toc\O < t < I}. Then β is a horizontal trajectory segement of φ.
Moreover the ̂ -length of/? is equal to (2/ - l)/4. By (16) and /j(0) = - 1 , we
have that / r(β') = {*''* | π/2/ < (9 < π}. Since /i(α) and /i(0) are end-points of

./i(jff'), w e h a v e /i(«) = ̂ π / / 2 / = -eπi^-21^21.
Let £i = £ ί U { ^ | 0 < \θ-π\ <π(2/-l)/2/} and J E - ^ ^ U {e^ 10 <

|0| < π(2/ — l)/2/}. We construct an annulus £7 by introducing an equivalence
relation on the disjoint union E\ U E^\. A point P e E\ is identified with a point
Q on £_i if and only if \P\ = \Q\ = 1 and β = - P . Then E\ is canonically
biholomorphic to Z>/

Finally, since Eι is biholomorphic to the ring domain

C\{t e RI \t\ < 1 or |r| > l/sin(π/4/)},

by the mappings
£ I 9 Z H 2iy/z/(\ — z), and

where the branch of square root is taken as Λ/Γ = 1, we conclude the assertion of
this lemma. •

LEMMA 15. Let L > 0 and I > 2L. Let R be a once punctured torus and γ
an essential curve on R. Suppose that there exists the quadratic differential on R
with the conditions in Theorem 2 for γ, I and L. Then

modΛ(y) > K(cos(πL/l))/K{sin(πL/l)).

Proof. We may assume that L — 1. As in the proof of Lemma 13, for / >
2, we define a quadratic differential ψ on Σ by

Then φ is a differential with the closed trajectories. Moreover φ has the closed
trajectories around either —1 or 1 with î -length one and around 00 with the φ-
length /. Let sί-\ and sί\ denote characteristic ring domains of φ with respect
to — 1 and 1 respectively. Let / be the imaginary axis on Σ. Notice that / is a
vertical trajectory of φ, since we now assume / > 2 and hence the zeros of φ,
±Vl2 — 4//, is real and not equal to the origin. Since J(sf\) = stf-\ where
J(z) = —z, each connected components s^ys/' of Σ \ J / _ I U<s/i U/ are doubly
connected domains. Further, it holds that

(17) mod(j*) = mod(j/7) = K(cos(π/l))/2K(sin(π/l)).
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We assume the equation (17) which will be proved later. Then, by an
argument similar to that of the proof of Lemma 13, we can prove Lemma
15. •

To prove Lemma 15, we should show the following.

LEMMA 16. The equation (17) holds.

Proof. We may assume that si is the connected component of Σ\si-\ U
si\ U / such that si <= {z e C | Rez > 0}. Since / is conformal and J(si) = si',
it suffices to show that

(18) mod(j*) = K(cos{π/l))/2K{sin(π/l)).

Let V be the characteristic ring domain of ψ with respect to oo and W the
conformal mapping from V to Δ such that W(oo) = 0 and W(I\{0}) =
{t e R 10 < \t\ < 1}. We may assume that W{si\β) a {zeC\ Imz > 0}, where
β := {/ e R10 < t < Vl2 - 4/1} (Vl2 - 4/1 is one of the zeros of ψ). We note
that si has the piecewise real analytic boundaries and the ^-length of β is equal
to (/ — 2)/4. Hence, by an argument similar to that of the proof of Lemma 14,
we obtain that the images by W of prime ends whose impressions are in
β (cf. [16, p. 27]) are just the prime ends whose impressions are in
{eiθ \0<θ<π{l- 2)/2/} and {eιθ \ π(l + 2)/2/ <θ< π}. It is easy to see that if
ξ\ and ξ2 are the impressions of^the images of prime ends in s/\β whose
impressions are teβ then ξ2 = — ξ\.

We now consider the mapping «f on ΔΠ {Imz > 0} as follows:

where the branch of square root is taken as VT = 1. Then 3F(X) = -#"(—1) =
*:(sin(π//)), #-(β^- 2 )/ 2 / )) = _j2r(eίπ(/+2)/2/) = κ(sin{π/l)) + zX(cos(π//)), and
the image of Δ Π {z e C | Imz > 0} by $F is equal to the rectangle

{(JC, y) e R2 I |x| < Jf(sin(π//)), 0 < y < K(cos(π/l))}

(cf. [15, p. 280]). Hence J^o W\^β maps conformally s/\β onto the rectangle
above. Therefore, the mapping

is well-defined and a conformal mapping from si to the ring domain

f f A-(cos(π//))l , ,1{ exp<^ - π ) . ','' } < \ w \ < \ \ .
\ F \ ^(sin(π//))J J

Thus, we conclude (18). •
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6.3. Let us prove Theorem 3. We only observe the case Lo,4, since we
obtain the case L\,\ in the same way.

We can check that the function Jί(l, /, /, /) of / is monotone increasing on
{I eR\l >0}. A simple observation shows that

Jt{l /, /, /) < λ/3π/2 if / < 0.506 and Jί(l, /, /, /) > v^π/2 if / > 0.507.

By Theorem 1 and (i) of Lemma 12, the constant Lo,4 exists and satisfies that
0.506 < L0,4. Since

{ <v / 3/4 i f / < 0.834 and,

> >/3/4 if / > 0.835.

Therefore, by (ii) of Lemma 12 and Lemma 13, we obtain that Lo,4 < 0.835. Π

6.4.
Remark. If l = L>0, then the inequality in Lemma 13 gives a sharp

condition. Indeed, we have the following example.

Example. For 0 < 0 < π/2, let Rθ = C\{±eiθ, ±e~iθ}. Let γ = RU {oo}.
Then γ is a simple closed curve in Re that separates {eιθ, —e~ιθ} and {—eιθ,e~ιθ}
and that satisfies

mod^(y) = K(cosθ)/2K(sinθ).

These are known as the Teichmϋller's module theorem (cf. [12, Chapter II, 1.2.]).
Notice that modRθ(γ) is a strictly monotone increasing function on 0 < 0 < π/2
and that mod*π/4(y) = 1/2.

Fix 0 > π/4. Then we can find a unique positive constant ae such that

r°° Jx2sin22θ + aθ(x4 - 2x2 cos 2 0 + 1 ) π

J_oo x4-2x2 cos 2 0 + 1 2'

Indeed, for π/4 < 0 < π/2, the function

- sin2 20 + a{x4 - 2x2 cos 20 + 1)

^ ' J . o o x4-2x2 cos 2 0 + 1 dX

is a strictly monotone increasing, positive, and continuous function on 0 < a <
oo. Moreover, the value at 0 of this function is less than π/2 and the value
tends to +oo as a —• +oo.

We define

_ 4L 2 z2 sin2 20 + aθ(z4 - 2z2 cos 20 + 1) 2

~~n2 (z4-2z2cos20+l)2
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Then we can observe that for π/4 < θ < π/2, φθ is the quadratic differential on
Rθ with the conditions in Theorem 1 for γ, U — L for i = 1,..., 4 and L.

On the other hand, if / = L, then the right-hand side of the inequality in
Lemma 13 is equal to 1/2. Therefore the inequality is sharp when I = L.
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