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BRAID MONODROMY OF COMPLEX LINE ARRANGEMENTS
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NGUYEN VIET DUNG*

Abstract

Let V be the complex vector space C 7 , s/ an arrangement in V, i.e. a finite family

of hyperplanes in V In [11], Moishezon associated to any algebraic plane curve <# of

degree n a braid monodromy homomorphism θ Fs —> B(n), where Fs is a free group,

B(ή) is the Artm braid group. In this paper, we will determine the braid monodromy

for the case when # is an arrangement stf of complex lines in C 2 , using the notion of

labyrinth of an arrangement. As a corollary we get the braid monodromy presentation

for the fundamental group of the complement to the arrangement.

1. Introduction

Let ^ = {/(x, y) = 0} e C2 be a plane algebraic curve. From the 1930's, it
is well known (see [9], [17]) that the fundamental group of the complement to
#, π i ( C 2 \ ^ ) 5 can be computed using the van Kampen's method. In [11],
Moishezon introduced the notion of braid monodromy of c€. Suppose that
the projection on the X-axis, pr\ : C2 —> C1, is generic with respect to the curve
#. Let S(<β) = {<xe<g;df(<ή/dy = O} and D(<g) its image under pr\. Then
the braid monodromy of ^ is a homeomorphism θ: n\(Cl\D(^)) —>
B[prγι(xo),prγι(xo)Π(iί\, where xo e Cι\D(<g) is a base point.

An arrangement si is a finite family of hypeφlanes in Cι. Given an
arrangement «a/, an algorithm to compute the fundamental group of the com-
plement, π\(C1\\JHes{H), was proved in [14] when si is the complexification of
a real arrangement. Similar results were obtained in [5] and [16] by different
methods. For an arbitrary complex arrangement a standard argument using the
Zariski hyperplane section theorem (see e.g. [7]) reduces the problem to the
case when stf is an arrangement of complex lines in C 2 . Arvola [1] found an
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algorithm to compute the fundamental group of its complement, using an ad-
missible 2-graph, defined by himself. In [6] we suggest another method to
compute this fundamental group. Our method based on a construction called
labyrinth, which dues to Rudolph [15]. We found that the labyrinth is still
useful to study the braid monodromy of an arrangement stf of complex lines
in C2. In this paper we will show how the braid monodromy of the ar-
rangement s/ can be obtained from its labyrinth. Note that the braid mon-
odromy gives also a presentation for the fundamental group of the complement
of stf. Combining this with a result of Libgober [10], we prove in the corollary
4.6 that the labyrinth of an arrangement stf in C2 determines the homotopy type
of its complement.

The braid monodromy of a complexified real arrangement was determined
by Salvetti [16], Hironaka [8] and Cordovil and Fadacha [4]. Generalizing the
notion of admissible graph and the algorithm of Arvola, recently, Cohen and
Suciu [3] suggest an algorithm to determine the braid monodromy of an ar-
rangement of complex lines using braided wiring diagram. However, the method
we present here is quite different. Moreover, our method gives a concrete
algorithm to determine precisely any braid occurring in the conjugation of braid
monodromy generators (see the Remark 4.3).

Acknowledgement. The author would like to thank Ha Huy Vui for
proposing the use of labyrinth in the arrangement context and Mutsuo Oka
for the hospitality at the Department of Mathematics, Tokyo Metropolitan
University as well as for many useful discussions.

2. Braid monodromy

In this section we recall briefly the notion of the braid monodromy of a
plane curve after B. Moishezon [11].

Let # = {/(JC, y) = 0} e C2 be a plane curve. Suppose that the projection
pr\ : C2 —» C1 onto the x-axis is generic with respect to the curve c€. Denote by
S(<£) the set {α e #; df{oc)/dy = 0} and D(V) the image of S(V) under the
projection pr\. For a point x of the x-plane C1 let C* denote the fiber of the
projection pr\ over the point x, C* = {(x, y) e C2;x = x}. For a path γ : I —>
Cι\D(^), we see easily that the pull-backs y*{pr\) and y*{pr\\<g) are trivial
bundles. We have then the homeomorphisms

te [0,1], induced naturally by a given trivialization of (y*(^i) j*(^iW) We
call this homeomorphism the braid homeomorphism defined over the path γ,
or simply the braid defined over γ. Let fix a base point XQ of the x-axis,
xo e C \D{(β). When γ is a loop beginning and ending at xo, we obtain a
homeomorphism
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This defines a homomorphism

which is called the braid monodromy of the curve ^ . Here by B[P, K] we mean
the group of isotopy classes of compact support homeomorphisms of a 2-plane P
which preserves a fixed finite subset K a P.

The determination of the braid monodromy is usually carried out in two
steps. First, for a point x* e D(^) we denote by DXk a small disk of radius ε,
centered at x&. Let fix a point xε

k on the boundary dDε

Xk of this disk and Cx* the
fiber over this point x | . By moving this fiber Cxe counterclockwise along
the boundary of the disk Dε

Xk we obtain a homeomorphism of Cx* into itself,
preserving Cxε Π (€. I gives rise an element of the braid group B[CX*, Cx* Π #]
and will be called the local braid monodromy of ^ at x&.

Next, suppose that D(%>) = {x\,... ,xN}. Let Γ i , . . . , I V be a system of
simple paths in Cλ\D{%>) satisfying

j j

2) Each Γ, connects x0 with xf and Γ, Π D[f€) = 0.
Denote by γέ the element of π\{Cι\D(^)), represented by Γ,.dD^.Γ~ι.

The set of all those γ/s is called a good ordered system of generators of
πι(Cι\D(<V)). To find the braid monodromy θ it suffices to find all e{yt), 1 <
/ < N. Let ̂ (ΓJ be the braid homeomorphism defined over the path Γ,. Then
it is clear that θ(γi) is completely determined by the local braid monodromy at xt

and the braid θ(Γt).
In this paper we will deal with the case when ^ is an arrangement si of n

complex lines in C2 defined by a polynomial of the form ΠΓ=i(3; ~ αϊ'W)

3. Labyrinth

Let s/ be an arrangement of n complex lines in C2. Suppose that each line
Ht e stf is defined by an equation y — a,-(x), where az is a linear function αf : C —•
C. Let Ri(x) = Re(α/(x)) and I^x) = Im(α/(x)). For any 1 < i < j < n, the
subset Ltj of the x-axis C 1 , defined by

J J

is a (real) line in C 1 .

DEFINITION 3.1. We call the set

JS?(Λ/) = {Lιj; \ < i < j < n }

the labyrinth of the arrangement s#'.

Remark 3.2. (i) The notion of labyrinth was introduced by L. Rudolph [15]
for any plane curve. Here we consider it in the arrangement context and call it
by the name labyrinth. This notion was also used by Y. Orevkov in [12], where
he called it the Rudolph's graph.
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(ii) For each line L e 5£{si), there might be / i , . . . , ik with 1 < ί\ < <
i/c < n such that

L = {xeCι Rh{x) = Rlt(x), 1 < s < t < k}.

The number k will be called the multiplicity of L. It is easy to see that after a
suitable change of coordinates we can always assume that the multiplicity of any
line L in S£{si) equals to 2.

Clearly, each line LtJ divides the x-plane C1 into two parts L/~y = {xe Cι;
Ri(x)<Rj(x)} and Lr; = {x e Cι;Ri{x)>Rj{x)}. Each component of Cx\<£ {si)
can be then defined by Rs^ < < Rs^ for a certain permutation s of the set
{1,2,...,«}.

Similarly, for 1 < / <j < n we have the {real) line L\ in C , defined by

L^ = {xeC 1 ; / ί W=/yW}.

This line L'tj also divides C1 into two parts L'£ = {xeCι;Ii(x) < Ij(x)} and
L/j = {XEC1; h{x) > Ij(x)}. These lines L'Uj will help to determine the braid
0(Γι) mentioned in the above section.

In the arrangement context, the points of S(%>) are usually called the
multiple points of the arrangement sd. By definition, a multiple point P of the
arrangement &0 is the nonempty intersection of two or more hyperplanes of stf.
The assumption on the genericity of the projection pr\ implies that the multiple
points of the arrangement si are distinct by their x- coordinates. In other words, the
images of multiple points of si on the x-plane C1 are pairwise distinct.

Let x/c e C1 be the image of a multiple point P& = (x^, yk) of J / under the
projection pr\. Suppose that Pk = f]r

=ιHtj. Then it is clear that xk belongs to
the lines Lϊj)lr, 1 < s < t < r of the labyrinth if(j^). However, there might be
another line L e 3?{srf), which does not belong to {Lls^t\ 1 < s < t < r}, going
through this point xk.

DEFINITION 3.3. (i) The labyrinth <$?{£/) is said to be good with respect to
the multiple point Pk — f]r

=ιHb if there is not any line of J2?(J/) except Lhih;
1 < s < t < r, going through xk.

(ii) The labyrinth <£{stf) of an arrangement J / is said to be proper if any
line of <£{$#) has multiplicity 2 and it is good with respect to all multiple points
of si.

Remark 3.4. After a suitable change of coordinates we can assume that the
labyrinth S£{srf) is good with respect to all multiple points of si. So, from now
on we always assume that the labyrinth <£{stf) of an arrangement si is proper.

4. The braid monodromy of complex arrangement

In this section we will determine the braid monodromy of an arrangement
si — {Ht\ / = ! , . . . , « } of complex lines in C2.
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Suppose that f(x, y) = ΠΓ=i(3; ~~ ai(*)) *s ^ e defining polynomial for si. Let
3P = {Pi,..., PN} denote the set of multiple points of si. These multiple points
pt = (χZ5 y.) are the only singularities of si. Remind that we always assume that
the projection pr\ : C2 —> C 1 is generic with respect to the arrangement si and
the labyrinth <?(s/) is proper. As indicated in the section §1, in order to
determine the braid monodromy of si we have to determine all θ(γi) for a
given good ordered system of generators {)Ί,. •-,)>#} °f ^\{Cι\D{^)). And
these θ(γi)

9s are determined by local braid monodromies at xt and the braid
homeomorphisms defined by moving the fiber of pr\ along a chosen system of
paths Γ,. In [1] and [3], these datas was recorded by using the admissible 2-
graph or its generalization, the braided wiring diagram, respectively. Here we
will read these datas from the labyrinth S£(si) of the arrangement si.

The intersection of CXo = {(*, y)eC2\ x = xo}, the fiber of pr\ over the
base point co, with lines of si, C^ Π ((J^j i/J, consists of n distinct
points. When we move the fiber along a path in x-axis C 1 , these points form a
braid on n strings. We will call the string corresponding to the hyperplane Ht

the ith string. In general these points have distinct real parts. A braiding will
occur when the path intersects a line of the labyrinth £?{si). In order to express
θ(γi) in terms of the braid generator we need to recall of braids and braid groups.

A braid on n strings can be viewed as the graph of the motion of n points on
a complex line from time t = 0 to time t=l, satisfying

(i) These points remain distinct throughout the motion.
(ii) The sets of points at t = 0 and t = 1 are equal. There is a natural way

to compose braids and to take the inverse of a braid. The isotopy classes of
braids on n strings form a group, B(n), called the braid group. It has a
presentation with generators σ\,...,σn-ι and defining relations

σt.σj = σj.σi if \i-j\ >2

σv. σι+\ . σx — σi+\. σt. σi+\,

where the generator σt is illustrated in Figure 1.

i - 1 i n

Figure 1
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For a subset / = {s + 1,..., s + r} of {1,..., n}, we call the "half-twist" on /
(see [2]) the following braid

Δ/ = (σs+\σs+2 - - - σs+r-i) (σs+\σs+2^s+r-i) * (GS+\GS+2) ' σs+\

Geometrically, the half-twist Δ/ can be accomplished by holding the top of
j t h strings fixed, s+l <j<s + r, and attaching the bottom of these strings to a rot
and then turn it over once, while keeping fixed all other strings. See Figure 2.

1 s +r n

The half twist Δj

Figure 2

The pure braid group, P(n), is the kernel of the natural surjection B(ή) —>
S(ή), where S(n) denotes the symmetric group on n letters. It is well known that
P(n) has a presentation with generators

AhJ = σj-χσj-2 ' σj\,

1 < i < j < n, and some certain defining relations.
Suppose that the base point xo e Cι\D(^) is chosen in the component of

Cι\&(s/)9 defined by R\ < -•- < Rn. For a multiple point Pk = (xk,yk)> l e t

j k = {/1?..., iry be the set of all indices of those lines of si passing through P^.
It gives rise a partition of {1,...,«} as S£k U Ju U °Uk, where Sϋ*. — \l\,..., ls},

tfιc = {h,..") ir}> *%k = {u\,..., ut}, as follows. On the x-axis C 1 , all components
of Cx\S£{srf) incident with xk must be of the following form

Rh<. < Rls < Rlσ < ' ' ' <

where σ is a certain permutation of {l, . . . ,r}. We call then the set Ik —
{s+l,...,s + r} the local index of the multiple point P^

LEMMA 4.1. The local braid monodromy of si at Xk is the full twist Ajk on
the set Ik, where AIk = AJk.

Proof We consider the local situation at the multiple point i \ . Let Jk =
{/i,...,/r} as above. Let choose the point xε

k in the component of Cι\J£(si)
defined by ify < < Rιs < Rtι < < Rlr < RUι < < RUr For the sake of
simplicity, the component ify < < Rιs < Rlσ{ι) < < Rh{r) < RUι < < Ru,
will be denoted simply by Rlσ{ι) < < Rlσ{r).
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First we consider the case r = 2. It is illustrated in the Figure 3. We can
choose x\ e L[~l2. Then we move the fiber of pr\ from xε

k to a point in the
component Rl2 < Rh by a path lying in L[~l2. When the path crosses the line
Llul2 of the labyrinth a braid of i{h and if strings occurs. Because the cross
point lies in Ll~l2, the if1 string overcrosses the i£ string at this cross point. Then
if the local index of Pk is (/, / + 1) we will get the braid σt. Now we continue to
move the fiber of the projection pr\ around Xk and back to x | . Because the
path, along which we move the fiber of pr\, must go around Xk, when it crosses
the line Llul2 again the cross point must lie in L^l2 But this time we move from
the component Rl2 < Rh to the component Rh < Rl2. So, once again we get the
braid σt. It implies that the local braid monodromy at Xk is σf = A{hl+\y

x"

Figure 3

Next we consider the case r > 2. As above let 4 = {s + 1,.. ., .s + r} be the
local index of P^. After a suitable isotopy, we may assume that locally at Xk,
the point x\. is chosen in L[~Γ j e {fe, , h}- It implies that when we move the
fiber of pr\ from xε

k to a point in the opposite component of Cx\^{^) at
Xk,Rιr < -" < Rii, the if string will overcross all other ijh strings, 2 < j < r. An
inductive argument shows that we obtain then the half twist A/k on the subset 4 .
We continue to move the fiber of pr\ around the point Xk and back to x | .
Similarly to the case r = 2, here we obtain again the half twist Δ/Λ. It proves
that the local braid monodromy at Xk is the full twist Ajk = Δ^.

THEOREM 4.2. The braid monodromy of <$/ is determined by

Θ{γk)=βk.Ah.β-k\

1 < k < N, where Ajk is determined as in Lemma 4.1, βk is a braid which can be
read off from the labyrinth

Proof We do the global step in the usual way to construct the braid
monodromy (cf. §1). First we need to choose the paths IV For the multiple
point Pk = (xk,yk) tet choose the point x£, near to Xk, as in Lemma 4.1, i.e. in
the component of C 1 \ J ^ ? ( J / ) , given by

Rh < < Rιs < Rl{ < < Rlr < RUχ < < RUr
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Then we take the path Γ^ to be the minimal simple path, going from XQ to
xε

k. Now we will move the fiber of the projection pr\ along this path Γ*. Sup-
pose that the path Yk intersects the line LtJ of the labyrinth S£(srf). Then
we will obtain a braiding of the ith string and j t h string. To express this braiding
in terms of braid generators suppose that locally at this intersection, Γ^ goes from
Rιι<"'<Rιs<Rι<Rj<RUι<"'<RUl to Rιι<"'<Rιs<RJ<Rι<RUι<"'<RUr

Let call as above {s + 1, s + 2} the local index of the intersection of Γ^ and Lh].
Then the braid of the ith string and the j t h string will be σs+\ if Γ& crosses LhJ at
a point in the domain L'r and will be σ~^λ if Γ\ crosses LhJ at a point in the
domain L-+. Recording successively all these braids when the fiber moves from
JCO to xε

k we obtain the braid 0(Γfc). Let Aιk is the full twist of the Lemma
4.1. Denoting the braid 0(I\) by βk we have then the formula for the braid
monodromy of s/

θ{yk)=βk.AIk.β-k\

Note that we can use some formulas on the conjugation of B(ή) on P(ή)
(see e.g. [2], [3]) to express the braid θ(γk) purely in term of pure braid gen-
erators. We will not repeat it here.

Remark 4.3. The use of the lines L[ 's gives us a concrete method to
determine which string is upper and which string is lower in the braiding of ίth

and j t h strings, i.e. to determine precisely all braids in the conjugation in θ(γk).

As noted in [11], the braid monodromy of si is closely related to the
fundamental group of its complement ^\{Cι\\JHe^H). The intersection of
the fiber CXQ of pr\ over xo with hyperplanes of i / consists of n points. Then
CJCO\(CJCO Π ({JHejjH)) is a punctured complex line with n removed points. Let
gu...,gn denote the generators of the free group πι(CXo\(CXoΠ([jHe^H))).
The braid group B[CXo, CXo Π i\JHe^H)] can be naturally considered as a group
of automorphisms of π\(Cl\\JHesfH). Let identify # i , . . . ,gn with their images
in Cl\{JHe<s/H by the homomorphism induced from the embedding CXo\(CXoΠ
({JHESJH)) C C\[jHes/H. Remind that for each multiple point Pk, 1 < k < N
we denote by J>k the set of indices of all lines of stf going through Pk- Then we
have the following corollary (cf. [10]).

COROLLARY 4.4. The fundamental group of the complement to the

arrangement srf, π\(Cι\[jH€^H), is generated by elements g\,...,gn, with the
defining relations

Remark 4.5. From the above presentation of τiι(Cι\[jHes/H) we can

simplify the defining relations to get the presentation given in [6]. If instead of
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the system of I \ ; k = 1,... ,JV we follow the way of Arvola to choose a PL
graph in the x-plane C 1 , by the method mentioned above using the labyrinth we
can also obtain the Arvola's presentation for the fundamental group of the
complement.

COROLLARY 4.6. The labyrinth of an arbitrary arrangement stf in C2 de-
termines the homotopy type of its complement.

Proof According to Libgober [10], the complement of an arrangement si
is homotopy to the standard 2-comρlex modelled on the braid monodromy
presentation of its π\. The braid monodromy presentation of π\ of its com-
plement given in the Corollary 4.4 is determined by its labyrinth. So, the
corollary is proved.
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