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CIRCLES IN RIEMANNIAN SYMMETRIC SPACES

KATSUYA MASHIMO* AND KOJI TOJO

Abstract

We show that every circle in a compact Riemannian symmetic space of rank one is

obtained as an orbit of a one parameter subgroup of lsometπes. We also show that

a homogeneous space with the above property is either a Euclidean space or a

Riemannian globally symmetric space of rank one.

Introduction

Let (M, g) be a Riemannian manifold and V the Riemannian connection of
(M,g). An arc-length parametrized curve c(ή in (M,g) is called a circle if there
exist a unit vector field Y(ή along c(ή and a positive constant k such that

The constant k is called the curvature of the circle. Let {X, Y} be an arbitrary
pair of mutually orthogonal unit vectors in TPM at a, point p e M and A: be a
positive constant. There exists a unique circle c : (—ε,ε) —> M with the initial
condition

c(0)=/>, c(0)=X, (Vέc)(0)=kY

for sufficiently small ε. It is known that in a complete Riemannian manifold
every circle can be defined for — oo < t < oo.

Recently Adachi, Maeda and Udagawa [3] studied the circles in a complex
projective space Pn(C) of constant holomorphic sectional curvature. For in-
stance, they proved that a circle in Pn(C) is characterized by the curvature k and
the complex torsion. Adachi [1] studied the similar problem for a quaternion
projective space and its non-compact dual. Adachi and Maeda also studied
circles in complex hyperbolic space [2]. One of the purpose of this paper is to
generalize their results to circles in compact Riemannian symmetric spaces of
rank one.
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As a part of a theorem in Maeda and Ohnita [8], every circle in a complex
projective space Pn(C) is obtained as an orbit of some one parameter subgroup
of the full isometry group PSU(n+ 1). In this paper we show that a homo-
geneous spaces G/K with the property that every circle is an orbit of some one
parameter subgroup of G is a two point homogeneous space and vice versa.

The authors would like to thank professor S. Murakami for his useful
comments and to professors R. Takagi, S. Maeda and H. Tasaki for their useful
conversations and encouragement during the preparation of this paper.

1. Orbits of one parameter subgroups

In this section we give a necessary and sufficient condition for the existence
of homogeneous circles in Riemannian homogeneous spaces.

Let (M, g) be a Riemannian manifold and c : I —> M be an arc-length
parametrized curve in M. We denote by TQ the parallel translation along c from
c{t) to c(0). There exists a unique curve c* : / —> TC^M which satisfies

^ = 4(c(ή), c*(0) = 0.

We call c*(t) the development of c{t).
We call c(t) a Frenet curve of osculating rank d if {c(ί), V<sc(ί),... V^-Ic(ί)}

are linearly independent and {c(ή, Vcc(ί),... V^c(ί)} are linearly dependent at
each t e I. For a Frenet curve of osculating rank d, if we take the the Frenet
frame {Yu...,Yd} (the orthonormalization of {c(ή, Vέc(t),... V^~ιc{t)}\ we
have the usual Frenet-Serret's formula:

where A is a (d,d)-matrix

/ 0 -K

κ\ 0

0
A =

κ2

0

-κ2

0

\

0 -Kd-\

d-χ 0

and κt (called the i-th curvature function of c(ή) are positive functions. A Frenet
curve of osculating rank d is called a helix of order d if all the curvature functions
are constant. Especially, a helix of osculating rank 2 is a circle.

The following is easily verified.

LEMMA 1.1. A curve c(t) is a Frenet curve of osculating rank d if and only if
its development c*(t) is a Frenet curve of osculating rank d. The i-th curvature
function κx of c(t) is equal to the i-th curvature function K* of c*(t) for any i
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Let (M, g) be a Riemannian homogeneous space such that M is the coset
space of a Lie group G by its compact subgroup K. We denote by g and ! the
Lie algebras of G and K respectively. Take an Ad(K) -invariant decomposi-
tion g = ϊ + p of g. We will write Xp for the p component of X e g. Under
the canonical identification of p with the tangent space T0(G/K) at the origin
o = {K}, the restriction < , > of the Riemannian metric g at o is an Ad(ΛΓ)-
invariant scalar product on p.

For each X e p, we define an element AP(X) e so(p) by

where

Define a linear mapping A : g —• so(p) by

_ Γ ad^, JT G I,

Λ W " \ Λ P ( Z ) , l e p .

We denote by O(M) the bundle of all orthonomal frames on M = G/̂ Γ. An
element X of g generates a one parameter subgroup {exp(tX)} of isometries on
M and a one parameter subgroup of automorphisms {(exp(tX))^} of O(M). We
denote by X the vector field on O(M) induced by the one parameter subgroup of
automorphisms {(Qxp(tX))^}. The connection form ω of the connection on
O(M) which corresponds to the Levi-Civita connection is given by

ω(X)=A(X), l e g ,

(cf. [7], Vol. II, p. 201).
Now we prove the following theorem.

THEOREM 1.2. Let G be a connected Lie group and K be a compact subgroup.
Take an element V of the Lie algebra g of G. The development c*(ή of a curve
c(ή — π(exp(tV)) in M = G/K is given by

Proof. Take an orthonormal frame «o of M at o = eK. By a proposition
([7], Vol. I, p. 104), the horizontal lift v(ή of c(t) in O(M) with v(0) = u0 is given
by

Thus the parallel translation τf : Tcφ)M —> Tc(t)M is given as follows (cf. [7], Vol.
I, p. 114),

τ,<Vπ(Z)) =
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From the definition of the development, we have

Thus we have

L c*(ή =
ai

Integrating both sides of the above equation, we obtain the desired result. •

From Lemma 1.1 and Theorem 1.2, we easily obtain the following

THEOREM 1.3. Let (G/K, < , » be a Rίemannian homogeneous space and g, I
and p be as above. Let {X, Y} be a pair of mutually orthogonal unit vectors in p
and H be an element of ϊ. The orbit c(t) = π(exp t(H + X)) is a circle in
(G/K, < , » of curvature k(>0) with the initial condition

c(p) = X, (Vέc)(0)=kY

if and only if the following holds:

A(X)(X) = [H,X]+AV(X)(X) = kY,

A(X)(Y) = [H, Y]+AV(X)(Y) = -kX.

COROLLARY 1.4. Let (G,K) be a Riemannίan symmetric pair and (9,!) be
the corresponding orthogonal symmetric Lie algebra. Let {X, Y} be a pair of
mutually orthogonal unit vectors in the standard complement poft in g. The orbit
c(t) = π(expt(H + X))(H e ϊ) is a circle of curvature k(>0) in the Rίemannian
symmetric space {G/K, < , » with the initial condition

c(0) = X, (Vέc)(0)=kY

if and only if the following holds:

(1) [H,X\=kY, [H,Y] = -kX.

2. Circles in symmetric spaces of rank one

In this section, we study circles in Riemannian symmetric space of rank one
using Corollary 1.4.

THEOREM 2.1. Let M = G/K be either a Euclidean space or a Riemannian
symmetric space of rank one. We denote by (g,!) the corresponding orthogonal
symmetric Lie algebra and by p the orthogonal complement of I in g.
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(i) Let σt (i — 1,2) be 2-planes in TOM and {Xt, Yt} be orthonormal basis of
Gi. There exists an element k e K with k(X\) = Xι and k(Y\) = Yi if and only if
the sectional curvature Kσχ and Kσi are equal to each other.

(ii) For any pair of mutually orthonormal unit vectors {X, Y} in p there exists
an element H el which satisfies the equation (1). Namely, any circle in M is
expressed as an orbit of a one parameter subgroup of the full isometry group.

As a consequence we have the following congruence theorem of circles.

COROLLARY 2.2. Let M be either a Euclidean space or a Rίemannian
symmetric space of rank one. Let Ci(t) (i = 1,2) be circles in M ematating from
o. We denote by kt the curvature of Cj(t) and by Kx the sectional curvature of the
plane spanned by σ, (0) and (VC/c;)(0). Two circles c\(t) and C2(t) are congruent to
each other if and only if k\ = kι and K\ = K2 hold.

Remark. Let c(t) be a circle in a Complex projective space (resp. qua-
ternion projective space) M and τ be the complex torsion defined in [3] (resp. the
structure torsion defined in [1]). The sectional curvature K of the plane spanned
by c(0) and (Vcc)(0) is given by

where ko is the minimum of the sectional curvature of M.

Proof of Theorem 2.1. If M is the Euclidean space the assertion (i), (ii) are
trivial.

Let c(t) be a circle of curvature k( φ 0) in M = G/K with c(0) = o and put

(2) * = c(0), Y=(l/k)Vxc.

If there exists H el which satisfies (1), then the orbit exp(t(H + X)) o is the
circle of curvature k which satisfies (2). By the uniqueness of the circle we have
c(t) = exp(t(H + X)) - o. Without loss of generality, we may assume that M is
compact and simply connected. The case in which M is a sphere is trivial. The
case in which M is a complex projective space is a part of the result by Maeda
and Ohnita [8]. So we shall prove the theorem for quaternion projective space
and Cayley projective plane. The following proof for quaternion projective
space is valid for sphere and complex projective space under a slight modification.

CASE Pn(Q). Put

G = Sp(n + 1) = {g e Mn+ι (Q) : gg* = /},

(ή) = {(q,g):qeSp(l),geSp(n)},

We denote by g and I the Lie algebras of G and K respectively. We denote by m
the orthogonal complement of I in g with respect to the inner product on g
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defined by <JT, Y} = -(1/2)trace(X'7), ( J f j e g ) . Under the canonical
identification

0 -qx . . . - §

ϊ i 0 . . . 0

, o ... o
the adjoint representation K on m is as follows;

ι=l

, £ = [gfιy] e Sp(ή),qi G β.

Since *S/?(Λ) acts transitively on the unit sphere in Qn, we may assume that
X = [1,0,..., 0]. Similarly by the action of

Sp(n-l) = {geSp(n):gX = X}

on Qn we may assume Y = [w, έ, 0, . . . , 0] where u + w = 0 and Z> > 0. For an
element qeSp(\) we put

/ =

It is easily seen that Ad(l)(X) = X and Ad(/)( Y) = [quq, b, 0, . . . , 0]. The group
Sp{\) acts transitively on the unit sphere in Ri + Rj + Rk by x —• g α/, we may
assume that

The sectional curvature of the plane spanned by X and 7 is equal to
4 — 3&2. Thus we have (i).

If we put

H = k

0 0 0

0 ύz -ft

0 b -ia

0 0 0

then we have (1).

CASE P2(<£). Take an orthonormal basis
algebra (£ such that

= l1eι,...,eη} of the Cayley
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exe4 = e5, e\e6 = eΊ, e2e5 = e7

= e6.

We put

$0 = {u e £ : u + ΰ = 0}

where denotes the conjugation J^ o α/̂ - = aoeo — J^j α/̂ /.
Let Gy (0 < /,7 <Ί,iφ j) be a skew-symmetric transformation on (£ defined

by Gy(eic) = ̂ ^ / —^ik^j (0 < k < 7) and define skew-symmetric transformations
i7// (0 <ij <Ί,iφ j) on (£ as follows;

Then a linear mapping π : so(8) —> so(8) with

is an automorphism on so(8) of order 2. Define a linear mapping K : 50(8) —>
SO(8) by

(κD){x) =m, De 50(8), x e (£.

We denote also by JC the differential mapping of K and put v = π o K :
so(8) ^ so(8).

LEMMA (Principle of triality [4], [5]). (i) Let D\ be an element of so(8).
exist D2, D3 e so(8) wλ/cλ satisfy

(Dix) y + x(/>2^)

Furthermore D2 and D3 ^r^ uniquely determined from D\. Namely

(ii) i w α«ĵ  αi G 50(8), there exist cc2icc3 e 50(8) which satisfy

ccχ(x)ot2(y) =

The following isomorphisms of Lie groups are known ([5])

^ {(αi,α2,α3) e (5O(8))3 :

Spin{l) ^ {αi G 5O(8) : 3 α 2 G 50(7) s.t. oc\(x)oί2(y) = oc2(xy)}-

For ξ = {ξ\,ξ2iζ3) G R3 and u = {u\,u2,u->) e (£3, we denote by X(ζ,u) the
matrix

"\ u3 ΰ
3 ξl U

U2 U\ ξ
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The group of automorphisms of the Jordan algebra

with the Jordan product

XoY= (l/2)(XY + YX), X, Y e 3,

is the compact simple Lie group of type f4;

F4 = {α G Isom*(3) : *(X o Y] = a{X) o α(7), X,Ye 3}.

The group G = F4 acts transitively on the Cayley projective plane;

P2((£) = {Xe%:XoX = X, trace(JT) = 1}.

Take 3-elements

• \

0

.0

0

0

0

(Γ

0

0.

, E2 =
•o

0

.0

0
1

0

<r
0

0.

£3 =
0

0

.0

0

0

0

(Γ

0
1.

of P2((£) and denote by Kt (i = 1,2,3) the isotropy subgroup in F4 at the ele-
ment Et (i = 1,2,3). The subgroup K, (i = 1,2,3) is isomorphic to Spin{9). We
denote by H the intersection K\ Π Ki Π £3 and by I) the Lie algebra of H. We have
an isomorphism φ : Spin(S) —> i/ defined by

ί l 0C2(M2)

and the isomorphism

φ* : {(DUD2,D3) :

defined by

^(Z>i,Z>2,Z>3)

ζΔ

0 D3u3 D2u2

D3U3 0

0

Remember that k o π = v2. We put

0 u3 -ΰ2

-ΰ3 0 u\ : wi, w2, W3 G <

M2 -wi 0

and for each A e 501" define a homomorphism 4̂ : 3 —* 3 by

AX=[A,X] VXeS.
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The Lie algebra f4 is decomposed as follows

For a Cayley number x e (£ we put

Γ 0 0

0 0

0 -x

Λ2{x)

ΓO 0 - j

0 0 A3(x) = -x 0 0

0 0 0

0

Lx 0 0

and write Ai(x) for Ai(x) (1 < / < 3). The Killing form B on f4 is given by

3

B(X, X) = -9

where X — φ*(D\,D2,D3) + Y^ι=x Ai(ui) e f4. We denote by < , > the invariant
Riemannian metric on the Cayley projective plane induced from the inner
product —(1/72)5 on f4. We have the following relations;

(3) = -Al+2(ab), [φ,{Dλ,D2,Di),Ai{aj\ = A,(D,a)

where indices in the first relation are considered modulo 3. The tangent space at
o = E\ of the Cayley projective plane is identified with

T0(P2(<ί)) = {A2(x) + A3(y) : x j e C}.

Since the action of K = Kλ ^ Spin(9) on the unit sphere S 1 5 in T0(P2(<ί)) is
transitive we may assume that X = ̂ 2(^0). The isotropy subgroup at ^2(^0)
of the action of Spin{9) on S15 is isomorphic to Spin{l). Under the isotropy
representation of Spin{Ί), the tangent space TχSλs is decomposed into two
irreducible components;

{A2(x):xG(ίo}®{A3(y):ye(ί}.

Since the action of Spin{l) on {A^{y) : y e (£} is transitive we may assume that

J() > 0. Consider the subgroup

: k(A2(e0)) = A2(e0), k(A3(e0)) =

Y = A2(a) +

Since i/ ' is isomorphic to the exceptional compact simple Lie group G2 and it
acts transitively on the unit sphere Sβ in {A2(x) : xe&o}, we may assume that
Y = A 2 ( a e \ ) + A3(be0) ( a 2 + b2 = I , a > 0,Z? > 0 ) . F o r e a c h w e ί w e d e f i n e
three linear endomorphisms Lu, Ru and Tu on (£ by

Lu(x) = ux, Ru{x) = xu, Tu(x) = ux + xu.

If u e £0, then LM) Ru and ΓM are elements of so(8). By a direct calculation, we
have

, Y] = - ^ ( R - 2 a e ι ,
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and the sectional curvature of the plane spanned by X and Y is equal to
4 - 3b2. Thus we have (i).

Put α = ae\ and

Dx = - Γ α , D2 = vDx = Lα, D3 = v2D{ = iία.

For H = k(φ*{Dχ,D2,D3) - A\(beo)) e t, we have from (3)

[H,X] = k(A2(D2(e0)) + A3(be0)) = kY,

[H, Y] = k(A2(D2(aeχ) + b(-be0)) + A3(D3(be0) - aeλ(be*)))

= -kX. D

Remark. The maximum of the sectional curvature of (P 2 (£), < , » is equal
to 4.

PROPOSITION 2.3. Let M be the complex projectίυe space Pn(C), the qua-
ternion projective space Pn(Q) or the Cay ley projectίυe plane P2(&) equipped with
a canonical invariant metric. For any circle c{t) of curvature A:(#0), there exists
a totally geodesically embedded complex projective space P2(C) which contains the
circle.

Proof. The case that M is the complex projective space or the quaternion
projective space is trivial. So we shall prove the Proposition for the case of
Cayley projective plane.

We retain the same notation as in Theorem 2.2. If we put

Si = Ai(e{>), T^Mex) (\<ί<3)

we have

[S/jSi+l] — ~[^ι> ^H-l] = —$+2, [Si, Tι+χ) = [Tt,Si+\] = Tι+2

where the indices are considered as modulo 3. Since {2^(G,y, vGy, v2G,y) : 0 <
i < j < 7} is an orthonormal basis of ί), it is easily verified that

The subspace spanned by {Goi, G23, G45, Gβi} in so(8) is invariant under the
automorphism v. Thus the subspace s spanned by {S2,S3,T2,T3} is a Lie triple
system and [s,s] + s is isomorphic to su(3). Let U be the subgroup of F4 of
which Lie algebra is [s, 5] + s and Λ̂  be the totally geodesic submanifold gen-
erated by the Lie triple system 5. It is clear that N is diffeomorphic to P2{C)
and contains the circle {c(ή}.
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THEOREM 2.4. Let M be a complex projective spaces Pn(C), a quaternion
projective space Pn{Q) or a Cay ley projective plane P2((£). Equip M with the
canonical invariant metric such that the maximum of the sectional curvature is
equal to 4. Let c(ή be a circle with curvature k(φθ) in M. We denote by K the
sectional curvature of the tangent 2-plane spanned by c(0) and (Vcc)(0).

Case K = 4:
2π/Vk2+4.
Case K= 1:

The circle c(t) is a simple closed curve with prime period

The circle c(t) is a simple closed curve with prime period

Case K # 1,4: Suppose that ot\, α2 #«d α3 (αi < 0C2 < 0L3) be nonzero solutions of
the equation;

λ3 - (k2 + i μ - ky/(K - l ) / 3 = 0.

Γλeft ίλe c/Vcfe c(t) is closed if and only if one of the three ratios QC1/0C2, ^2/^3 ond
oc3/oc\ is rational. Moreover, the prime period of c(t) is the least common multiple
of 2π/(cc2 — (X3) and 2n/(oci - oc\).

Adachi, Maeda and Udagawa [3] proved the theorem for the case that M is
the complex projective space. From Proposition 2.3, the theorem is a direct
consequence of their theorem. We shall give another proof.

Proof For any circle c(t) of curvature k in M, we can take a totally
geodesically embedded submanifold P2{C) which contains the circle. Thus we
assume that M = P2(C).

Take any circle c(t) in P2(C). Without loss of generality we may assume
that c(0) is the origin [1,0,0]. There exist real numbers a,b e R(a2 + b2 = 1)
such that c(t) is the orbit of the one parameter subgroup exp(t(kH + X)) for

H =

0 0 0

0 ia -b

0 b -ia.

X =

0 - 1 0

1 0 0

0 0 0

CASE a = 0 or 1. In this case there exists a totally geodesically embedded
submanifold P2(R) or Pι(C) = S2 which contains the circle. Thus the assertion
of the theorem is trivial.

CASE abφΰ. We denote by /αi, ioni and /0C3 the eigenvalues of kH + X,
namely oc\, 0C2 and 0C3 are the solutions of the characteristic equation;

\(kH Λ-X)- iλl\ = i(λ3 - λ(k2 + 1) - ak).

Since the sectional curvature K of the 2-plane spanned by X and [H, X] is equal
to 3α2 + 1 we have a = y/(K- l)/3.
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Remember that the solutions of the above equation are mutually distinct.
Take a unitary matrix U which diagonalize the matrix V = kH + X;

uvu~ι =
iθLχ 0 0

0 ια2 0

0 0 ioc3

By an easy calculation we can show that none of the entry of the eigenvector
of V (accordingly none of the entry of U nor U~ι) is zero. Thus none of the
entry of the matrix

Z= U
1
0

.0

0
0

0

0"
0

0.
u

- 1

is zero.
We denote by Sym3(C) the set of all 3 x 3 complex symmetric matrices and

by E\ the element of Sym3(C) whose (1,1) entry is equal to 1 and other entries
are zero. The mapping SU(3) —• Sym3(C); g ι-> gE\g~x induces an embedding
i: P2{C) -+ Sym3(C). The image of the circle c(ή = exρ(/F) o is

ι(c(ή) =

where

\tCL\

0

0

0
pit 3-2

0

0
0

git,

If we assume that c(0) = c(t) then ι*(c(0)) = ι*(c(ή). Namely c(t) is a simple
curve. It is easily seen that the condition c(0) = c(ή is equivalent to the
condition

(ai-0Lj)te2πZ (1 < ij < 3).

The assertion of the theorem is an immediate consequence. D

3. Circles in homogeneous spaces

We devote this section to a proof of the following theorem.

THEOREM 3.1. Let (M,g) be a Riemannian homogeneous space and k be a
positive constant. If all the circles of curvature k are orbits of one parameter
subgroups in the isometry group of (M, g) then (Λf, g) is either a Euclidean space
or a Riemannian globally symmetric space of rank one.

Proof The Only i f part of the theorem is the assertion of Theorem
2.1. In the following we prove the 'if part.
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Suppose that all the circles in (G/K, < , » are orbits of one parameter
subgroups in G. Let {X, Y} be an arbitrary pair of mutually orthogonal unit
vectors in p. Take two circles c\ and ci emanating from 0 = eK which satisfy
cxψ) = c2(0) = X and (VCl(h)(0) = -(VC2c2)(0) = kY. From Theorem 1.3, there
exists elements H\ and H2 in ! such that the following hold.

[HuX}+Ap(X)(X)=kY,

[H2,X]+Λp(X)(X)=k(-Y).

Thus for H = (l/2k)(Hχ - H2), we have

(4) [H,X\=Y.

To prove the theorem we shall show that the linear isotropy group Ad(K)
acts transitively on the unit sphere S(p) in p ([6, p. 535]).

Consider the mapping φ : K —> S(p) by φ(k) = Ad(k) X. Since K is
compact, φ(K) is closed in S(p).

For each ko e K, identify the tangent space Tφ^Sζp) with {Ad(ko) * Y\
Y e p, Y _L X}. The differential mapping of φ, given by

{dφ)h (H) = Ad(k0) -[H,X], He ϊ,

is surjective for any ko e K by (4). Therefore, from the implicit function
theorem, we can see that Ad(K) X is open in S(p). Consequently we have
Ad(K) - X = S(p). D

Considering the proof of Theorem 3.1, we have the following.

COROLLARY 3.2. Let (M,g) be a Riemannian homogeneous space and
p e M. Then there exists a vector X in TPM such that all the circles c(i) in
(Λf, g) with c(0) = X are orbits of one parameter subgroups in the isometry group
of (M, g) if and only if (M, g) is two-point homogeneous.

REFERENCES

[ 1 ] T. ADACHI, Circles on quaternionic space forms, J. Math. Soc. Japan, 48 (1996), 205-227

[ 2 ] T. ADACHI AND S. MAEDA, Global behaviour of circles in a complex hyperbolic

space, Tsukuba J. Math., 20 (1996), 29-42.

[ 3 ] T. ADACHI, S. MAEDA AND S. UDAGAWA, Circles m complex projective space, Osaka J.

Math., 32 (1995), 709-719.

[ 4 ] H. FREUDENTHAL, Oktaven, Ausnahmegruppen und Oktavengeometπe, Geom. Dedicata, 19

(1985), 7-63.

[ 5 ] R. HARVEY, Spinors and Calibrations, Academic Press, 1990.

[6] S. HELGASON, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press,

1978.

[ 7 ] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry I, II, Interscience,

1963.



14 KATSUYA MASHIMO AND KOJI TO JO

[ 8 ] S. MAEDA AND Y OHNITA, Helical geodesic immersions into complex space froms, Geom.
Dedicata, 30 (1989), 93-114.

DEPARTMENT OF MATHEMATICS

TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

FUCHU, TOKYO 183-0054

JAPAN

DEPARTMENT OF MATHEMATICS

CHIBA INSTITUTE OF TECHNOLOGY

SHIBAZONO, NARASHINO, CHIBA 275-0023

JAPAN




