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UNICITY THEOREMS FOR MEROMORPHIC FUNCTIONS

SHARING FOUR SMALL FUNCTIONS

KATSUYA ISHIZAKI AND NOBUSHIGE TODA

Abstract

Let / and g be transcendental meromorphic functions in the complex plane having

properties N(r, f) < uT(r, f) + S(r, f) and N(r, g) < vT(r, g) + S(r, g) for some con-
stants u and v satisfying (u,v) e [0,1/19) x [0,1/19). If there exist four distinct small

meromorphic functions shared by / and g, then f = g.

1. Introduction

Let f(z) be a transcendental meromorphic function in the complex plane and
let S(f) be the set of meromorphic functions a(z) in the complex plane which
satisfy

T(r,a) = S(r,f),

where S(r,f) is any quantity satisfying

S(r,f) = o(T(r,f))

for r —• oo except possibly a set of r of finite linear measure. Such a mer-
omorphic function a(z) is said to be small with respect to /. Note that S(f) is a
field.

We put for α e S ( / ) U { o o }

E(f = a) = {z:f(z)-a(z)=O],

where /(z) - oo means l/f(z).
Throughout the paper we shall use the standard notation of the Nevanlinna

theory of meromorphic functions ([4], [5]) and the followings.
For a positive integer k let
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be the number of zeros of/with order <k (resp. >k) counting multiplicities in
\z\ < r and put for r >0

Nk) v 1) = I t dt+nk) V0' 7 7 l o g r

Similarly for a positive integer k let

nk)\r,j\ (resp. ft

be the number of zeros of/with order <k (resp. >k) ignoring multiplicities in
z\ < r and put for r >0

tΔ -nk (o,

(resp.

The truncated counting function Nk(r,\/f) is defined by

Then, N(r,l/f)=Nι(r,\/f).
Let / and g be two transcendental meromorphic functions in the complex

plane. The following "Unicity Theorem" is well-known:

UNICITY THEOREM OF NEVANLINNA. If for five distinct elements a\,... ,a5 e
CU{oo}

then f = g ([5], p. 109; see also [4], p. 48).

This theorem is proved by making use of Lemma l(a) given in Section
2. This theorem is sharp ([5], p. 111). It is quite natural to ask whether it
is possible to extend this theorem to the case when a\,..., as belong to
{£(/) Π S(g)} U {oo} (see [1], [6]). Since there is no result similar to Lemma l(a)
for αi, . . . ,aq e S(f) U {oo}([2])? this problem is not easy to solve.
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Several results on this problem are known (see [7], [8]). For example, for
a,beS(f) such that 0,1,a,b are distinct and one of a and b is not constant,
Q.D. Zhang ([8]) used the determinant

/ / ' / '
aaf a1

bV b' b2-b

aaf a1 a2 — a

to prove the following

THEOREM A. Let f and g be two transcendental meromorphic functions in
the complex plane. If for six distinct elements a\,..., aβ e {S(f) Π S(g)} U {oo}

then, f = g {Theorem 2 in [8]).

It is said that / and g share a if E(f = a) = E(g = a) for a meromorphic
function a in the complex plane.

The purpose of this paper is to consider the unicity theorem from a slightly
different point of view. We shall give some unicity theorems for transcendental
meromorphic functions sharing four distinct small meromorphic functions and
satisfying some conditions on the counting functions of poles. For example, the
following proposition is a special case of Corollary 1.

PROPOSITION. Let f and g be transcendental meromorphic functions in the
complex plane satisfying

N(r, f) < uT(r, f) + S(r, f) and N(r, g) < uT(r, g) + S(r, g)

for a constant u in [0,1/19).

If there exist four distinct functions ai,a2,«3,«4 in S(f)Γ\S(g) such that

' E(f = aj) = E(g = aj) (7 = 1,2,3,4),

then f = g.

Note that / and g do not always share oo.
As a corollary, we shall give a unicity theorem for meromorphic functions

sharing five distinct small meromorphic functions.

2. Preliminary and lemma

(I) We shall give some lemmas first.

LEMMA 1. Let f(z) be a transcendental meromorphic function in the complex
plane. Then we have the following inequalities:
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(a) For q elements a\,... ,aq e CD {00} (q < 00),

(q-2)T(rJ)<

(b) For three distinct elements a\,a2 and a^ e S(f) U {00}

T(rJ)<

(c) For five distinct elements a\,...,as e S(f) U {00}

for any j , k (1 < j φk< 5).

Proof of Lemma 1. (a) and (b) are famous inequalities given in [5]. We
can easily obtain (c) from (b). In fact, for any fixed 1 < j φ k < 5 we apply (b)
to ai,aj,ak (1 < / < 5,/ φ j,k) to obtain the following three inequalities

T(r, f)<N (r, -X-) +NU-X

By adding them side by side we obtain (c). •

LEMMA 2 ([8]). Let f(z) be a transcendental meromorphic function in the
complex plane and let a\,... ,a$ be five distinct elements of S{f) U {00}. We then
have the following inequality:

2T(rJ)

LEMMA 3 ([3]). Let f(z) be a transcendental meromorphic function in
\z\ < 00. Then for any q distinct elements a\,... ,aq e S(f) (2 < q < 00) the

following inequality holds:

(q-l)T(rJ)< Y^NJ^-A-) +mN{rJ) + S(r,/),
7=1 V J aJ/

where m is the number of elements of a maximal linearly independent subset of
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Proof of Lemma 3. This is essentially contained in the proof of Theorem in
[3]. Let {b\,...,bm} be a maximal linearly independent subset of {a\,...,aq}
and put

L(f)=W(bu...,bmJ),

where W(b\,...,bm,f) is the Wronskian of b\,... ,bm,f. Then L(f)Φ0 as
b\,...,bm and / are linearly independent. The relation ([3], pp. 80-81)

where Ajs are small with respect to /, and the inequality ([3], p. 81)

m r> Σ JZJ) * τ^ ft+mN^ ft~N (r' z ^ j ) + 5<r> ft

hold. Combining these relations we obtain the inequality

- nr,f)+mN(r,f) - N(r>Ί^) +S(r,f).

We add ]ζLi N(r, l / ( / - Λ,-)) to both sides of this inequality, then due to the first
fundamental theorem of Nevanlinna we obtain the inequality

7 = 1

since

τ -a J v M M / — v r -f l / D

7 = 1

LEMMA 4. Le/ / and g be nonconstant meromorphic functions in \z\ < oo
satisfying

if)2 _ (^')2

/(/-I) 0(0-0"

ΓAen, Γ(r,jr) = Γ(r,/) + O(l).

Proo/ of Lemma 4. Put F = 2/ - 1 and G = 2g - 1. Then from (1)

W F^^Λ = G2 - 1'
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We denote by A the common function in (2). Then, we have

Differentiate them to obtain

AL

As F1 φ 0, G' φ 0, we have

2F"A-FΆ' „ Λ 2G"A-GΆr ^
_ _ _ _ = 2 F a n d _ _ _ — = 2G.

We add them side by side to obtain

(4) 2(f" + g 'V-(r + G κ

We multiply (4) by F' + G; to have

(5)
V A

and integrate (5) to obtain

(6) ^±β
where c' is a constant. From (3) and (6) we have

(7) -j?- = FG + C:

where c = c ' /2+l . Eliminating A,F' and G; from (3) and (7) we have

that is to say,

(8) F2 + 2cFG + G2 = 1 - c2.

(a) When c = 1, G = - F ; namely, 0 = 1 — / and we have T(r,g)

(b) When c = - 1 , G = F; namely, g = f and we have T(r,g) = T(r,f).
(c) When c2 φ 1, we divide (8) by G2 to obtain

F\2 . F . 1 - c 2

, ) G
and

(9) 2Γ(r, G) = 2 r ( r , ± ) + 0(1) = 2r f r ,^) + 0(1).
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By symmetry we also have

(10) 2Γ(r,F) = 2τ(r,j) + 0(1) = 2

Since T{ryF/G) = T{r,G/F) + O(l), we have from (9) and (10)

Γ(r,0) = Γ(r, G) + 0(1) = Γ(r,F) + 0(1) = Γ(r,/) + 0(1). D

(II) Let f(z) be a transcendental meromorphic function in the complex plane
and let a,b be distinct elements in S(f) such that 0, l,α and b are different from
each other and such that at least one of a and b is not constant and put

/(/-i) if')2 ff
a{a-\) (a')2 aa'

b{b-\) (b'f bb'

Then, we have the following

LEMMA 5. If Δ/ φ 0, we have the inequality

Proof of Lemma 5. As in the proof of Lemma 2 in [8], we put

δ{z) = l- min{l, \a(z)\, \b(z)\, \a{z) - 1|, \b(z) - 1|, \a(z) - b(z)\}

and

θj{r) = {0<θ<2π: \f(reiθ) - rf;(re

w)| < δ(reiθ)},

where Λ?I = 0, J2 = 11 d-$ = a and dt, = b. Then,

(see [8], p. 828).
We note that

(12) / / ' - aa' = (/ - a)W - a') + a'(f - a) + a(f - a'),

(14) (/')2-(β')2 = (/'-β')(/' + fl'),

(15) / = / _ β + β ;

(16)
f -^
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When Θeθ3(r)

\f(reiθ) -a{reiθ)\ <δ{reiθ) < \a{rew)\

and we have from (12) through (16) that for a positive constant K

Af{reiθ)

357

(17)
2πJ θ j ( r )

f(reίθ) - a{rei{ dθ<K{m[r

and from (17) and (11) that

(18)
f-a

<^[ log

+ m(r,a)

+ m(r, b) + m(r, a') + m(r, b') + 1

= S(r,f)

Af(reiθ)

f(reiθ) - a{reiθ)

1

dθ

dθ

< i- I log4 1

A/ire*

0(1)

S(r,f).

(19)

(20)

(21)

As in the case of (18), we have the following inequalities:

1

n(r,Λ<—\ log4

Af{reiθ)

1

ά f log+

Af(reiθ)

1

dθ + S{r,f);

dθ + S(r,f);

dθ+S(r,f).
Af(reiθ)

According to the definition of θj(r), the sets

θi(r)nθj(r) {\<iΦj<4)

consist of at most a finite number of elements, so that we have the inequality

ΐ ) +S{rJ)
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from (18), (19), (20) and (21) and by adding the quantity

7Γ 17-iΓ V7-«Γ 17-*
to both sides of this inequality we have

(22) 4T(r,f)<N(r±)+N(r,-J—)+N[r,-
fj V 7 - M V'/-«

By the first fundamental theorem of Nevanlinna

(23) W (''*/) = Γ ( r ' Δ / ) ~ Nir'I})
and by the definition of Δ/ we have

m(r,Af)<2m(r,f) + S(r,f),

N(r,Af) < 2N{rJ) + 2N(r,f) + S(rJ)

and so

(24) Γ(r,Δ/) < 2Γ(r,/) + 2N(r,f) + S(r,f).

Further, as

-0{n(r,a) + n(r,b)},

we have

(25) N(r,±-
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From (22), (23), (24) and (25), we have the inequality

359

(26) 2T(r,f)
1

N[r,
1

N(r, 2N(r,f) + S(r,f). D

LEMMA 6. If Δ/ = 0, then following relations hold:

(a) Nλ)(r,jj=S(r,f),

(b) N{2(r,
1

= S(r,f),
' / - I

(c) N(r,f) = S(r,f).

Proof of Lemma 6. Since Δy = 0,

- l ) α ( α - \)b{b-\)

rt\2
Ϋ f

f(f
{a

a{a

{b
b(b

- i )

' ) 2

- i )

'Ϋ
- i )

/

a

b

-

a'

-

b'

—

1

1

1

= 0

and we have

(27)

( [f'Ϋ (a') b1 a1 f
\f(f-l) a{a-\))\b-\ a-\) \f - 1 a-\)\b{b-\) a{a -

Since a e 5 ( / ) , note that by Lemma 4

ri\2

(28)

and that

(29)

Then,

/(/-I) a(α-l)

b-\ a-\

/-i

and

In fact, if one of them does not hold, then the other also does not hold by
(27), (28) and (29) and we have a = b, which is a contradiction.
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(a) If Nη(r, 1//) φ S(r,f), there is a point zo which is a simple zero of/
and satisfies

0,l,oo; 6 ( z 0 ) # 0 , l , o o ; (-^-j - -^—λ (z0) # 0;

The left-hand side of (27) has a simple pole at zo and the right-hand side of
(27) is regular at z0. This is a contradiction. We have (a) of this lemma.

(b) If JV(2(r, l / ( / - 1)) Φ S(r,f), there is a point z0 which is a zero of / - 1
of order at least 2 and satisfies (30). Then the left-hand side of (27) is regular at
zo, but the right-hand side of (32) has a pole of order 1. This is a contra-
diction. We have (b) of this lemma.

(c) If N(r,f) φ S(r,f), there is a point z 0 which is a pole o f / a n d satisfies
(30). The left-hand side of (27) has a double pole at zo and the right-hand side
of (27) has a simple pole at zo. This is a contradiction. We have (c) of this
lemma. •

(III) Further we shall give a lemma for later use.

LEMMA 7. Let f and g be two transcendental meromorphic functions in the
complex plane satisfying

N(rJ) = S(rJ) and N(r,g) = S(r,g).

We suppose that there are four distinct meromorphic functions a\,... ,04 in S(f) Π
S(g) satisfying the condition

E(f = aj) = E(g = aj) (/ = 1,2,3,4).

Then the following relations hold:
(a) T(r,g) = T(r,f) + S(r,f) and S(r,g) = S(r,f).
(b) If fφg, then

Proof of Lemma 7. (a) is trivial when / = g. We prove (a) and (b) when

fφg
(a) By Lemma 2 for as — 00, we have

(31) 2T(r,f) <
,=1
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and so

(32) T{rJ)<T{r,g) + S{rJ).

By symmetry, we also have from (32) that

(33) T(r,g)<T(rJ)+S(r,g).

From (32) and (33) we have (a) in this case.
(b) By (a) and (31) we have (b) immediately. •

3. Theorem

In this section we shall prove several unicity theorems for transcendental
meromorphic functions in the complex plane sharing four distinct small mero-
morphic functions and satisfying some conditions on the counting functions of pole.

THEOREM 1. Let f and g be transcendental meromorphίc functions in the
complex plane. Suppose that there are four distinct elements a\Ja2,a3,a4 e CU
{oo} satisfying

(34) E(f = aj) = E(g = aj) (j -1 ,2 ,3 ,4) .

If there exists an element as in CU {oo} — {tfi,α2,03,04} satisfying

(35) N (V, j±-j < uT(r, f) + S(r, f)

or

(36) N (r, —^—) < uT(r, g) + 5(r, g)

for some u e [0,1). Then, f — g.

Proof of Theorem 1. We may suppose without loss of generality that
a\,..., 04 are in C and 05 = 00 by considering a suitable linear transformation if
necessary.

Now, suppose that (35) holds and that f Φ g. By Lemma l(a) for q = 5,
(34) and (35) we obtain

+uT(r,f) + S(r,f)

< T(r,f) + T(r, g) + uT(r,f) + S(r,
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which reduces to

(37) (2-u)T(r,f)<T(r,g) + S(r,f)

and similarly we obtain

(38) T(r,g)<T(r,f) + S(r,g).

From (37) and (38) we obtain that S(r,f) = S(r,g) as 0 < u < 1 and that

(2-u)T(r,f)<T(r,f) + S(r,f),

which arrives at a contradiction

(l-u)T(rJ)<S(rJ)

since 1 — u > 0 in this case. This shows that / = g must hold.
Similarly we obtain the same conclusion when (36) holds. •

THEOREM 2. Let f and g be transcendental meromorphic functions in the
complex plane. Suppose that there are four distinct elements #i,#2,#3,#4 e S(f) Π
S(g) satisfying

(39) E(f = aj) = E(g = aj) (7= 1,2,3,4)

and suppose that there exist aj, ak e {a\,ai^a^^a^} (j Φ k) such that

c — aj d — aj
a = and b = J-

are constants, where {c,d} = {#i,tf2>#35*24} — {#/>#&}•
If either

(i) N(r, f) < uT(r, f) + S(r, / ) or (ii) N(r, g) < uT(r, g) + S(r, g)

holds for some constant u e [0,1), then f = g.

Proof of Theorem 2. Put F = (f - aj)/{ak - aj) and G = (g - aj)/(ak - aj),
then 0, l,α,b are distinct and we obtain the relations

T(r,F) = T(r,f) + S(r,f), N(T,^ = N^j^j + S(r,f),

r'fϊ> N(r,F)=N(r,f)+S(r,f)
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and

S(r,F) = S(r,f).

The similar relations for g and G hold.
Suppose now that (i) holds and that f Φ g. Then, by Lemma l(a) for q = 5

and by using the above relations and (39) we have

F) V F-\J V F-aJ V F — b

= Σ N (r< 7^—
7=1 V J ~ ai

<T(r,f) + T(r,g) + N(r,f) + S(r,f),

which reduces to

(40) (2-u)T(r,f)<T(r,g)+S(r,f)

by (i). Similarly we have

(41) T(r,g)<T(r,f) + S(r,g).

From (40) and (41) we obtain that S(r,f) = S(r,g) since we [0,1) and that

(2-u)T(rJ)<T(r,f)+S(r,f),

which arrives at a contradiction

(l-u)T(rJ) = S(rJ)

since 1 — w > 0. This shows that f — g must hold in this case.

Similarly we obtain the same conclusion when (ii) holds. •

THEOREM 3. Let f and g be transcendental meromorphίc functions in the
complex plane. Suppose that there are four distinct elements ̂ 1,^2,^3,^4 e S(f) Π
S(g) satisfying

(42) E(f = aj) = E(g = aj) (j= 1,2,3,4)

and suppose that for any j, k (1 < j φ k < 4), at least one of

c-aj
a = — and b =ak - aj ak - dj

is not constant, where {c,d} = {a\,a2,ai>,a$\ — {dj^dk}.
If N(r,f) and N(r,g) satisfy one of the following conditions (a), (b), (c) and

(d):
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(a) N(r,f) = S(r,f) and N(r,g) = S(r,g); _
(b) N(r,g) = S(r,g), N(r,f) Φ S(r,f) and N(r,f) < uT(r,f)+S(r,f)

for some_ue (0,1/19); _ _
(c) N(r,f) = S(r,f), N(r,g) Φ S(r,g) and N{r,g) < vT(r,g) + S(r,g)

for some v e (0,1/19);
(d) N(r,f)ΦS(r,f), N(r,g) Φ S(r,g) and

(*) N(r,f)<uT(r,f) + S(r,f), N(r,g) <vT(r,g) + S(r,g)

for some u, υ G (0,1) satisfying either
(i) 0 < u < 1/19 and 0 < v < (2 - 19w)/(20 - I9u) or
(ii) 0 < υ < 1/19 and 0 < u < (2 - 19t;)/(20 - 19t;),

then f = g.

Proof of Theorem 3. CASE 1. The case when (a) is satisfied. Suppose that

fφg

SUBCASE 1-1. The case when for at least one j (1 < j < 4)

(43)

Suppose without loss of generality that (43) holds for j = 1. Then by Lemma
l(c) and Lemma 7(b) we have

3T(r,f) <

= 2T(r,f) + S(r,f),

which reduces to T(r,f) = ιS(r,/). This is a contradiction.

SUBCASE 1-2. The case when for any j (1 < j < 4)

(44)

We shall arrive at a contradiction by five steps.

STEP 1. For each j, either

(i) N{2ίr,——) =S(r,f) or (ii) Nl}ίr,——) = S(r,f).

We shall prove Step 1 for j = 1. We put

F - f ~ °i g - a 3 ~ a ι and h - °* ~ Uχ

a2 - a\ a2- a\ a2 - a\
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Then, 0,1, a and b are different from each other; a, b e S{f) 0 S(g) and at least
one of a, b is not constant by the assumption; F is transcendental and we have

(45)

T(r, F) = T(r, f) + S(r, /), S(r, F) = S(r, f)

and

(46) JV(r,F) = S(r,F).

We shall show that if Δ/ φ 0 then (i) holds, and show that if Δ^ = 0 then (ii)
holds. First we treat the case when Δ/ # 0. By applying Lemma 5 to F we
obtain from (46) that

2T(r,f) + S(r,f) = 2T(r,F)

so that we have

+ s { r J )

= 2T(r,f) + S(r,f)

by Lemma 7(b) as /' φ g. This implies that

Secondly, we treat the case when AF = 0. By applying Lemma 6(a) to F we
obtain from (45) that

n {]v) s{rJ) = ̂ " (r'l) = s{r'F) = s{rJ)'
namely,
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We can prove Step 1 for j = 2,3,4 in the same way.

STEP 2. There is at most one j (1 < j < 4) for which the relation

(47) Nx)^jl—^ =S(rJ)

holds.
In fact, suppose to the contrary that there are two / s for which (47) holds.

For example we suppose that

(48) Nι)(r,j±^=S(r,f) and Nl}(r,jJ-^) =S(r,f).

Let F, a and b be as in Step 1. Then we assert that Af = 0 in this case. In
fact, if AF Φ 0, then by Step 1 (i) we have that

(49) N

From (48) and (49) we have that

which contradicts with (44). This shows that Δ^ = 0. Then, by applying
Lemma 6(b) to F we have from (45) that

Mr>-7-^Γ ) + S(r,f) = JV(2( I . - ^ - T ) = S(r,F) = S(r,f);

that is,

(50)

From (48) and (50) we have that

which contradicts with (44). This completes the proof of Step 2.

^ 3. Either
(i) N{2(r, \/{f - aj)) = S(r,f) (j = 1,2,3,4) or
(ii) #,)(/-, l/(/ - aj)) = S(r,f) for one j (I < j < 4) and N(2(r, \/{f - ak))

S(r,f) for any k (1 < k < 4,k Φ j).
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This is a direct consequence of Step 1 and Step 2.

STEP 4. In case of Step 3(i), for any integer m the inequality

(51) A

holds for j — 1,2,3,4 and so we have from Lemma 3 and Lemma 7(b) that

S(rJ) = 2Γ(r,/) + S(r,/),
y = l

which reduces to T(r,f) = 5(r,/). This is a contradiction.

STEP 5. In case of Step 3(ii), we suppose without loss of generality that

S(r'f) a n d

As the inequality (51) holds for j = 2,3,4 in this case, we have by Lemma 3 for
q = 4, l < r a < 4 and Lemma 7(b) that

3T(r,f) <

J=ι

since /' φ g, and so we obtain the inequality

T(r, f)+N (r, - ^ y < JVm (r, - ^ ) + S(r, f) < T(r, f) + S(r, f)

since the inequality Nm(r, l/(/ - a\)) < T(r,f) + S(r,f) holds in general. This
implies that

which contradicts with (44).
From Subcases 1 and 2, / must be equal to g when (a) is satisfied.

To deal with the cases when (b), (c) or (d) is satisfied, we shall prepare some
inequalities.
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Suppose that /' φ g. If (*) is satisfied for (u,v) e [0,1) x [0,1), then by
Lemma 2 for a$ = oo we obtain

2T(r,f) <
J=

< T{r, f) + T(r, g) + uT(r, f) + S(r, f),

which reduces to

(52) (l-u)T(rJ)<T(r,g) + S(r,f).

By symmetry we obtain the inequality

(53) (l-υ)T(r,g)<T(rJ) + S(r,g).

Since 0 < M < 1 , 0 < y < l ) we have from (52) a n d (53)

(54) S(r,f) = S(r,g).

Now suppose in addition that N{r,f) ΦS{r,f). We apply Lemma 5 to
φ=(f- aj)/(ak - aj) (1 < j < 4,1 < k Φ j < 4) to obtain

) < Σ N ( l ) + 2N{rJ) + S(rJ)

+2N(r,f) + S(r,f)

< T(r, f) + T(r, g) + 2N(r, f) + S(r, f),

since f Φ g and so

(55) N(2(rt-λJj < T(r,g) - T(r,f) + 2N(r,f) + S(r,f).

Note that Δφ Φ 0 in this case by Lemma 6(c) since

N(r,φ) = N{rJ) + S{rJ) Φ S(rJ) = S(r,φ).

Put F = (/ - a\)/(ci2 - a\) and apply Lemma 3 to F and 0, 1, a =
(#3 - a\)/(a2 - a\), b = (a* - «i)/(«2 - «i). Note that q = 4 and the number m
in Lemma 3 satisfies 1 < m < 3 in this case. We then have by (55)
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r,-^-)+3N(r,F) + S(r,F)

= Σ N* (r> 7~) + 3N{r'f) + s{r'f)

^ Σ N (r> J=J) + Σ

' β ) ~ τ { r J ) )

< T(r,f) + T(r,g) + 8(T(r,g) - T{rJ)) + l9N(r,f) + S(r,f),

which reduces to

(56) 10Γ(r,/) < 9T(r,g) + 19N(rJ) + S(r,f).

Now we return to the proof.

CASE 2. The case when (b) is satisfied. Suppose that /' φ g.
As N(r,g) = S(r,g), from (53) for v = 0, (54) and (56) we obtain

which reduces to

(l-\9u)T(r,f)<S(r,f),

which is a contradiction since 1 - 19w > 0 in this case. This implies that/must
be equal to g when (b) is satisfied.

CASE 3. The case when (c) is satisfied. Suppose that / Φ g.
As in Case 2, we obtain the inequality

(l-l9υ)T(r,g)<S(r,g),

which is a contradiction since 1 — \9υ > 0 in this case. This implies tha t/must
be equal to g when (c) is satisfied.

CASE 4. The case when (d) is satisfied. Suppose that / φ g.
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As N{rJ) Φ S(rJ) and N(r,g) φ S(r,g), the inequality (56) holds and the
following inequality also holds:

(57) 10Γ(r,gf) < 9T(rJ) + l9N(r,g) + S(r,g).

We add (56) and (57) side by side and by the condition (*) we obtain

(58) (1 - \9u)T{rJ) + (1 - \9υ)T{r,g) < S(rJ) + S(r,g).

SUBCASE 4-1. The case when 1 - 19ι> > 0 and (u,v) satisfies (i).
Note that (2 - 19i/)/(20 - \9u) - 1/19 > 0 in this case. The relation (58) is

a contradiction since 1 - 19« > 0 in this case.

SUBCASE 4-2. The case when 1 - 19t> < 0 and (u,v) satisfies (i).
From (58) and (53) we obtain the relation

{(1 - 19«)(1 - υ) + (1 - l9v)}T(r,f) < S(r,f),

which is also a contradiction since (1 - 19w)(l - v) + (1 - \9v) > 0 in this case.

SUBCASE 4-3. The case when 1 - \9u > 0 and (u,v) satisfies (ii).
The relation (58) is a contradiction since 1 — 19f > 0 in this case.

SUBCASE 4-4. The case when 1 — 19w < 0 and (M, V) satisfies (ii).
From (58) and (52) we obtain the relation

{(1 - 19i7)(l - H) + (1 - \9u)}T{rJ) < S(rJ),

which is also a contradiction since (1 - 19u)(l - u) + (1 — 19w) > 0 in this case.
From Subcase 4-1 through Subcase 4-4 we obtain that / m u s t be equal to g

when (d) is satisfied.
We complete the proof of Theorem 3. •

COROLLARY 1. Let f and g be transcendental meromorphic functions in the
complex plane. Suppose that there are four distinct elements ax^a^a-^^a^ e
S{f)ΠS(g) satisfying

aj) (j= 1,2,3,4).

If the following inequalities

N(r, f) < uT(r, f) + S(r, f) and N(r, g) < υT(r, g) + S(r, g)

hold for some constants u and v satisfying

(59) ( M ' r )

then f = g.

In fact, if (u,v) satisfies (59), N(r,f) and N(r,g) satisfy one of the conditions
given in Theorem 2 or Theorem 3.
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COROLLARY 2. Let f and g be transcendental meromorphic functions in
\z\ < oo. Suppose that there exist five distinct elements a\,... ,a$ in {S(f) Π S(g)}
satisfying the conditions

E(f = aj) = E(g = aj) ( y = l , . . . , 5 )

and

for some u e [0,1/19), then f — g.

Proof of Corollary 2. By Lemma 2 we can prove that T(r, g) = T(r, f) +
S{r,f) and S{r,f) = S{r,g) in this case as in Lemma 7(a). Then, from the
hypotheses of this corollary we have

Then by Corollary 1 we have that / = g. •
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