# THE GROUP OF HOMOTOPY SELF-EQUIVALENCES OF A UNION OF ( $n-1$ )-CONNECTED $2 n$-MANIFOLDS 

Irene Llerena ${ }^{1}$ and John W. Rutter


#### Abstract

In this paper we determine the group $\mathscr{E}(X \vee Y)$ of ponted homotopy selfequivalence classes as the quotient of an iterated semi-direct product involving $\mathscr{E}(X)$, $\mathscr{E}(Y)$ and the $2 n$-th homotopy groups of $X$ and $Y$, in the case where $X$ and $Y$ are ( $n-1$ )-connected $2 n$-manifolds or, more generally, are CW-complexes obtaned by attaching a $2 n$-cell to a one-point union $\bigvee^{m} S^{n}$ of $m$ copies of the $n$-sphere for which a certan quadratic form has non-zero determinant $(n \geq 3)$. In the case of manifolds this determinant is $\pm 1$. We include some examples, in particular one in which $\mathscr{E}(X \vee Y)$ does not itself inherit a semi-direct product structure.


## §0. Introduction

A method was given in 1958 by Barcus and Barratt [1] for calculating the group $\mathscr{E}(X)$ of (pointed) homotopy self-equivalence classes of simply-connected CW complexes of the form $X=K \cup_{\alpha} e^{q+1}$ obtained by attaching a $(q+1)$-cell to a complex $K$ of dimension $\leq q-1$ : this method was extended by Rutter [13] to general simply-connected complexes. Since 1958 general results about the group $\mathscr{E}(X)$, such as conditions for finite presentability, have been obtained and many calculations have been made.
P. J. Kahn [6] made calculations of $\mathscr{E}(X)$ for $X=\left(S^{n} \vee \cdots \vee S^{n}\right) \cup_{\alpha} e^{2 n}$ and, in particular, for $(n-1)$-connected $2 n$-manifolds. In this note we calculate $\mathscr{E}(X \vee Y)$ in the case where $X$ and $Y$ are $(n-1)$-connected $2 n$-manifolds $(n \geq 3)$ or, more generally, are spaces obtained by attaching a $2 n$-cell to a union of $n$ spheres for which a certain quadratic form has non-zero determinant. Our main result stated in $\S 1$ is that, for such spaces, $\mathscr{E}(X \vee Y)$ is a quotient of a certain iterated semi-direct product in case $X \not \nsucceq Y$, and involves a further semi-direct product in case $X=Y$. We also give criteria for which this quotient is not itself a semi-direct product: in previous cases calculations have been completed in general only in cases where a corresponding extension is a semi-direct product.

Previous calculations of $\mathscr{E}(X \vee Y)$ for a one-point union have been made in cases where either $X$ or $Y$ is an $h$-cogroup (see for example Maruyama-Mimura

[^0][8], Oka-Sawashita-Sugawara [9], Rutter [14] and [15], Sieradski [17] and Yamaguchi [20]). In our case the spaces are not in general $h$-cogroups. Proofs and other results are given in $\S 2$ and $\S 3$, and some examples, including one which involves a non-trivial extension are given in $\S 4$.

## §1. Main results

We consider complexes $X_{\alpha}=\bigvee^{m} S^{n} \cup_{\alpha} e^{2 n}$ obtained by attaching one $2 n$-cell to a union of $n$-cells $(n \geq 3)$. By the Hilton-Milnor theorem, the attaching map $\alpha$ has the form

$$
\alpha=\sum_{l=1}^{m} l_{i} \circ \alpha^{l}+\sum_{l<j}\left[l_{i}, l_{j}\right] \circ \alpha^{i j} .
$$

Here $\alpha^{l} \in \pi_{2 n-1}\left(S^{n}\right), \alpha^{i j} \in \pi_{2 n-1}\left(S^{2 n-1}\right)$, and $t_{i}: S^{n} \rightarrow \bigvee^{m} S^{n}$ is the canonical inclusion of the $i$-th sphere $S^{n}$ in $\bigvee^{m} S^{n}$. We define an integer matrix $Q(\alpha)=$ ( $a_{i j}$ ) by

$$
a_{i j}= \begin{cases}\operatorname{deg} \alpha^{i j}, & \text { for } i<j \\ (-1)^{n} \operatorname{deg} \alpha^{j i}, & \text { for } i>j \\ H\left(\alpha^{l}\right), & \text { for } i=j,\end{cases}
$$

where $H\left(\alpha^{l}\right)$ is the Hopf invariant of $\alpha^{l}$ : in case $n$ is odd, we have $a_{i i}=0$. Therefore $Q(\alpha)$ is symmetric in case $n$ is even, and is skew-symmetric in case $n$ is odd. The matrix $Q(\alpha)$ can also be defined as the matrix of the cup product form on $H^{n}(X)$ (compare [19] and [3]). In what follows we consider only those complexes $X_{\alpha}$ for which the matrix $Q(\alpha)$ has non-zero determinant. Any $(n-1)$ connected $2 n$-manifold has the homotopy type of a space $X_{\alpha}$ as above, and its associated matrix $Q(\alpha)$ is unimodular (see [19, page 169]): in this case the matrix $Q(\alpha)$ is, up to sign, the inverse of the matrix of the $n$-symmetric bilinear form determined by linking numbers on $X \backslash$ int $E^{2}$ (see [19, pages 164 and 182]).

We shall in general use the same symbol to denote a map and its homotopy class.

Let $X=X_{\alpha}=\left(\bigvee^{m_{1}} S^{n}\right) \cup_{\alpha} e^{2 n}$ and $Y=X_{\beta}=\left(\bigvee^{m_{2}} S^{n}\right) \cup_{\beta} e^{2 n}(n \geq 3)$, where $\bigvee^{m} S^{n}$ denotes a one point union of $m$ copies of the $n$-sphere. A map $h: X \rightarrow$ $Y$ induces a homotopy commutative diagram

of cofibre sequences, where the vertical maps are unique up to homotopy, and where $\tilde{h} \simeq S \tilde{h}^{\prime}$. If $h$ is cellular, $\hat{h}$ and $\tilde{h}$ can be chosen so that the two middle
squares are strictly commutative. We shall always assume that the three maps are chosen in this way.

The fibre sequence $\Omega X * \Omega Y \xrightarrow{l} X \vee Y \xrightarrow{J} X \times Y$ induces the exact sequence of pointed sets

$$
[X \vee Y, \Omega X * \Omega Y] \xrightarrow{\iota_{*}}[X \vee Y, X \vee Y] \xrightarrow{J_{*}}[X \vee Y, X \times Y],
$$

where the preferred element for exactness is the class of the trivial map. In this paper we prove that $j_{*}$ induces a faithful representation of $\mathscr{E}(X \vee Y)$ onto the quotient of an iterated semidirect product. This representation involves, besides $\mathscr{E}(X)$ and $\mathscr{E}(Y)$, some groups related to the homotopy groups of $X$ and $Y$. One of these is

$$
G=\frac{i_{*}\left[S^{2 n} \vee S^{2 n}, \Omega X * \Omega Y\right]}{\operatorname{im} \Gamma\left(l \vee i^{\prime}, \alpha \vee \beta\right) \cap i_{*}\left[S^{2 n} \vee S^{2 n}, \Omega X * \Omega Y\right]},
$$

where $\Gamma\left(\imath \vee \iota^{\prime}, \alpha \vee \beta\right):\left[\bigvee^{m_{1}} S^{n+1} \vee \bigvee^{m_{2}} S^{n+1}, X \vee Y\right] \rightarrow\left[S^{2 n} \vee S^{2 n}, X \vee Y\right]$ is the homomorphism defined in [10, §3.2]. We recall the definition of this homomorphism in §3. For $n \geq 3$, the group $i_{*}\left[S^{2 n} \vee S^{2 n}, \Omega X * \Omega Y\right]$, and hence $G$, is a finitely generated free $\boldsymbol{Z} / 2$-module (see $\S 2$ and $\S 3$ ). We also define (for $n \geq 3$ )

$$
\begin{aligned}
R_{\alpha, \beta} & =(S \alpha)^{*}\left[\bigvee^{m_{1}} S^{n+1}, Y\right] \\
& \cong \frac{(S \alpha)^{*}\left[\bigvee^{m_{1}} S^{n+1}, \bigvee^{m_{2}} S^{n}\right]}{\beta_{*} \pi_{2 n}\left(S^{2 n-1}\right) \cap(S \alpha)^{*}\left[\bigvee^{m_{1}} S^{n+1}, \bigvee^{m_{2}} S^{n}\right]},
\end{aligned}
$$

and similarly $R_{\beta, \alpha}=(S \beta)^{*}\left[\bigvee^{m_{2}} S^{n+1}, X\right]$ : each of these is also a finitely generated free $Z / 2$-module for $n \geq 3$. Our main result is the following theorem.

Theorem A. Let $X \not \approx Y$, let $n \geq 3$, and let $Q(\alpha)$ and $Q(\beta)$ be non-singular matrices. Then the map $j_{*}:[X \vee Y, X \vee Y] \rightarrow[X \vee Y, X \times Y]$ induces a faithful representation of $\mathscr{E}(X \vee Y)$ onto the quotient of an iterated semi-direct product:

$$
\mathscr{E}(X \vee Y) \cong(G \rtimes \bar{U}) /\left(R_{\beta, \alpha} \times R_{\alpha, \beta}\right)
$$

where $\bar{U}=\left(l_{*} \pi_{2 n}\left(\bigvee^{m_{1}} S^{n}\right) \times i_{*}^{\prime} \pi_{2 n}\left(\bigvee^{m_{2}} S^{n}\right)\right) \rtimes(\mathscr{E}(X) \times \mathscr{E}(Y))$. Furthermore $G$, $R_{\beta, \alpha}$ and $R_{\alpha, \beta}$ are finitely generated free $\boldsymbol{Z} / 2$-modules.

The proof of Theorem A is given in §2. In Proposition 6 we describe the action of $\bar{U}$ on $G$ (see Proposition 1) for the semi-direct product $G \rtimes \bar{U}$. In Proposition 5 we describe $R_{\beta, \alpha} \times R_{\alpha, \beta}$ as a subgroup of the semi-direct product structure $G \rtimes \bar{U}$. In Proposition 10 we compute $G$. We also give, in Proposition 7, precise conditions under which the structure on $\mathscr{E}(X \vee Y)$ as the quotient $(G \rtimes \bar{U}) /\left(R_{\alpha \beta} \times R_{\beta \alpha}\right)$ of a semi-direct product induces on $\mathscr{E}(X \vee Y)$ the structure of a semi-direct product of the form $G \rtimes U$.

Where $X \simeq Y$ we may assume $X=Y$ without loss of generality. In this case we denote by $S(X \vee X)$ the subgroup of $\mathscr{E}(X \vee X)$ corresponding to the group obtained by putting $Y=X$ in the quotient of the iterated semi-direct product given in Theorem A. Thus (see §2)
$\mathscr{S}(X \vee X)=\left\{\sigma \in \mathscr{E}(X \vee X): j_{*}(\sigma)=\left(\begin{array}{ll}f & g \\ h & k\end{array}\right), f, k \in \mathscr{E}(X), \tilde{H}_{*}(g)=0=\tilde{H}_{*}(h)\right\}$.
The group $\mathscr{E}(X \vee X)$ is determined as a further split extension in the following way.

Theorem B. Let $n \geq 3$, and let $Q(\alpha)$ be a non-singular matrix. Then there is a split exact sequence of groups and homomorphisms

$$
\mathscr{S}(X \vee X) \mapsto \mathscr{E}(X \vee X) \rightarrow Z / 2
$$

The splitting is given by $\{1,-1\} \rightarrow \mathscr{E}(X \vee X)$ where $(-1)$ maps to the homeomorphism $T: X \vee X \rightarrow X \vee X$ given by $(x, y) \mapsto(y, x)$.

The proof Theorem B is given in §2. In Proposition 8 we note the action of $\boldsymbol{Z} / 2$ on $(G \rtimes \bar{U}) /\left(R_{\alpha \beta} \times R_{\beta \alpha}\right)$ in the split extension $(G \rtimes \bar{U}) /\left(R_{\alpha \beta} \times R_{\beta \alpha}\right) \mapsto$ $\mathscr{E}(X \vee X) \rightarrow \boldsymbol{Z} / 2$ of Theorem B.

In $\S 4$ we give some examples.

## §2. Proofs and further results

Each element of the set $[X \vee Y, X \times Y]$ can be written as a matrix

$$
\left(\begin{array}{ll}
f & g \\
h & k
\end{array}\right) \in\left(\begin{array}{ll}
{[X, X]} & {[Y, X]} \\
{[X, Y]} & {[Y, Y]}
\end{array}\right) .
$$

The following result characterises the elements in the image of $j_{*}: \mathscr{E}(X \vee Y) \rightarrow$ [ $X \vee Y, X \times Y$ ]. Its proof is given, for $m_{1}=m_{2}$, in [2] for $n$ even, and in [7] for $n$ odd. The same proofs yield the case $m_{1} \neq m_{2}$.

Theorem. Let $X=\bigvee^{m_{1}} S^{n} \cup_{\alpha} e^{2 n}$ and $Y=\bigvee^{m_{2}} S^{n} \cup_{\beta} e^{2 n}$ such that $Q(\alpha)$ and $Q(\beta)$ are non-singular matrices, and let $j_{*}(\sigma)=\left(\begin{array}{ll}f & g \\ h & k\end{array}\right)$, where $\sigma \in[X \vee Y$, $X \vee Y]$. Then, $\sigma \in \mathscr{E}(X \vee Y)$ if, and only if, either
(i) $f$ and $k$ are homotopy equivalences and $h$ and $g$ are homologically trivial, or
(ii) $g$ and $h$ are homotopy equivalences and $f$ and $k$ are homologically trivial.

Using this result, Theorem B is an elementary consequence of Theorem A.
By obstruction theory, a map $h: X \rightarrow Y$ is homologically trivial if, and only if, $h \in p^{*} i_{l}^{\prime} \pi_{2 n}\left(\bigvee^{m_{2}} S^{n}\right)$. Also by obstruction theory the group structure on $l_{*}^{\prime} \pi_{2 n}\left(\bigvee^{m_{2}} S^{n}\right)$ induces a group structure on $p^{*} l_{*}^{\prime} \pi_{2 n}\left(\bigvee^{m_{2}} S^{n}\right)$ for which $p^{*}$ is a
homomorphism. We note the following isomorphisms:

$$
\begin{aligned}
l_{*}^{\prime} \pi_{2 n}\left(\bigvee^{m_{2}} S^{n}\right) \cong \frac{\pi_{2 n}\left(\bigvee^{m_{2}} S^{n}\right)}{\beta_{*} \pi_{2 n}\left(S^{2 n-1}\right)}, \quad \text { and } \\
p^{*} l_{*}^{\prime} \pi_{2 n}\left(\bigvee^{m_{2}} S^{n}\right) \cong \frac{\pi_{2 n}\left(\bigvee^{m_{2}} S^{n}\right)}{\beta_{*} \pi_{2 n}\left(S^{2 n-1}\right)+(S \alpha)^{*}\left[\bigvee^{m_{1}} S^{n+1}, \bigvee^{m_{2}} S^{n}\right]}
\end{aligned}
$$

We consider the set of matrices

$$
U=\left\{\left(\begin{array}{ll}
f & g \\
h & k
\end{array}\right) \in\left(\begin{array}{cc}
\mathscr{E}(X) & p^{\prime *} l_{*} \pi_{2 n}\left(\bigvee^{m_{1}} S^{n}\right) \\
p^{*} l_{*}^{\prime} \pi_{2 n}\left(\bigvee^{m_{2}} S^{n}\right) & \mathscr{E}(Y)
\end{array}\right)\right\} .
$$

We shall often identify $U$ with a subset of $[X \vee Y, X \times Y]$ as indicated above. We consider also the set of matrices

$$
\bar{U}=\left\{\left(\begin{array}{cc}
f & \bar{g} \\
\bar{h} & k
\end{array}\right) \in\left(\begin{array}{cc}
\mathscr{E}(X) & \imath_{*} \pi_{2 n}\left(\bigvee^{m_{1}} S^{n}\right) \\
\imath_{*}^{\prime} \pi_{2 n}\left(\bigvee^{m_{2}} S^{n}\right) & \mathscr{E}(Y)
\end{array}\right)\right\}
$$

The set $\bar{U}$, endowed with the operation

$$
\left(\begin{array}{cc}
f & \bar{g} \\
\bar{h} & k
\end{array}\right) \diamond\left(\begin{array}{ll}
f_{1} & \bar{g}_{1} \\
\bar{h}_{1} & k_{1}
\end{array}\right)=\left(\begin{array}{cc}
f f_{1} & f \bar{g}_{1}+\bar{g} \tilde{k}_{1} \\
\bar{h} \tilde{f}_{1}+k \bar{h}_{1} & k k_{1}
\end{array}\right)
$$

is a group with identity $\left(\begin{array}{ll}1 & \overline{0} \\ \overline{0} & 1\end{array}\right)$. The maps $\tilde{f}_{1}$ and $\tilde{k}_{1}$ have been defined in $\S 1$. The inverse of $\left(\begin{array}{ll}f & \bar{g} \\ \bar{h} & k\end{array}\right)$ is $\left(\begin{array}{cc}f^{-1} & -f^{-1} \bar{g} \tilde{k}^{-1} \\ -k^{-1} \bar{h} \tilde{f}^{-1} & k^{-1}\end{array}\right)$. Using the standard properties of the induced cofiber sequence, we can prove that $\left(\bar{h}_{1}+k \bar{h}_{1}\right) p^{\prime}$ and $\left(f \bar{g}_{1}+\bar{g} \tilde{k}_{1}\right) p^{\prime}$ are independent of the choices of maps $\bar{h}, \bar{h}_{1}, \bar{g}, \bar{g}_{1}$ satisfying $\bar{h} p=$ $h, \bar{g} p^{\prime}=g, \bar{h}_{1} p=h_{1}, \bar{g}_{1} p^{\prime}=g_{1}$. Therefore the group structure $(\bar{U}, \diamond)$ determines a group structure on the set $U$ under the obvious projection $\pi: \bar{U} \rightarrow U$. We have the following Proposition.

Proposition 1. The projection $(\bar{U}, \diamond) \rightarrow \mathscr{E}(X) \times \mathscr{E}(Y)$ determines the semidirect product

$$
\bar{U}=\left(l_{*} \pi_{2 n}\left(\bigvee^{m_{1}} S^{n}\right) \times l_{*}^{\prime} \pi_{2 n}\left(\bigvee^{m_{2}} S^{n}\right)\right) \rtimes(\mathscr{E}(X) \times \mathscr{E}(Y))
$$

with the (left) action given by $(f, k) \cdot(\bar{g}, \bar{h})=\left(f \bar{g} \tilde{k}^{-1}, k \bar{h} \tilde{f}^{-1}\right)$. The projection $(U, \diamond) \rightarrow \mathscr{E}(X) \times \mathscr{E}(Y)$ determines the semi-direct product

$$
U=\left(p^{\prime *} l_{*} \pi_{2 n}\left(\bigvee^{m_{1}} S^{n}\right) \times p^{*} l_{*}^{\prime} \pi_{2 n}\left(\bigvee^{m_{2}} S^{n}\right)\right) \rtimes(\mathscr{E}(X) \times \mathscr{E}(Y))
$$

with a similar action. Also there is a group extension

$$
R_{\beta, \alpha} \times R_{\alpha, \beta} \mapsto \bar{U} \rightarrow U
$$

Now assume $X \not \not \mp Y$ and denote by

$$
\theta: \mathscr{E}(X \vee Y) \rightarrow U
$$

the map induced by $j_{*}$. We prove that $\theta$ is an epimorphism and find a homomorphism $s: \bar{U} \rightarrow \mathscr{E}(X \vee Y)$ such that $\theta s=\pi$. If $\pi$ has a right inverse, so does $\theta$. Later, in Proposition 7, we study the general conditions under which $\theta$ has a right inverse.

First we recall some of the properties of the coaction in a principal cofibration. Let $C_{\alpha}=B \cup_{\alpha} C A$ be the mapping cone of a map $\alpha: A \rightarrow B$. There is a coaction $\varphi=\varphi_{C_{\alpha}}: C_{\alpha} \rightarrow S A \vee C_{\alpha}$ given by

$$
\begin{gathered}
\varphi(b)=b, \\
\varphi(a, t)= \begin{cases}(a, 2 t) \in S A, & \text { for } b \in B \\
(a, 2 t-1) \in C_{\alpha}, & \text { for } \frac{1}{2} \leq t \leq 1 \leq \frac{1}{2} \text { and } a \in A \\
\text { and } a \in A\end{cases}
\end{gathered}
$$

Given $\zeta: S A \rightarrow Z$ and $\lambda: C_{\alpha} \rightarrow Z$, we define

$$
\zeta \perp \lambda=(\zeta, \lambda) \varphi: C_{\alpha} \rightarrow Z
$$

If two maps $\lambda, \lambda_{1}: C_{\alpha} \rightarrow Z$ coincide on $B$, then there is a difference map $d=$ $d\left(\lambda, \lambda_{1}\right): S A \rightarrow Z$, given by

$$
d(a, t)= \begin{cases}\lambda(a, 2 t), & 0 \leq t \leq \frac{1}{2} \\ \lambda_{1}(a, 2-2 t), & \frac{1}{2} \leq t \leq 1\end{cases}
$$

The maps $d\left(\lambda, \lambda_{1}\right) \perp \lambda_{1}$ and $\lambda$ are homotopic relatively to $B$, but the homotopy class of $d$ is not uniquely determined by the homotopy class of $\lambda$ and $\lambda_{1}$. In the sequel it is convenient to denote also by $\varphi_{X}$ the composite $X \rightarrow S^{2 n} \vee X \rightarrow X \vee$ $S^{2 n}$ of $\varphi_{X}$ and the switching map.

Now we define

$$
s: \bar{U} \rightarrow \mathscr{E}(X \vee Y) \quad \text { by } \quad\left(\begin{array}{cc}
f & \bar{g} \\
\bar{h} & k
\end{array}\right) \mapsto\left((f \vee \bar{h}) \varphi_{X},(\bar{g} \vee k) \varphi_{Y}\right) .
$$

Proposition 2. $\quad \theta=j_{*}: \mathscr{E}(X \vee Y) \rightarrow U$ is an epimorphism, $s: \bar{U} \rightarrow$ $\mathscr{E}(X \vee Y)$ is a homomorphism and the composite $\theta s$ is the epimorphism $\pi: \bar{U} \rightarrow U$.

Proof. Let $\sigma, \sigma_{1} \in \mathscr{E}(X \vee Y)$, and $\theta(\sigma)=\left(\begin{array}{ll}f & g \\ h & k\end{array}\right), \quad \theta\left(\sigma_{1}\right)=\left(\begin{array}{ll}f_{1} & g_{1} \\ h_{1} & k_{1}\end{array}\right)$. Choose decompositions $h=\bar{h} p, h_{1}=\bar{h}_{1} p, g=\bar{g} p^{\prime}, g_{1}=\bar{g}_{1} p^{\prime}$.

The component $X \rightarrow Y$ of $\theta\left(\sigma \sigma_{1}\right)$ has the form

$$
X \xrightarrow{\sigma_{1} l_{X}} X \vee Y \xrightarrow{p \vee 1} S^{2 n} \vee Y \xrightarrow{(\bar{h}, k)} Y .
$$

The elements $(p \vee 1) \sigma_{1} i_{X}$ and $\left(\tilde{f}_{1} \vee h_{1}\right) \varphi_{X}$ are mapped to the same element by the induced function $\left[X, S^{2 n} \vee Y\right] \rightarrow\left[X, S^{2 n} \times Y\right]$ : this latter function is a bi-
jection since $S^{2 n} \vee X \rightarrow S^{2 n} \times X$ is $(3 n-1)$-connected. Therefore we have

$$
(h, k) \sigma_{1} i_{X}=(\bar{h}, k)(p \vee 1) \sigma_{1} i_{X}=\left(\bar{h} \tilde{f}_{1}, k h_{1}\right) \varphi_{X}=\left(\bar{h} \tilde{f}_{1}, k \bar{h}_{1}\right)(1 \vee p) \varphi_{X}
$$

A similar argument for $(1 \vee p) \varphi_{X}$ and $X \xrightarrow{p} S^{2 n} \xrightarrow{\nabla} S^{2 n} \vee S^{2 n}$ in $\left[X, S^{2 n} \vee S^{2 n}\right]$ proves that these elements coincide and hence

$$
(h, k) \sigma_{1} i_{X}=\left(\bar{h} \tilde{f}_{1}, k \bar{h}_{1}\right)(1 \vee p) \varphi_{X}=\left(\bar{h} \tilde{f}_{1}+k \bar{h}_{1}\right) p
$$

Using the standard properties of the induced cofibre sequence, we have that this construction is independent of the choices of $\bar{h}$ and $\bar{h}_{1}$ satisfying $\bar{h} p=h$ and $\bar{h}_{1} p=h_{1}$. Applying similar arguments for the other components, we obtain

$$
\theta\left(\sigma \sigma_{1}\right)=\left(\begin{array}{cc}
f f_{1} & \left(f \bar{g}_{1}+\bar{g} \tilde{k}_{1}\right) p^{\prime} \\
\left(\bar{h} \tilde{f}_{1}+k \bar{h}_{1}\right) p & k k_{1}
\end{array}\right)
$$

and therefore $\theta$ is a homomorphism. Since $\theta s$ is the epimorphism $\pi: \bar{U} \rightarrow U$, it follows that $\theta$ is surjective.

$$
\begin{aligned}
& \text { Given } u=\left(\begin{array}{cc}
f & \bar{g} \\
\bar{h} & k
\end{array}\right) \text { and } u_{1}=\left(\begin{array}{ll}
f_{1} & \bar{g}_{1} \\
\bar{h}_{1} & k_{1}
\end{array}\right) \text { consider the composite } \\
& s(u) s\left(u_{1}\right) i_{X}=\left((f \vee \bar{h}) \varphi_{X},(\bar{g} \vee k) \varphi_{Y}\right)\left(\left(f_{1} \vee \bar{h}_{1}\right) \varphi_{X}\right) \\
& =\left((f \vee \bar{h}) \varphi_{X} f_{1},(\bar{g} \vee k) \varphi_{Y} \bar{h}_{1}\right) \varphi_{X} .
\end{aligned}
$$

Now $\bar{h}_{1}: S^{2 n} \rightarrow Y$ factors through the $n$-skeleton of $Y$ and therefore, by cellular considerations, $(\bar{g} \vee k) \varphi_{Y} \bar{h}_{1}=i_{Y} k \bar{h}_{1}$. Also $\varphi_{X} f_{1} \simeq\left(f_{1} \vee \tilde{f}_{1}\right) \varphi_{X}$ since they have the same image under $\left[X, S^{2 n} \vee X\right] \rightarrow\left[X, S^{2 n} \times X\right]$, which is a bijection since $S^{2 n} \vee X \rightarrow S^{2 n} \times X$ is $(3 n-1)$-connected. Thus $(f \vee \bar{h}) \varphi_{X} f_{1}=\left(\bar{h} \tilde{f}_{1} \vee f f_{1}\right) \varphi_{X}$. Therefore

$$
\begin{aligned}
s(u) s\left(u_{1}\right) i_{X} & =\left(\left(f f_{1} \vee \bar{h} \tilde{f}_{1}\right) \varphi_{X}, i_{Y} k \bar{h}_{1}\right) \varphi_{X} \\
& =\left(i_{X} f f_{1}, i_{Y} \bar{h} \tilde{f}_{1}, i_{Y} k \bar{h}_{1}\right)\left(\varphi_{X}, 1\right) \varphi_{X} \\
& =\left(i_{X} f f_{1}, i_{Y}\left(k \bar{h}_{1}+\bar{h} \tilde{f}_{1}\right)\right) \varphi_{X} \\
& =\left(f f_{1} \vee\left(k \bar{h}_{1}+\bar{h} \tilde{f}_{1}\right)\right) \varphi_{X}=s\left(u \diamond u_{1}\right) i_{X} .
\end{aligned}
$$

Similarly $s(u) s\left(u_{1}\right) i_{Y}=s\left(u \diamond u_{1}\right) i_{Y}$. Hence, $s$ is a homomorphism.
We now investigate the kernel of $\theta$. In the following diagram, induced by $l \vee \iota^{\prime}: A=\bigvee S^{n} \vee \bigvee S^{n} \rightarrow X \vee Y$, the horizontal sequences of pointed sets are exact and the diagram is commutative by [10, (3.2.2) and §3.3]: the preferred elements for exactness are as indicated. Also the vertical sequence is exact, and, by obstruction theory, the left and right vertical maps are isomorphisms as indicated.


The functions $\mu$ and $\mu^{\prime}$ and given by $\mu(\alpha)=\alpha \perp 1$ and $\mu^{\prime}(\beta)=\beta \perp j$. The image of $\mu$ consists precisely of those classes which extend the identity on the $n$-skeleton. Also $\Gamma=\Gamma\left(\imath \vee \iota^{\prime}, \alpha \vee \beta\right)$ and $\Gamma^{\prime}=\Gamma\left(j\left(\imath \vee \iota^{\prime}\right), \alpha \vee \beta\right)$. We recall the definition of $\Gamma(u, f)$ in $\S 3$.

Proposition 3. The sequence

$$
i_{*}\left[S^{2 n} \vee S^{2 n}, \Omega X * \Omega Y\right] \xrightarrow{\mu} \mathscr{E}(X \vee Y) \xrightarrow{\theta} U \rightarrow 1
$$

is an exact sequence of groups.
Proof. Since $p \vee p^{\prime}$ is trivial on the image of $i_{*}$, it follows from [13, pages 276-277] that $\mu: i_{*}\left[S^{2 n} \vee S^{2 n}, \Omega X * \Omega Y\right] \rightarrow[X \vee Y, X \vee Y]$ is a homomorphism from the usual group structure to composition. As easy argument using homological considerations shows that the image of this homomorphism is contained in $\mathscr{E}(X \vee Y)$. Let $\theta(\sigma)=j_{*}(\sigma)=j$. Then, by the commutativity and exactness of the above diagram, we have $\sigma=\mu(d)$ say. Furthermore, we have $j_{*}(d)=\Gamma^{\prime} j_{*}(c)$ say, and therefore $d=\Gamma(c)+i_{*}(b)$ say. But $\mu(\Gamma(c))=1$, so that $\sigma=\mu(d)=\mu\left(i_{*}(b)\right)$. This proves the inclusion $\operatorname{Ker} \theta \subset \operatorname{Im} \mu$. The proposition now follows since $j_{*} \mu i_{*}=\mu^{\prime} j_{*} i_{*}$ is constant.

From this proposition and the diagram above we obtain an exact sequence

$$
0 \rightarrow G \xrightarrow{\mu} \mathscr{E}(X \vee Y) \xrightarrow{\theta} U \rightarrow 1
$$

where

$$
G=\frac{i_{*}\left[S^{2 n} \vee S^{2 n}, \Omega X * \Omega Y\right]}{\operatorname{im} \Gamma\left(l \vee \iota^{\prime}, \alpha \vee \beta\right) \cap i_{*}\left[S^{2 n} \vee S^{2 n}, \Omega X * \Omega Y\right]}
$$

Note that the kernel of $\left[S^{2 n} \vee S^{2 n}, X \vee Y\right] \xrightarrow{\mu} \mathscr{E}(X \vee Y)$ is im $i_{*}+\operatorname{im} \Gamma$, and that $\mu\left(\mathrm{im} i_{*}\right)=\mu\left(\mathrm{im} i_{*}+\mathrm{im} \Gamma\right)$. The construction $d \mapsto i_{*}(b)$ induces the isomorphism

$$
\frac{\operatorname{im} i_{*}+\operatorname{im} \Gamma}{\operatorname{im} \Gamma} \cong \frac{\operatorname{im} i_{*}}{\operatorname{im} i_{*} \cap \operatorname{im} \Gamma} .
$$

In the homotopy fibre sequence $\Omega X * \Omega Y \xrightarrow{t} X \vee Y \xrightarrow{J} X \times Y$, the map $i$ may be regarded as the generalized Whitehead product $\left[-\varepsilon_{X}, \varepsilon_{Y}\right]$ of evaluation maps (see [11, §3]). Moreover, by obstruction theory, we have that the canonical
map

$$
\begin{aligned}
\chi: \bigvee^{m_{1} m_{2}} S^{2 n-1} & \simeq\left(\bigvee^{m_{1}} S^{n-1}\right) *\left(\bigvee^{m_{2}} S^{n-1}\right) \\
& \rightarrow \Omega S\left(\bigvee^{m_{1}} S^{n-1}\right) * \Omega S\left(\bigvee^{m_{2}} S^{n-1}\right) \rightarrow \Omega X * \Omega Y
\end{aligned}
$$

is $(3 n-2)$-connected, and, without loss of generality, it may be regarded as the inclusion into $\Omega X * \Omega Y$ of its ( $3 n-2$ )-skeleton.

Proposition 4. The map $\chi$ induces an isomorphism

$$
\chi_{*}: \oplus^{2 m_{1} m_{2}} \boldsymbol{Z} / 2 \cong\left[S^{2 n} \vee S^{2 n}, \bigvee^{m_{1} m_{2}} S^{2 n-1}\right] \rightarrow\left[S^{2 n} \vee S^{2 n}, \Omega X * \Omega Y\right]
$$

Proof. Since $\chi$ is $(3 n-2)$-connected, $\chi_{*}$ is an isomorphism for $n \geq 4$ and an epimorphism for $n=3$. We consider the case $n=3$. For a homotopy coloop $Z$, the evaluation map $S \Omega Z \rightarrow Z$ has a homotopy section (see for example [12]). Thus $\Omega S\left(\bigvee^{m_{1}} S^{n-1}\right) * \Omega S\left(\bigvee^{m_{2}} S^{n-1}\right) \cong S \Omega S\left(\bigvee^{m_{1}} S^{n-1}\right) \wedge \Omega S\left(\bigvee^{m_{2}} S^{n-1}\right) \rightarrow$ $S\left(\bigvee_{m_{1}}^{m_{1}} S^{n-1}\right) \wedge \Omega S\left(\bigvee^{m_{2}} S^{n-1}\right) \cong\left(\bigvee^{m_{1}} S^{n-1}\right) \wedge S \Omega S\left(\bigvee^{m_{2}} S^{n-1}\right) \rightarrow\left(\bigvee^{m_{1}} S^{n-1}\right) \wedge$ $S\left(\bigvee^{m_{2}} S^{n-1}\right) \cong\left(\bigvee^{m_{1}} S^{n-1}\right) *\left(\bigvee^{m_{2}} S^{n-1}\right)$ has a homotopy section. Up to a homotopy self-equivalence of $\left(\bigvee^{m_{1}} S^{n-1}\right) *\left(\bigvee^{m_{2}} S^{n-1}\right)$, this composite is a homotopy co-section of $\chi$. Hence $\chi_{*}$ is an isomorphism.

By Proposition 4, $l_{*}\left[S^{2 n} \vee S^{2 n}, \Omega X * \Omega Y\right] \cong \oplus^{2 m_{1} m_{2}} \boldsymbol{Z} / 2$, and $G \cong \bigoplus^{N} \boldsymbol{Z} / 2$, with $N \leq 2 m_{1} m_{2}$ (see Proposition 10). The composite $w=i \chi$ factors as

$$
w=i \chi: \bigvee^{m_{1} m_{2}} S^{2 n-1} \rightarrow \bigvee^{m_{1}} S^{n} \vee \bigvee^{m_{2}} S^{n} \subset X \vee Y
$$

and, after a suitable choice of orientation of the $(2 n-1)$-spheres, the $m_{1} m_{2}$ components of $w$ are easily shown to be the Whitehead products $w_{r s}=\left[l_{r}, l_{s}\right]$ of $S^{n} \xrightarrow{l_{r}} \bigvee^{m_{1}} S^{n} \subset X$ and $S^{n} \xrightarrow{l_{s}} \bigvee^{m_{2}} S^{n} \subset Y, r=1 \cdots m_{1}, s=1 \cdots m_{2}$.

Finally, in the following pull-back square of groups

the map $s: \bar{U} \rightarrow \mathscr{E}(X \vee Y)$ induces a cross-section of $\bar{\theta}$, so that

$$
E \cong G \rtimes \bar{U}, \quad \text { and } \quad \mathscr{E}(X \vee Y) \cong \frac{E}{R_{\beta, \alpha} \times R_{\alpha, \beta}}
$$

This completes the proof of Theorem A.

In order to describe the inclusion of $R_{\beta, \alpha} \times R_{\alpha, \beta}$ into $E$ let us choose the isomorphism $G \rtimes \bar{U} \cong E=\mathscr{E}(X \vee Y) \times{ }_{U} \bar{U}$ to be given by $(\gamma, u)=\gamma+u \mapsto$ $(\mu(\gamma), 1)+(s(u), u)=(\mu(\gamma) s(u), u)$. The inverse isomorphism is given by $(\sigma, u)$ $\mapsto(\gamma, u)$, where $\mu(\gamma)=\sigma s(u)^{-1}$. Thus the element $(1, u) \in \operatorname{ker}(E \rightarrow \mathscr{E}(X \vee Y))$, is identified under this isomorphism with the element $(\gamma, u) \in G \rtimes \bar{U}$ where $\mu(\gamma)=$ $s(u)^{-1}=s\left(u^{-1}\right)$ and $u \in \operatorname{ker} \pi$.

We decompose $\gamma$ in $G$ as $\gamma=\left(\gamma^{1}, \gamma^{2}\right)$ corresponding to the isomorphism $\left[S^{2 n} \vee S^{2 n}, X \vee Y\right] \rightarrow \pi_{2 n}(X \vee Y) \times \pi_{2 n}(X \vee Y)$.

Proposition 5. The monomorphism $R_{\beta, \alpha} \times R_{\alpha, \beta} \rightarrow G \rtimes \bar{U}$ is given by

$$
(\bar{g}, \bar{h}) \mapsto\left(\gamma,\left(\begin{array}{cc}
1_{X} & \bar{g} \\
\bar{h} & 1_{Y}
\end{array}\right)\right)
$$

where $\mu(\gamma)=s\left(\left(\begin{array}{cc}1_{X} & -l_{*} \bar{g} \\ -l_{*}^{\prime} \bar{h} & 1_{Y}\end{array}\right)\right) \in \mathscr{E}(X \vee Y)$. Furthermore, if $\bar{g}=(S \beta)^{*}\left(\zeta_{X}\right)$ and $\bar{h}=(S \alpha)^{*}\left(\zeta_{Y}\right)$, then

$$
\gamma=\left(\Gamma\left(i_{Y} \iota^{\prime}, \beta\right)\left(\zeta_{X}\right)-(S \beta)^{*}\left(\zeta_{X}\right), \quad \Gamma\left(i_{X} l, \alpha\right)\left(\zeta_{Y}\right)-(S \alpha)^{*}\left(\zeta_{Y}\right)\right)
$$

Proof. The first part is already proved. For the second observe that $\gamma$ is a sum of Whitehead products which lie in the kernel of $j_{*}$. The result follows on applying [9, 3.4.3] or using the computation of $\Gamma\left(i_{X l}, \alpha\right)\left(\zeta_{Y}\right)-(S \alpha)^{*}\left(\zeta_{Y}\right)$ given in §3 below.

In the next proposition we describe the action of $\bar{U}$ on $G$ in the extension $G \mapsto E \rightarrow \bar{U}$.
Proposition 6. Let $u=\left(\begin{array}{ll}f & \bar{g} \\ \bar{h} & k\end{array}\right) \in \bar{U}$ and $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in G$. Then $\gamma^{\prime}=$
$\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right)=u \cdot \gamma$ is given by

$$
\begin{aligned}
& \gamma_{1}^{\prime}=(f \vee k) \gamma_{1} \tilde{f}^{-1} \\
& \gamma_{2}^{\prime}=(f \vee k) \gamma_{2} \tilde{k}^{-1} .
\end{aligned}
$$

In particular the subgroup $R_{\beta, \alpha} \times R_{\alpha, \beta}$ of $\bar{U}$ acts trivially on $G$.
Proof. By definition, the action of $\bar{U}$ on $G$ is given by $u \cdot\left(\gamma_{1}, \gamma_{2}\right)=\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right)$ say, where $\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right) \perp 1=s(u)\left(\left(\gamma_{1}, \gamma_{2}\right) \perp 1\right) s\left(u^{-1}\right)$. Since $\left[X, S^{2 n} \vee X\right] \rightarrow\left[X, S^{2 n} \times\right.$ $X]$ is bijective by obstruction theory, we have $\varphi_{X} f=(\tilde{f} \vee f) \varphi_{X}$ for example. Similarly, for example, $\varphi_{X} \bar{g}=p \bar{g}+\bar{g}=\bar{g} . \quad$ Let $u^{-1}=\left(\begin{array}{cc}f^{-1} & -f^{-1} \bar{g} \tilde{k}^{-1} \\ -k^{-1} \bar{h} \tilde{f}^{-1} & k^{-1}\end{array}\right)$ $=\left(\begin{array}{ll}f_{1} & g_{1} \\ h_{1} & k_{1}\end{array}\right)$ say. Since $\gamma_{1}$ and $\gamma_{2}$ are sums of (proper) Whitehead products, we
have

$$
\begin{aligned}
s(u)\left(\left(\gamma_{1}, \gamma_{2}\right) \perp 1\right) s\left(u^{-1}\right) & =s(u)\left(\left(\gamma_{1}, \gamma_{2}\right), 1\right) \varphi_{X \vee Y}\left(\left(f_{1} \vee \bar{h}_{1}\right) \varphi_{X},\left(\bar{g}_{1} \vee k_{1}\right) \varphi_{Y}\right) \\
& =s(u)\left(\left(\gamma_{1} \tilde{f}_{1}+\bar{h}_{1}, f_{1}\right) \varphi_{X},\left(\gamma_{2} \tilde{k}_{1}+\bar{g}_{1}, k_{1}\right) \varphi_{Y}\right) \\
& =s(u)\left(\left(\gamma_{1} \tilde{f}_{1}, \gamma_{2} \tilde{k}_{1}\right), s\left(u^{-1}\right)\right) \varphi_{X \vee Y} \\
& =\left((f \vee k) \gamma_{1} \tilde{f}_{1},(f \vee k) \gamma_{2} \tilde{k}_{1}\right) \perp 1,
\end{aligned}
$$

where $\tilde{f}_{1}=\tilde{f}^{-1}$ and $\tilde{k}_{1}=\tilde{k}^{-1}$.
We now give a necessary and sufficient condition that the semi-direct product structure on $G \rtimes \bar{U}$ on $E$ carries over to a semi-direct product structure $G \rtimes U$ on $\mathscr{E}(X \vee Y)$. By Proposition 6, the action of $\bar{U}$ on $G$ induces the action of $U$ on $G$. So we can consider the 5 -term exact sequence [5, Theorem VI 8.1]
$0 \rightarrow \operatorname{Der}(U, G) \rightarrow \operatorname{Der}(\bar{U}, G) \rightarrow \operatorname{Hom}_{U}\left(R_{\beta, \alpha} \times R_{\alpha, \beta}, G\right) \rightarrow H^{2}(U, G) \rightarrow H^{2}(\bar{U}, G)$
associated to the group extension $R_{\beta, \alpha} \times R_{\alpha, \beta} \mapsto \bar{U} \rightarrow U$ and the $U$-module $G$. Here $\operatorname{Der}(\bar{U}, G)$ is the group of derivations (crossed homomorphisms) from $\bar{U}$ to $G$, that is the group of functions $d: \bar{U} \rightarrow G$ such that $d\left(u_{1} \cdot u_{2}\right)=d\left(u_{1}\right)+$ $u_{1} \cdot d\left(u_{2}\right)$ for all $u_{1}, u_{2} \in \bar{U}$. The group $H^{2}(U, G)$ classifies the extensions of the group $U$ by the $U$-module $G$. We denote the restriction of the section $s$ to $R_{\beta, \alpha} \times R_{\alpha, \beta}$ by

$$
s^{\prime}: R_{\beta, \alpha} \times R_{\alpha, \beta} \rightarrow \mu(G) \cong G .
$$

Proposition 7. The group of homotopy self-equivalences $\mathscr{E}(X \vee Y)$ is a semidirect-product, or more precisely, $\theta$ has a right-inverse, if and only if $s^{\prime}$ extends to some derivation from $\bar{U}$ into $G$.

Proof. It follows from the diagram after Proposition 4 that the cohomology class in $H^{2}(U, G)$ of the extension $G \mapsto \mathscr{E}(X \vee Y) \rightarrow U$ maps to the cohomology class corresponding to the semidirect-product $E$, that is to the zero element of $H^{2}(\bar{U}, G)$. We now show that the cohomology class which classifies the extension $G \mapsto \mathscr{E}(X \vee Y) \rightarrow U$ is given by $s^{\prime}$. The section $s^{\prime}$ is a $U$-module homomorphism since, for $u=\pi(\bar{u}) \in U$ and $r \in R_{\beta, \alpha} \times R_{\alpha, \beta}$, we have

$$
s^{\prime}(u \cdot r)=s^{\prime}\left(\bar{u} r \bar{u}^{-1}\right)=s(\bar{u}) s(r) s\left(\bar{u}^{-1}\right)=u \cdot s(r)
$$

To see that $s^{\prime}$ maps to the extension $G \mapsto \mathscr{E}(X \vee Y) \rightarrow U$, observe that the commutative diagram of group extensions

induces the commutative diagram


The proposition now follows.
As an aid to calculation, we note by Proposition 5 that

$$
\begin{aligned}
& s^{\prime}\left((S \beta)^{*}\left(\zeta_{X}\right),(S \alpha)^{*}\left(\zeta_{Y}\right)\right) \\
& \quad=\left(\Gamma\left(i_{Y} l^{\prime}, \beta\right)\left(\zeta_{X}\right)-(S \beta)^{*}\left(\zeta_{X}\right), \Gamma\left(i_{X} l, \alpha\right)\left(\zeta_{Y}\right)-(S \alpha)^{*}\left(\zeta_{Y}\right)\right)
\end{aligned}
$$

In $\S 4$ Example 5 we give examples of spaces for which $\theta$ has no right-inverse.
We now consider the case where $Y=X$. We define $\rho: \mathscr{E}(X \vee X) \rightarrow Z_{2}$ as follows: let $\theta(\sigma)=\left(\begin{array}{ll}f & g \\ h & k\end{array}\right)$, then $\rho(\sigma)=+1$ if $f$ and $k \in \mathscr{E}(X)$ and $\rho(\sigma)=-1$ if $g$ and $h \in \mathscr{E}(X)$. That $\rho$ is a homomorphism follows easily using the techniques of the proof of Proposition 2. This homomorphism has a section given by -1 $\mapsto T$, where $T(x, y)=(y, x)$. The action in the split extension $\mathscr{S}(X \vee X) \mapsto$ $\mathscr{E}(X \vee X) \rightarrow \boldsymbol{Z} / 2$ is given by $(-1) \cdot \sigma=T \sigma T$. We have, as above, the isomorphism $G \rtimes \bar{U} \mapsto \mathscr{S}(X \vee Y) \times_{U} \bar{U}$ given by $(\gamma, u) \mapsto(\mu(\gamma) s(u), u)$ : the inverse of this isomorphism is given by $(\sigma, u) \mapsto(\gamma, u)$, where $\mu(\gamma)=\sigma s(u)^{-1}$. The proof of the following proposition is straightforward.

Proposition 8. The action in the split extension $G \rtimes \bar{U} / R_{\beta \alpha} \times R_{\alpha \beta} \mapsto$ $\mathscr{E}(X \vee X) \rightarrow \boldsymbol{Z} / 2$ is given by

$$
(-1) \cdot\left(\left(\gamma_{1}, \gamma_{2}\right),\left(\begin{array}{cc}
f & \bar{g} \\
\bar{h} & k
\end{array}\right)\right)=\left(\left(\gamma_{2}, \gamma_{1}\right),\left(\begin{array}{cc}
k & \bar{h} \\
\bar{g} & f
\end{array}\right)\right)
$$

## §3. The group $G$

Let $Z$ and $W$ be (pointed) spaces. For any map $u: Z \rightarrow W$, the $u$-based track group $\pi_{1}^{Z}(W ; u)$ is the set of homotopy classes in the space of functions $\zeta: Z \wedge I^{+}=Z \times I / z_{0} \times I \rightarrow W$, satisfying $\zeta(z, 0)=\zeta(z, 1)=u(z)$, for all $z \in Z$. The set $\pi_{1}^{Z}(W ; u)$ is a group with the obvious operation. If $Z$ is a co- $H$-space, $W^{Z}$ is an $H$-space and there exists an isomorphism

$$
u_{b}: \pi_{1}^{Z}(W ; u) \rightarrow \pi_{1}^{Z}\left(W ; u \cdot u^{-1}\right) \cong \pi_{1}^{Z}(W ; *)
$$

defined in the following way. Let $F$ be a homotopy $u \cdot u^{-1} \sim *$, then

$$
u_{b}(\xi)(z, t)= \begin{cases}F(z, 1-4 t), & \text { for } 0 \leq t \leq \frac{1}{4} \\ \left(\xi, u^{-1}\right) \circ \Phi\left(z, 2 t-\frac{1}{2}\right), & \text { for } \frac{1}{4} \leq t \leq \frac{3}{4} \\ F(z, 4 t-3), & \text { for } \frac{3}{4} \leq t \leq 1\end{cases}
$$

where $\Phi: Z \wedge I^{+} \rightarrow(Z \vee Z) \wedge I^{+} \cong\left(Z \wedge I^{+}\right) \vee\left(Z \wedge I^{+}\right) \rightarrow\left(Z \wedge I^{+}\right) \vee Z$ is the map induced by the comultiplication of $Z$ followed by the projection.

Given co- $H$-spaces $A$ and $B$ and pointed maps $f: B \rightarrow A, u: A \rightarrow X$, we define

$$
\Gamma(u, f):[S A, X] \xrightarrow{u_{b}^{-1}} \pi_{1}^{A}(X ; u) \xrightarrow{f^{*}} \pi_{1}^{B}(X ; u f) \xrightarrow{(u f)_{b}}[S B, X] .
$$

For a detailed account of the properties of $\Gamma(u, f)$ see [10, §3].
In our case $B=S^{2 n-1} \vee S^{2 n-1}$ and $A=\bigvee^{m_{1}} S^{n} \vee \bigvee^{m_{2}} S^{n}$. By [10], for any $\left(\zeta^{1}, \zeta^{2}\right) \in\left[\bigvee^{m_{1}} S^{n+1}, X \vee Y\right] \times\left[\bigvee^{m_{2}} S^{n+1}, X \vee Y\right] \cong\left[\bigvee^{m_{1}} S^{n+1} \vee \bigvee^{m_{2}} S^{n+1}, X \vee Y\right]$ we have

$$
\Gamma\left(l \vee \iota^{\prime}, \alpha \vee \beta\right)\left(\zeta^{1}, \zeta^{2}\right)=\left(\Gamma\left(i_{X l}, \alpha\right)\left(\zeta^{1}\right), \Gamma\left(i_{Y} l^{\prime}, \beta\right)\left(\zeta^{2}\right)\right) .
$$

Hence, as a subgroup of $\left[S^{2 n}, X \vee Y\right] \oplus\left[S^{2 n}, X \vee Y\right]$,

$$
\begin{aligned}
\operatorname{im} \Gamma & \Gamma\left(l \vee l^{\prime}, \alpha \vee \beta\right) \cap i^{*}\left[S^{2 n} \vee S^{2 n}, \Omega X * \Omega Y\right] \\
& \cong\left(\operatorname{im} \Gamma\left(i_{X} l, \alpha\right) \cap \operatorname{ker} j_{*}, \operatorname{im} \Gamma\left(i_{Y} l^{\prime}, \beta\right) \cap \operatorname{ker} j_{*}\right) .
\end{aligned}
$$

Here $\operatorname{ker}\left\{j_{*}:\left[S^{2 n}, X \vee Y\right] \rightarrow\left[S^{2 n}, X \times Y\right]\right\}=i_{*}\left[S^{2 n}, \Omega X * \Omega Y\right]$.
Observe that $\left[\bigvee S^{n+1}, X \vee Y\right] \cong\left[\bigvee S^{n+1}, X\right] \oplus\left[\bigvee S^{n+1}, Y\right]$. So we only need to study the image of $\Gamma\left(i_{X} l, \alpha\right)$ and $\Gamma\left(i_{Y l^{\prime}}, \beta\right)$ on these two direct summands. Let $\zeta^{1}=\zeta_{X}^{1}+\zeta_{Y}^{1} \in\left[\bigvee^{m_{1}} S^{n+1}, X\right] \times\left[\bigvee^{m_{1}} S^{n+1}, Y\right] \cong\left[\bigvee^{m_{1}} S^{n+1}, X \vee Y\right]$ and similarly $\zeta^{2}=\zeta_{X}^{2}+\zeta_{Y}^{2}$. We have

$$
\Gamma\left(i_{X} l, \alpha\right)\left(i_{X}\right)_{*}=\left(i_{X}\right)_{*} \Gamma(l, \alpha) .
$$

Hence $\operatorname{ker} j_{*} \cap \Gamma\left(\iota_{X} l, \alpha\right)\left\{\zeta_{X}^{1}\right\}=0$, and, similarly, $\operatorname{ker} j_{*} \cap \Gamma\left(i_{Y} \iota^{\prime}, \beta\right)\left\{\zeta_{Y}^{2}\right\}=0$. Now $j_{*} \Gamma\left(i_{X} l, \alpha\right)\left(\zeta_{Y}^{1}\right)=(S \alpha)^{*}\left(\zeta_{Y}^{1}\right)$ by [10, (3.4.3)] and, therefore,

$$
\operatorname{im} \Gamma\left(i_{X} l, \alpha\right) \cap \operatorname{ker} j_{*}=\Gamma\left(i_{X X} l, \alpha\right)\left\{\zeta_{Y}^{1}:(S \alpha)^{*}\left(\zeta_{Y}^{1}\right)=0\right\} .
$$

Similarly

$$
\operatorname{im} \Gamma\left(i_{Y} \iota^{\prime}, \beta\right) \cap \operatorname{ker} J_{*}=\Gamma\left(i_{Y} \iota^{\prime}, \beta\right)\left\{\zeta_{X}^{2}:(S \beta)^{*}\left(\zeta_{X}^{2}\right)=0\right\} .
$$

We have proved the following Proposition.

## Proposition 9.

$$
\begin{aligned}
& \operatorname{im} \Gamma\left(\imath \vee \imath^{\prime}, \alpha \vee \beta\right) \cap i_{*}\left[S^{2 n} \vee S^{2 n}, \Omega X * \Omega Y\right] \\
& \quad=\Gamma\left(i_{X} l, \alpha\right)\left\{\zeta_{Y}^{1}:(S \alpha)^{*}\left(\zeta_{Y}^{1}\right)=0\right\}+\Gamma\left(i_{Y} \iota^{\prime}, \beta\right)\left\{\zeta_{X}^{2}:(S \beta)^{*}\left(\zeta_{X}^{2}\right)=0\right\}
\end{aligned}
$$

Let us compute these groups. Write $\alpha$ in the form $\alpha=\sum l_{i} \alpha^{l}+$
$\sum_{l<j}\left[l_{i}, l_{j}\right] \alpha^{l} j$. For $n$ odd $H\left(\alpha^{l}\right)=0, \alpha^{l}=t^{l}$ is a suspension element and $a_{i i}=0$. Here we use the notation introduced in $\S 1$ to define the matrix $Q(\alpha)$. For $n$ even $(n \neq 2,4,8)$, since $H\left[l_{i}, l_{i}\right]= \pm 2$, we have $\alpha^{l}=t^{l}+(1 / 2) a_{i i}\left[l_{i}, l_{i}\right]$ where $t^{l}$ is a suspension element. For $n=2,4,8$, we have $\alpha^{l}=t^{l}+a_{i i} \vartheta$ where $t^{l}$ is a suspension element and $\vartheta$ is the Hopf map: observe that in this case $S\left(\alpha^{l}\right) \neq S\left(t^{l}\right)$ in general. With this notation we have by [10, (3.3.3) and (3.3.6)]

$$
\begin{aligned}
\Gamma\left(i_{X} l, \alpha\right) & =\Gamma\left(i_{X} l, \sum l_{i} \alpha^{l}\right)+\sum_{l<j} \alpha^{i j} \Gamma\left(i_{X} l,\left[l_{i}, l_{j}\right]\right) \\
& = \begin{cases}(S \alpha)^{*}+\sum_{l} \frac{1}{2} a_{i i} \Gamma\left(i_{X} l,\left[i_{i}, l_{i}\right]\right)+\sum_{l<j} a_{i j} \Gamma\left(i_{X} l,\left[l_{i}, l_{j}\right]\right), & \text { for } n \text { even, } \neq 2,4,8, \\
(S t)^{*}+\sum_{l} a_{i i} \Gamma\left(i_{X} l, l_{i} \vartheta\right)+\sum_{l<j} a_{i j} \Gamma\left(i_{X} l,\left[l_{i}, l_{j}\right]\right), & \text { for } n=2,4,8, \\
(S \alpha)^{*}+\sum_{i<j} a_{i j} \Gamma\left(i_{X} l,\left[l_{i}, l_{j}\right]\right), & \text { for } n \text { odd. }\end{cases}
\end{aligned}
$$

Consider the map $\left[l_{i}, l_{j}\right]$ as the composition of $w: S^{2 n-1} \rightarrow S^{n} \vee S^{n}$ and $\left(l_{i}, l_{j}\right): S^{n} \vee S^{n} \rightarrow \bigvee^{m_{1}} S^{n}$. By [10, (3.4.2)], for $\zeta_{Y}^{1}=\left(\zeta_{1}, \ldots, \zeta_{m_{1}}\right) \in \bigoplus^{m_{1}}\left[S^{n+1}, Y\right]$, we have

$$
\begin{aligned}
\Gamma\left(i_{X} l,\left[l_{i}, l_{j}\right]\right)\left(\zeta_{Y}^{1}\right) & =\Gamma\left(i_{X} l\left(l_{i}, l_{j}\right), w\right) \Gamma\left(i_{X} l,\left(l_{i}, l_{j}\right)\right)\left(\zeta_{Y}^{1}\right) \\
& =\Gamma\left(i_{X} l\left(l_{i}, l_{j}\right), w\right)\left(\zeta_{l}, \zeta_{j}\right) \\
& =\left[\zeta_{l}, i_{X} l_{j}\right]+\left[i_{X} l_{i}, \zeta_{j}\right]
\end{aligned}
$$

since all elements are of order 2. Also, for the Hopf maps $\vartheta: S^{2 n-1} \rightarrow S^{n}$ $(n=2,4,8)$, we have $\left(l_{1}+l_{2}\right) \vartheta=l_{1} \vartheta+l_{2} \vartheta \pm\left[l_{1}, l_{2}\right]$. Therefore, by [10, 3.4.3],

$$
\Gamma\left(i_{X},, l_{i} \vartheta\right)\left(\zeta_{Y}^{1}\right)=(S \vartheta)^{*}\left(\zeta_{l}\right)+\left[\zeta_{l}, i_{X} l_{i}\right] .
$$

Since $\pi_{n+1} Y \cong \oplus^{m_{2}} \pi_{n+1} S^{n}$, we can write $\zeta_{l}$ in the form $\zeta_{l}=\sum_{\lambda} e_{l}^{\lambda} c l_{m_{1}+\lambda} \eta$, where $\eta$ is the generator of $\pi_{n+1} S^{n}, e_{i}^{\lambda}=0,1, \iota_{i}: S^{n} \rightarrow \bigvee^{m_{1}} S^{n} \vee \bigvee^{m_{2}} S^{n}$ is the inclusion onto the $i$-th sphere of the union and $c=\left(l \vee \imath^{\prime}\right): \bigvee^{m_{1}} S^{n} \vee \bigvee^{m_{2}} S^{n} \rightarrow$ $X \vee Y$ is the inclusion onto the $n$-skeleton. With this notation $i_{X} l_{i}=c l_{i}$ and we have

$$
\begin{aligned}
\Gamma\left(i_{X} l,\left[l_{i}, l_{j}\right]\right)\left(\zeta_{Y}^{1}\right) & =c_{*}\left(\sum_{\lambda=1}^{m_{2}}\left(e_{l}^{\lambda}\left[l_{j}, l_{m_{1}+\lambda} \eta\right]+e_{J}^{\lambda}\left[l_{i}, l_{m_{1}+\lambda} \eta\right]\right)\right), \quad \text { and } \\
\Gamma\left(i_{X} l, l_{i} \vartheta\right)\left(\zeta_{Y}^{1}\right) & =(S \vartheta)^{*}\left(\zeta_{l}\right)+c_{*}\left(\sum_{\lambda=1}^{m_{2}} e_{l}^{\lambda}\left[l_{i}, l_{m_{1}+\lambda} \eta\right]\right)
\end{aligned}
$$

Therefore, for all $n$,

$$
\Gamma\left(i_{X} l, \alpha\right)\left(\zeta_{Y}^{1}\right)=(S \alpha)^{*}\left(\zeta_{Y}^{1}\right)+c_{*}\left(\sum_{\lambda, l, j} a_{i j} e_{l}^{\lambda}\left[l_{j}, l_{m_{1}+\lambda} \eta\right]\right)
$$

where the sum runs over all $1 \leq i, j \leq m_{1}, 1 \leq \lambda \leq m_{2}$. Observe that the Whitehead products $\left[l_{i}, l_{m_{1}+\lambda} \eta\right]$ generate some of the last summands in

$$
\pi_{2 n}\left(\bigvee^{m_{1}} S^{n} \vee \bigvee^{m_{2}} S^{n}\right) \cong \pi_{2 n}\left(\bigvee^{m_{1}} S^{n}\right) \oplus \pi_{2 n}\left(\bigvee^{m_{2}} S^{n}\right) \oplus \sum_{\lambda<\mu} \pi_{2 n}\left(S^{2 n-1}\right)
$$

Now the natural isomorphism

$$
\pi_{2 n+1}\left(X \vee Y, \bigvee S^{n} \vee \bigvee S^{n}\right) \cong \pi_{2 n+1}\left(X, \bigvee S^{n}\right) \oplus \pi_{2 n+1}\left(Y, \bigvee S^{n}\right)
$$

commutes with the connecting homomorphism $\delta$ :


Since $\operatorname{ker} c_{*}=\operatorname{im} \delta$, the map $c_{*}$ is injective on the subgroup $\sum_{\lambda<\mu} \pi_{2 n}\left(S^{2 n-1}\right)$ of $\pi_{2 n}\left(\bigvee S^{n} \vee \bigvee S^{n}\right)$

Also $l_{*}\left[S^{2 n} \vee S^{2 n}, \Omega X * \Omega Y\right]$ is the subgroup of $c_{*}\left[S^{2 n} \vee S^{2 n}, \bigvee S^{n} \vee \bigvee S^{n}\right]$ given by

$$
l_{*}\left[S^{2 n} \vee S^{2 n}, \Omega X * \Omega Y\right] \cong \bigoplus_{J, \lambda}\left\langle\left[l_{j}, l_{m_{1}+\lambda} \eta\right]\right\rangle \oplus \bigoplus_{J, \lambda}\left\langle\left[l_{m_{1}+\lambda}, l_{j} \eta\right]\right\rangle
$$

where $1 \leq j \leq m_{1}$ and $1 \leq \lambda \leq m_{2}$. So, we can describe its elements as couples $\left(D_{1}, D_{2}\right)$ of non-square matrices over $\boldsymbol{Z} / 2$. With this notation the element

$$
\left(\Gamma\left(i_{X l}, \alpha\right)-(S \alpha)^{*}\right)\left(\zeta_{Y}^{1}\right)=\sum_{j, \lambda}\left(\sum_{l=1}^{m_{1}} a_{i j} \lambda_{l}^{\lambda}\right)\left[l_{j}, l_{m_{1}+\lambda} \eta\right]
$$

is represented by the matrix $D_{1}=E \bar{Q}(\alpha)$ where $E$ is the $m_{2} \times m_{1}$-matrix with entries $e_{\imath}^{\lambda} \in \boldsymbol{Z} / 2$ and $\bar{Q}(\alpha)$ denotes the reduction of the matrix $Q(\alpha)$ modulo 2. In particular

$$
\operatorname{dim}\left(\operatorname{im}\left\{\Gamma\left(i_{X} l, \alpha\right)-(S \alpha)^{*}\right\}\right)=m_{2} \operatorname{rank} \bar{Q}(\alpha)
$$

On the other hand, $\zeta_{Y}^{1} \in \operatorname{ker}(S \alpha)^{*}$ if and only if $\sum_{l} \zeta_{i} S \alpha^{l}=0$, that is, if and only if $E T_{\alpha}=0$, where $T_{\alpha}$ the one-column matrix with entries $S \alpha^{l} \in \pi_{2 n}\left(S^{n+1}\right)$. We define

$$
r_{\alpha}=\operatorname{dim}\left\{e \in \oplus m_{1} \boldsymbol{Z} / 2: e \boldsymbol{T}_{\alpha}=0\right\}-\operatorname{dim}\left\{e \in \oplus \not{m_{1}} \boldsymbol{Z} / 2: e \boldsymbol{T}_{\alpha}=0, e \bar{Q}(\alpha)=0\right\}
$$

and

$$
r_{\beta}=\operatorname{dim}\left\{e \in \oplus^{m_{2}} \boldsymbol{Z} / 2: e T_{\beta}=0\right\}-\operatorname{dim}\left\{e \in \bigoplus^{m_{2}} \boldsymbol{Z} / 2: e T_{\beta}=0, e \bar{Q}(\beta)=0\right\} .
$$

We have

$$
\begin{aligned}
\operatorname{dim}\left\{\zeta_{Y}^{1}:(S \alpha)^{*} \zeta_{Y}^{1}=0\right\} & =\operatorname{dim}\left\{E \in \mathscr{M}\left(m_{2} \times m_{1}, \boldsymbol{Z} / 2\right): E T_{\alpha}=0\right\} \\
& =m_{2} \operatorname{dim}\left\{e \in \bigoplus \boldsymbol{Z} / 2: e T_{\alpha}=0\right\}
\end{aligned}
$$

and

$$
\operatorname{dim} \Gamma\left(l_{X} l, \alpha\right)\left\{\zeta_{Y}^{1}:(S \alpha)^{*} \zeta_{Y}^{1}=0\right\}=m_{2} r_{\alpha}
$$

This together with Proposition 9 proves the following proposition.
Proposition 10. The group

$$
G=\frac{i_{*}\left[S^{2 n} \vee S^{2 n}, \Omega X * \Omega Y\right]}{\operatorname{im} \Gamma\left(\iota \vee \iota^{\prime}, \alpha \vee \beta\right) \cap i_{*}\left[S^{2 n} \vee S^{2 n}, \Omega X * \Omega Y\right]},
$$

is a free $\boldsymbol{Z} / 2$-module of dimension $N=2 m_{1} m_{2}-m_{2} r_{\alpha}-m_{1} r_{\beta}$.
Corollary. Let $(S \alpha)^{*}=0$ and $(S \beta)^{*}=0$, then the dimension of the free $\boldsymbol{Z} / 2-$ module $G$ is $N=2 m_{1} m_{2}-m_{2}$ rank $\left.\bar{Q}(\alpha)-m_{1} \operatorname{rank} \bar{Q}(\beta)\right)$. Given further that $\operatorname{det} Q(\alpha)$ and $\operatorname{det} Q(\beta)$ are both odd, then $G=0$ and

$$
\begin{aligned}
\mathscr{E}(X \vee Y) & \cong U, \quad \text { for } X \nsucceq Y \\
\mathscr{E}(X \vee Y) & \cong U \rtimes Z / 2, \quad \text { for } X \simeq Y
\end{aligned}
$$

Remark. Where $X=\bigvee S^{n} \cup_{\alpha} e^{2 n}$ is a manifold, we have $\operatorname{det} Q(\alpha)= \pm 1$ and hence rank $\bar{Q}(\alpha)=m$. More generally rank $\bar{Q}(\alpha)=m$ in case $\operatorname{det} Q(\alpha)$ is odd. In the case where $n$ is odd, we only can have $\operatorname{det} Q(\alpha) \neq 0$ if $m$ is even.

## §4. Examples

Example 1. $X=Y=\boldsymbol{H} P^{2}=S^{4} \cup_{v_{4}} e^{8}$, the quaternionic projective plane.
The group $\pi_{8}\left(S^{4}\right) \cong \boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2$ is generated by elements $v_{4} \eta_{7}$ and $S v^{\prime} \eta_{7}$, where $\eta_{k}$ is the generator of $\pi_{k+1}\left(S^{k}\right)$. Since $\eta_{3} v_{4}=v^{\prime} \eta_{6}$ [18, page 44], we have

$$
\iota_{*} \pi_{8}\left(S^{4}\right) \cong \frac{\pi_{8}\left(S^{4}\right)}{\left(v_{4}\right)_{*} \pi_{8}\left(S^{7}\right)}=\boldsymbol{Z} / 2=\left\{\eta_{4} S v_{4}\right\}
$$

and

$$
p^{*} l_{*} \pi_{8}\left(S^{4}\right) \cong \frac{\pi_{8}\left(S^{4}\right)}{\left(v_{4}\right)_{*} \pi_{8}\left(S^{7}\right)+\left(S v_{4}\right)^{*}\left[S^{5}, S^{4}\right]}=0 .
$$

Clearly $\bar{U} \xrightarrow{\pi} U$ has a right inverse and therefore $S\left(\boldsymbol{H} P^{2} \vee \boldsymbol{H} P^{2}\right) \cong G \rtimes U . \quad$ By [6],

$$
\boldsymbol{Z} / 2=\pi_{8}\left(\boldsymbol{H} P^{2}\right) \stackrel{\mu}{\cong} \mathscr{E}\left(\boldsymbol{H} P^{2}\right)
$$

where the isomorphism is given by $\mu(\xi)=\xi \perp 1, \xi \in \pi_{8}\left(\boldsymbol{H} P^{2}\right)$. Thus

$$
U=\mathscr{E}\left(\boldsymbol{H} P^{2}\right) \times \mathscr{E}\left(\boldsymbol{H} P^{2}\right)=\boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2
$$

The generator of $\pi_{5}\left(\boldsymbol{H} P^{2}\right)$ is $\imath \eta_{4}$, and $\left(S v_{4}\right)^{*} \imath \eta_{4}=\imath \eta_{4}\left(S v_{4}\right)=\imath\left(S v^{\prime}\right) \eta_{7} \neq 0$ is the generator of $\pi_{8}\left(\boldsymbol{H} P^{2}\right)$. Therefore, by Proposition 9,

$$
G=i_{*}\left[S^{8} \vee S^{8}, \Omega \boldsymbol{H} P^{2} * \Omega \boldsymbol{H} \boldsymbol{P}^{2}\right]=\left\{\left[l, \iota^{\prime}\right] \eta_{7}\right\} \times\left\{\left[l, l^{\prime}\right] \eta_{7}\right\}=\boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2 .
$$

The isomorphism $\mu$ shows that, for each self-equivalence $f, \hat{f}=1$. Moreover, from $\hat{f} v_{4}=v_{4} \tilde{f}$, we deduce that $\operatorname{deg} \tilde{f}=1$. Therefore

$$
(f \vee k)\left[l, l^{\prime}\right] \eta_{7}=\left(\imath \vee \imath^{\prime}\right)(\hat{f} \vee \hat{k})\left[\imath_{1}, l_{2}\right] \eta_{7}=\left[\imath, l^{\prime}\right] \eta_{7},
$$

and, by Proposition 6, the action of $U$ on $G$ is trivial. Finally, by Theorem B,

$$
\mathscr{E}\left(\boldsymbol{H} P^{2} \vee \boldsymbol{H} P^{2}\right)=\left(G \rtimes\left(\mathscr{E}\left(\boldsymbol{H} P^{2}\right) \times \mathscr{E}\left(\boldsymbol{H} P^{2}\right)\right)\right) \rtimes \boldsymbol{Z} / 2=(\boldsymbol{Z} / 2)^{4} \rtimes \boldsymbol{Z} / 2,
$$

where the action is given by

$$
(-1) \cdot\left(\gamma_{1}, \gamma_{2} ; f, k\right)=\left(\gamma_{2}, \gamma_{1} ; k, f\right) .
$$

Thus $\mathscr{E}\left(\boldsymbol{H} P^{2} \vee \boldsymbol{H} P^{2}\right) \cong D(\boldsymbol{Z} / 4 \times \boldsymbol{Z} / 4)$, the dihedral extension, where the copies of $\boldsymbol{Z} / 4$ are generated by $\left(\left[l, l^{\prime}\right] \eta_{7},-1\right)$ and $\left(i \eta_{4}\left(S v_{4}\right),-1\right)$ in $(Z / 2)^{4} \rtimes Z / 2$.

Example 2. $X=Y=C P^{2}=S^{8} \cup_{\sigma_{8}} e^{16}$, the Cayley projective plane.
The group $\pi_{16}\left(S^{8}\right)=\boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2$ is generated by elements $\sigma_{8} \eta_{15},\left(S \sigma^{\prime}\right) \eta_{15}, \bar{v}_{8}$ and $\varepsilon_{8}$. Since $S\left(\eta_{7} \sigma_{8}\right)=\left(S \sigma^{\prime}\right) \eta_{15}+\bar{v}_{8}+\varepsilon_{8}$, [18, page 64], we have

$$
\begin{gathered}
l_{*} \pi_{16}\left(S^{8}\right) \cong \frac{\pi_{16}\left(S^{8}\right)}{\left(\sigma_{8}\right)_{*} \pi_{16}\left(S^{15}\right)} \cong \boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2 \quad \text { and } \\
p^{*} l_{*} \pi_{16}\left(S^{8}\right) \cong \frac{\pi_{16}\left(S^{8}\right)}{\left(\sigma_{8}\right)_{*} \pi_{16}\left(S^{15}\right)+\left(S \sigma_{8}\right)^{*}\left[S^{9}, S^{8}\right]} \cong \boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2
\end{gathered}
$$

generated by $\left\{\eta_{8}\left(S \sigma_{8}\right), \bar{v}_{8}, \varepsilon_{8}\right\}$ and $\left\{\bar{v}_{8}, \varepsilon_{8}\right\}$ respectively. Therefore $\pi: \bar{U} \rightarrow U$ has a right inverse and $S\left(C P^{2} \vee C P^{2}\right)=G \rtimes U$. By [9, Example 4.1], $\mathscr{E}\left(C P^{2}\right) \cong$ $\boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2$, generated by $\mu\left(\left(S \sigma^{\prime}\right) \eta_{15}\right)$ and $\mu\left(\nu_{8}\right)=\mu\left(\eta_{8}\right)$, where $\mu(\xi)=\xi \perp 1$. Hence

$$
U=\left\{\left(\begin{array}{ll}
f & g \\
h & k
\end{array}\right) \in\left(\begin{array}{ll}
\boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2 & \boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2 \\
\boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2 & \boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2
\end{array}\right)\right\}
$$

As in Example 1, we have $\tilde{f}=1$ and $\hat{f}=1$, for each self-equivalence $f$. Therefore, $U$ acts trivially on $G$ (Proposition 6 ), and $U \cong(Z / 2)^{8}$. This is a consequence of Proposition 1, since $f \tilde{g} \tilde{k}=f_{\imath} g^{\prime}=\imath \hat{f} g^{\prime}=\bar{g}$, and similarly $k \bar{h} \tilde{f}=\bar{h}$. The generator of $\pi_{9}\left(C P^{2}\right)$ is $i \eta_{8}$ and $\left(S \sigma_{8}\right)^{*} i \eta_{8}=i \eta_{8}\left(S \sigma_{8}\right)=\imath\left(\left(S \sigma^{\prime}\right) \eta_{15}+\bar{v}_{8}+\varepsilon_{8}\right)$ $\neq 0$. Therefore, by Proposition 9 ,

$$
G=l_{*}\left[S^{16} \vee S^{16}, \Omega C P^{2} * \Omega C P^{2}\right]=\left\{\left[l, l^{\prime}\right] \eta_{15}\right\} \times\left\{\left[l, \iota^{\prime}\right] \eta_{15}\right\}=Z / 2 \times Z / 2
$$

Finally, by Theorem B,

$$
\mathscr{E}\left(C P^{2} \vee C P^{2}\right)=(G \times U) \rtimes \boldsymbol{Z} / 2=(\boldsymbol{Z} / 2)^{10} \rtimes \boldsymbol{Z} / 2
$$

where the action of $\boldsymbol{Z} / 2$ is given by

$$
(-1) \cdot\left(\left(\gamma_{1}, \gamma_{2}\right),\left(\begin{array}{cc}
f & \bar{g} \\
\bar{h} & k
\end{array}\right)\right)=\left(\left(\gamma_{2}, \gamma_{1}\right),\left(\begin{array}{ll}
k & \bar{h} \\
\bar{g} & f
\end{array}\right)\right) .
$$

Example 3. $X=Y=S^{n} \times S^{n}=\left(S^{n} \vee S^{n}\right) \cup_{\left[l_{1}, t_{2}\right]} e^{2 n}(n \geq 3)$.
In this case $S\left[\iota_{1}, l_{2}\right]=0$ and $X$ and $Y$ are both manifolds. Therefore $G=0$, $\mathscr{S}\left(S^{n} \times S^{n} \vee S^{n} \times S^{n}\right) \cong U$, and

$$
\mathscr{E}\left(S^{n} \times S^{n} \vee S^{n} \times S^{n}\right) \cong U \rtimes Z / 2
$$

Using the isomorphism

$$
\begin{aligned}
p^{*} i_{*}^{\prime} \pi_{2 n}\left(S^{n} \vee S^{n}\right) & \cong \frac{\pi_{2 n}\left(S^{n} \vee S^{n}\right)}{\beta_{*} \pi_{2 n}\left(S^{2 n-1}\right)+(S \alpha)^{*}\left[S^{n+1} \vee S^{n+1}, S^{n} \vee S^{n}\right]} \\
& \cong \pi_{2 n}\left(S^{n}\right) \times \pi_{2 n}\left(S^{n}\right)
\end{aligned}
$$

we have

$$
U \cong\left(\begin{array}{cc}
\mathscr{E}(X) & \pi_{2 n}\left(S^{n}\right) \times \pi_{2 n}\left(S^{n}\right) \\
\pi_{2 n}\left(S^{n}\right) \times \pi_{2 n}\left(S^{n}\right) & \mathscr{E}(Y)
\end{array}\right)
$$

with the semi-direct product structure given in Proposition 1. The action of $\boldsymbol{Z} / 2$ on $U$ is again given by

$$
(-1) \cdot\left(\begin{array}{ll}
f & g \\
h & k
\end{array}\right)=\left(\begin{array}{cc}
k & h \\
g & f
\end{array}\right)
$$

The groups $\mathscr{E}\left(S^{n} \times S^{n}\right)$ have been computed (see [6] and [16]). For $n=5$, we have

$$
\mathscr{E}\left(S^{5} \times S^{5}\right) \cong \operatorname{Sym}=\left\langle\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right\rangle \subset G L(2, Z)
$$

Example 4. $\quad X=Y=S^{n} \cup_{[, t, l]} e^{2 n}(n \geq 3)$, where $\tau$ is the generator of $\pi_{n}\left(S^{n}\right)$.
Again $S[l, l]=0$ and $\bar{Q}([l, l])=0$. Thus, in Proposition $10, r_{[t, l]}=0$ and

$$
G=i_{*}\left[S^{2 n} \vee S^{2 n}, \Omega X * \Omega X\right]=\left\{\left[l, l^{\prime}\right] \eta_{2 n-1}\right\} \times\left\{\left[l, l^{\prime}\right] \eta_{2 n-1}\right\}=\boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2 .
$$

We also have $\bar{U} \cong U$ and $\mathscr{S}(X \vee X) \cong G \rtimes U$. By Proposition 6, the action is given by

$$
(f \vee k)\left[l, l^{\prime}\right] \eta_{2 n-1}=\left(l \vee l^{\prime}\right)(\hat{f} \vee \hat{k})\left[l_{1}, l_{2}\right] \eta_{2 n-1}=(\operatorname{deg} \hat{f} \operatorname{deg} \hat{k})\left[l, l^{\prime}\right] \eta_{2 n-1} .
$$

Let $K_{n}$ be the group $p^{\prime *} l_{*} \pi_{2 n} S^{n} \cong \frac{\pi_{2 n} S^{n}}{\left\{[l, l] \eta_{2 n-1}\right\}}$, so that $U=\left(\begin{array}{cc}\mathscr{E}(X) & K_{n} \\ K_{n} & \mathscr{E}(Y)\end{array}\right)$ is a
semi-direct product, as in Proposition 1. Here

$$
\left\{[l, l] \eta_{2 n-1}\right\}= \begin{cases}0, & \text { for } n \equiv-1(4) \text { or } n=2,6 \\ Z / 2, & \text { otherwise }\end{cases}
$$

In the case where $n$ is even, we have $\tilde{f}=1$ for each self-equivalence $f$. In the case where $l_{*} \pi_{2 n} S^{n}=\boldsymbol{Z} / 2$ (e.g. $n=2,6,12, \ldots$ ), $\mathscr{E}(X)$ acts trivially on this group and $U=\boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2 \times \mathscr{E}(X) \times \mathscr{E}(X)$. Also (see [9, Example 4.4])

$$
\mathscr{E}\left(S^{n} \cup_{[l, l]} e^{2 n}\right)= \begin{cases}D\left(K_{n}\right) \times \boldsymbol{Z} / 2, & \text { for } n \text { odd } \\ D\left(K_{n}\right), & \text { for } n \text { even }\end{cases}
$$

By Theorem B, we have

$$
\mathscr{E}(X \vee X) \cong(G \rtimes U) \rtimes Z / 2
$$

Example 5. $\quad X=S^{3} \times S^{3}, Y=\left(S^{3} \vee S^{3}\right) \cup_{\beta} e^{6}$, with $\beta=l_{1} \eta^{2}+l_{2} \eta^{2}+\left[l_{1}, l_{2}\right]$. We have $Q(\alpha)=Q(\beta)=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), T_{\alpha}=0$ and $T_{\beta}=\binom{\eta^{2}}{\eta^{2}}$. Hence, with the notation of Proposition $10, r_{\alpha}=2$ and $r_{\beta}=1$, so that $G=(\boldsymbol{Z} / 2)^{2}$. On the other hand, $R_{\alpha, \beta}=0$ and
$R_{\beta, \alpha}=(S \beta)^{*}\left[S^{4} \vee S^{4}, S^{3} \vee S^{3}\right]=\left\langle\eta^{3}\right\rangle \oplus\left\langle\eta^{3}\right\rangle \subset \pi_{6}\left(S^{3}\right) \oplus \pi_{6}\left(S^{3}\right) \subset \pi_{6}\left(S^{3} \vee S^{3}\right)$.
By obstruction theory we have that the composite $\pi_{6}\left(S^{3} \vee S^{3}\right) \rightarrow \mathscr{E}(X \vee Y) \rightarrow$ [ $X \vee Y, X \times Y$ ] has trivial kernel and therefore the map $s^{\prime}: R_{\beta, \alpha} \times R_{\alpha, \beta} \rightarrow G$ is an isomorphism. By Proposition 7, $\mathscr{E}(X \vee Y)$ is a semidirect-product if and only if $s^{\prime}$ has a extension to a derivation from $\bar{U}$ to $G$. By Proposition 6, the subgroup $i_{*} \pi_{2 n}\left(\bigvee^{m} S^{n}\right) \times i_{*}^{\prime} \pi_{2 n}\left(\bigvee^{m} S^{n}\right)$ of $\bar{U}$ always acts trivially on $G$. Hence, each derivation from $\bar{U}$ to $G$ is a homomorphism on this subgroup. In our example $s^{\prime}$ has no extension to a homomorphism on $l_{*} \pi_{6}\left(S^{3} \vee S^{3}\right) \times l_{*}^{\prime} \pi_{6}\left(S^{3} \vee\right.$ $S^{3}$ ) since

$$
R_{\beta, \alpha}=Z / 2 \times Z / 2 \subset l_{*} \pi_{6}\left(S^{3} \vee S^{3}\right) \cong Z /(12) \times Z /(12)
$$

Therefore $\mathscr{E}(X \vee Y)$ is not a semi-direct product of $G$ by $U$.

## References

[1] W.D. Barcus and M.G. Barratt, On the homotopy classification of the extensions of a fixed map, Trans. Amer. Math. Soc., 88 (1958), 57-74.
[2] I. Bokor and I. Llerena, On wedge cancellation phenomena, Math. Preprint Series Univ. Barcelona, 1993.
[3] T.D. Cochran and N. Habegger, On the homotopy theory of simply connected four manifold, Topology, 29 (1990), 419-440.
[4] D. Frank and D.W Kahn, Finte complexes with infinitely-generated groups of selfequivalences, Topology, 16 (1977), 189-192.
[5] P Hilton and U. Stammbach, A Course in Homological Algebra, Springer-Verlag, 1971.
[6] P.J. Kahn, Self-equivalences of ( $n-1$ )-connected $2 n$-manifolds, Math. Ann., $\mathbf{1 8 0}$ (1969), 2647.
[7] I. Llerena, Wedge cancellation of certain mapping cones, Compositio Math., 81 (1992), 117
[8] K. Maruyama and M. Mimura, On the group of self-homotopy equivalences of $K P^{2} \vee S^{m}$, Mem. Fac. Scı. Kyushu Unıv. Ser A Math., 38 (1984), 65-74.
[9] S. Oka, N. Sawashita and M. Sugawara, On the group of self-equivalences of a mapping cone, Hiroshıma Math. J., 4 (1974), 9-28.
[10] J.W Rutter, A homotopy classification of maps into an induced fibre space, Topology, 6 (1967), 379-403.
[11] J.W RutTer, Fibred joms of fibrations and maps II, J. London Math. Soc., 8 (1974), 453459.
[12] J.W Rutter, The suspension of the loops on a space with comultiplication, Math. Ann., 209 (1974), 69-82.
[13] J.W Rutter, The group of homotopy self-equivalence classes of CW complexes, Math. Proc. Cambridge Philos. Soc., 93 (1983), 275-293.
[14] J.W. Rutter, The group of homotopy self-equivalence classes using an homology decomposition, Math. Proc. Cambridge Philos. Soc., 103 (1988), 305-315.
[15] J.W Rutter, Homotopy self-equivalence groups of unions of spaces: including Moore spaces, Quaestiones Math., 13 (1990), 321-334.
[16] N. SAWAShita, On the group of self-equivalences of the product of spheres, Hiroshima Math. J., 5 (1975), 69-86.
[17] A.J. Sieradski, Twisted self-homotopy equivalences, Pacific J. Math., 34 (1970), 789-802.
[18] H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Studies, Princeton Univ. Press, New Jersey, 1962.
[19] C.T.C. Wall, Classification of $(n-1)$-connected $2 n$-manifolds, Ann. of Math., 75 (1962), 163-189.
[20] K. Yamaguchi, On the self-homotopy equivalences of the wedge of certain complexes, Koda1 Math. J., 6 (1983), 346-375.

Facultat de Matematiques
University of Barcelona
Gran Via de les Corts Catalanes 585
08071 Barcelona
Spain
Department of Mathematical Sciences
University of Liverpool
Liverpool L69 3BX
England


[^0]:    ${ }^{1}$ Partally supported by CIRIT, PB 94-0725
    Recerved March 27, 1998.

