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THE GROUP OF HOMOTOPY SELF-EQUIVALENCES OF A UNION OF

(rc-l)-CONNECTED 2H-MANIFOLDS

IRENE LLERENA1 AND JOHN W. RUTTER

Abstract

In this paper we determine the group S(X v Y) of pointed homotopy self-

equivalence classes as the quotient of an iterated semi-direct product involving £{X),

S(Y) and the 2«-th homotopy groups of X and Y, in the case where X and Y are

(n - 1)-connected 2«-manifolds or, more generally, are CW-complexes obtained by

attaching a 2«-cell to a one-point union \fm Sn of m copies of the ^-sphere for which a

certain quadratic form has non-zero determinant (n > 3). In the case of manifolds this

determinant is + 1 . We include some examples, m particular one in which &{X v Y)

does not itself inherit a semi-direct product structure.

§0. Introduction

A method was given in 1958 by Barcus and Barratt [1] for calculating the
group &{X) of (pointed) homotopy self-equivalence classes of simply-connected
CW complexes of the form X = KU^e^1 obtained by attaching a (q + l)-cell to
a complex K of dimension <q—\\ this method was extended by Rutter [13] to
general simply-connected complexes. Since 1958 general results about the group
&(X), such as conditions for finite presentability, have been obtained and many
calculations have been made.

P. J. Kahn [6] made calculations of δ(X) for X = {Sn v v Sn)Uae
2n

and, in particular, for (n - 1)-connected 2«-manifolds. In this note we calculate
&{X v Y) in the case where X and Y are (n - l)-connected 2/2-manifolds (n > 3)
or, more generally, are spaces obtained by attaching a 2«-cell to a union of n-
spheres for which a certain quadratic form has non-zero determinant. Our main
result stated in §1 is that, for such spaces, S(X v Y) is a quotient of a certain
iterated semi-direct product in case X φ. Y, and involves a further semi-direct
product in case X = Y. We also give criteria for which this quotient is not
itself a semi-direct product: in previous cases calculations have been completed in
general only in cases where a corresponding extension is a semi-direct product.

Previous calculations of δ(X v Y) for a one-point union have been made in
cases where either ^ or Y is an A-cogroup (see for example Maruyama-Mimura
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[8], Oka-Sawashita-Sugawara [9], Rutter [14] and [15], Sieradski [17] and
Yamaguchi [20]). In our case the spaces are not in general Λ-cogroups. Proofs
and other results are given in §2 and §3, and some examples, including one which
involves a non-trivial extension are given in §4.

§1. Main results

We consider complexes Xa = \Jm SnU0Le2n obtained by attaching one 2«-cell
to a union of w-cells (n > 3). By the Hilton-Milnor theorem, the attaching map
α has the form

α = 2 ^ ii o α1 + 2^[z/, /,-] o αzy.

Here α ' e ^ - i ^ ) , otiJ e π2n-i(S2n-1), and z, : 5" -> \ / m •?" i s t h e canonical

inclusion of the z-th sphere Sn in \/m Sn. We define an integer matrix g(α) =

deg oiij\ for / < j

\ for i > j

H((xι), f o r / = 7,

where i/(α') is the Hopf invariant of α1: in case rc is odd, we have au = 0.
Therefore Q(oc) is symmetric in case n is even, and is skew-symmetric in case n is
odd. The matrix Q(oc) can also be defined as the matrix of the cup product form
on Hn(X) (compare [19] and [3]). In what follows we consider only those
complexes Xa for which the matrix Q(oc) has non-zero determinant. Any (n— 1)-
connected 2«-manifold has the homotopy type of a space Xa as above, and its
associated matrix Q(ot) is unimodular (see [19, page 169]): in this case the matrix
Q((x) is, up to sign, the inverse of the matrix of the ^-symmetric bilinear form
determined by linking numbers on X\int E2 (see [19, pages 164 and 182]).

We shall in general use the same symbol to denote a map and its homotopy
class.

Let X = Xa = (\/mi Sn) Uα e
2n and Y = Xβ = {\Jmi Sn) Uβ e

2n (n > 3), where
\Jm Sn denotes a one point union of m copies of the ^-sphere. A map h : X —>
Y induces a homotopy commutative diagram

o2w-l α ^ \ / m i c« ι

 v V p

 v c2« Sa

 v \ lm\ on+1

Sh

S2n~ι β > \/mi Sn ι> > Y

of cofibre sequences, where the vertical maps are unique up to homotopy, and

where h ~ Sh'. If /ι is cellular, h and h can be chosen so that the two middle
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squares are strictly commutative. We shall always assume that the three maps
are chosen in this way.

The fibre sequence Ω ^ * Ω 7 -^ X v y i l x 7 induces the exact sequence
of pointed sets

[X v 7 , Ω I * Ω 7 ] i [ I v 7 , I v Y] ^ [X v 7,X x 7],

where the preferred element for exactness is the class of the trivial map. In this
paper we prove that j \ induces a faithful representation of S(X v Y) onto the
quotient of an iterated semidirect product. This representation involves, besides
S(X) and <?(7), some groups related to the homotopy groups of X and Y. One
of these is

U[S2n v S2n,QX*ΩY]
G = im T(ι v ι', α v /?) Π 4[S 2" v S ^ Ω J f * Ω 7 ] '

where Γ(i v ι',α v β) : [\/mi SM + 1 v V ^ S Λ + 1 , JT v 7] -> [S2n v S2", JT v 7] is
the homomorphism defined in [10, §3.2]. We recall the definition of this ho-
momorphism in §3. For n>3, the group h[Sln v S2n,ΩX* ΩY], and hence
G, is a finitely generated free Z/2-module (see §2 and §3). We also define (for
n>3)

w + 1, \/m2S"]

»-η n
and similarly ifyα = (Sβ)*[\Jm2 Sn+ι,X]: each of these is also a finitely generated
free Z/2-module for n > 3. Our main result is the following theorem.

THEOREM A. Let X^Y, let n> 3, and let β(α) αra/ g(/?) &<? non-singular
matrices. Then the map j \ : [X v 7, Z v 7 ] ^ [ I v 7 , I x 7] induces a
faithful representation of $(X v 7) onto the quotient of an iterated semi-direct
product:

δ{X v Y)^(Gx Ό)/{Rβ^ x Ra,β),

where Ό = {nπln{\/m Sn) x ιlπ2n(\/m2 Sn)) x (£(X) x S{Y)). Furthermore G,
Λ^α and Raj are finitely generated free Z/2-modules.

The proof of Theorem A is given in §2. In Proposition 6 we describe the
action of U on G (see Proposition 1) for the semi-direct product G x U. In
Proposition 5 we describe ifyα x Ra^ as a subgroup of the semi-direct product
structure G x U. In Proposition 10 we compute G. We also give, in Prop-
osition 7, precise conditions under which the structure on ${X v 7) as the
quotient (G x U)/(R^ x Rβa) of a semi-direct product induces on $(X v 7) the
structure of a semi-direct product of the form G x U.
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Where X ~ Y we may assume X = Y without loss of generality. In this
case we denote by S(X v X) the subgroup of S(X v X) corresponding to the
group obtained by putting Y = X in the quotient of the iterated semi-direct
product given in Theorem A. Thus (see §2)

= \vX) = \σeS{X v X) : y » = ({ jj,/,t e Λ(X),ίϊ*(g) = 0 =

The group <f(X v X) is determined as a further split extension in the following
way.

THEOREM B. Let n>3, and let Q(ά) be a non-singular matrix. Then there
is a split exact sequence of groups and homomorphίsms

£f(X v X) >-• δ{X v X) -» Z/2.

The splitting is given by {1,-1} —> (f(X v X) where (-1) maps to the homeo-
morphίsm T:XvX—>XvX given by (x, y) ι-> (y,:

The proof Theorem B is given in §2. In Proposition 8 we note the action of
Z/2 on (G x U)/{Rap x Rβ(χ) in the split extension (G x U)/(Raβ x
δ(X v X) -» Z/2 of Theorem B.

In §4 we give some examples.

§2. Proofs and further results

Each element of the set [X v 7, X x Y] can be written as a matrix

/ g\ πx,x\ [γ,x]
h k) \[X,Y] [Y,Y]

The following result characterises the elements in the image of j \ : δ(X v 7) —>
[X v y , I x 7]. Its proof is given, for mi = mi, in [2] for n even, and in [7] for
n odd. The same proofs yield the case m\ φmi.

THEOREM. Let X = \Jmχ SnΌae
2n and 7 = \Jmi Sn\Jβe

2n such that β(α)

and Q(β) are non-singular matrices, and let j \ (σ) = I I, where σ e [X v 7,(
X v y]. ΓΛ /̂i, σe£(X v 7) //, α«J only if, either

(i) / and k are homotopy equivalences and h and g are homologically trivial,
or

(ii) g and h are homotopy equivalences and f and k are homologically trivial.

Using this result, Theorem B is an elementary consequence of Theorem A.
By obstruction theory, a map h : X —*• Y is homologically trivial if, and only

if, h e p*ιlπ2n(\/m2 Sn). Also by obstruction theory the group structure on
**^2n(V™2 Sn) induces a group structure on /?*^7Γ2«(\/W2 Sn) for which p* is a
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homomorphism. We note the following isomorphisms:

/\ /Wl2 ς,n\

hπ2nN s ) = β(s*-ιy a n d

) =

We consider the set of matrices

JJ-ί(f Λ ( *W P'%*2n(\/m] S")
\\h k) {\ h k) {p iMV*sη s(Y) )}•

We shall often identify U with a subset of [X v 7 , I x y] as indicated above.
We consider also the set of matrices

u \\h k) - V^2n(V"2s")

The set U, endowed with the operation

//i (

h k) \hχ kj \hfx+khλ kkx y

(1 0\ ~
is a group with identity ί - J. The maps/) and k\ have been defined in §1.

The inverse of ί - J is ί _ _ ~_χ _j )• Using the standard

properties of the induced cofiber sequence, we can prove that (hfx +kh\)p'_?Lnά
(f(j\ + gkι)p' a r e independent of the choices of maps h, h\, g, gλ satisfying hp =
h, gp1 — g, h\p — h\, gxp

f = g\. Therefore the group structure (t/,o) determines
a group structure on the set U under the obvious projection π : U —> U. We have
the following Proposition.

PROPOSITION 1. The projection (£/,o) —> S(X) x S{Y) determines the semi-
direct product

U = (^π 2 n (V"" Sn) x ι[π2n{\Jmi S")) x {g{X) x S(Y))

with the {left) action given by (f,k)-(g,h) = (fgk~\khf~ι). The projection
(U,o) —• S(X) x &{Y) determines the semi-direct product

U = (P'*ι*π2n(\Jmι S") x p*ϊtπ2n(\/m2 S")) x {S{X) x S{Y))

with a similar action. Also there is a group extension

Rβ,* xR«,β» C/-» U.



SELF-EQUIVALENCES OF A UNION 335

Now assume J φ F and denote by

Θ:£(X v Y)^U

the map induced by j \ . We prove that θ is an epimorphism and find a ho-
momorphism s : U —> ${X v Y) such that θs = π. If π has a right inverse, so
does θ. Later, in Proposition 7, we study the general conditions under which θ
has a right inverse.

First we recall some of the properties of the coaction in a principal cofi-
bration. Let Cα = B Uα CA be the mapping cone of a map α : A —> 5. There is
a coaction #? = φc^ : Cα —> SA v Cα given by

φ(b) = b, for be B

(a,It) e SA, for 0 < t < - and α e i

(Λ, 2/ - 1) e Cα, for - < t < 1 and a e l

Given C : SA -^ Z and λ : Cα -> Z , we define

ζ±λ=(ζ,λ)φ:Ca->Z.

If two maps λ, λ\ : C^ -* Z coincide on B, then there is a difference map d =
d(λ,λ\) : SA —> Z, given by

( 2 ί ) 0 < <

The maps d(λ,λ\)Lλ\ and A are homotopic relatively to B, but the homotopy
class of d is not uniquely determined by the homotopy class of λ and λ\. In the
sequel it is convenient to denote also by φx the composite X —> S2n v X —> X v
S 2" of ^ and the switching map.

Now we define

Y) by (^ fy >-+{(f vh)φx,(g v k)φγ).

P R O P O S I T I O N 2 . θ = j \ : £{X v Γ ) —> C/ w a n epimorphism, s\U->

S(X v F) w Λ homomorphism and the composite θs is the epimorphism

Proof Let σ,σxe£{XvY), and θ{σ)=({ g \ θ{σλ) - (fx 0 ι

_ _ \n k / \h\ k\
Choose decompositions h = hp, h\ = h\p, g = ̂ /?', ^i = cj\pf.

The component X -» 7 of θ(σσ\) has the form

The elements (/? v l)σμ> and (/ί v h\)φx are mapped to the same element by
the induced function [X,S2n v Y] -> [X,^2" x F]: this latter function is a bi-
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jection since S2n v X -> S2n x X is (3/i - l)-connected. Therefore we have

(h,k)σxiχ = (h,k)(p v \)σ\ix = (hfx,khx)φx = (hfx,kh\){\ v p ) ^ .

A similar argument for (1 v p)φx and X Λ S2" Λ S2n v 5 2 π in [X,S2n v S2n]
proves that these elements coincide and hence

(h,k)σιix = {hfx,khx){\ v / O ^ - (hfx+khx)p.

Using the standard properties of the induced cofibre sequence, we have that this
construction is independent of the choices of h and h\ satisfying hp — h and
Jιλp — h\. Applying similar arguments for the other components, we obtain

{hfx+khx)p kkx

and therefore θ is a homomorphism. Since θs is the epimorphism π : U —> U, it
follows that θ is surjective.

Given u = ( - \ and wi = ( τ

ι

 7

ι ) consider the composite
\h k) \hχ k\J

s(u)s(u\)iχ = ((/ v h)φx, (g v k)φγ)({fx v h\)ψχ)

= ((/ v h)ψχfu(S v k)<Pγhι)φx

Now Ai : *S2w —• Y factorsthroughthe ^-skeleton of Y and therefore, by cellular
considerations, (g v k)φγhx = iγkh\. Also ^ / i ^ (/j v f\)ψχ since they have
the same image under [^,S2/1 v X) —> [X,^2" x X], which is a bijection since
S2n v JT -> 5 2 w x X is (3Λ - l)-connected. Thus (/ v h)φxfx = (Λ/ί / / O
Therefore

J ( « M « I ) I > = ((//i v hfx)φx,iγkhx)φx

= iffi v (khi +hfι))φx =s(uoux)ix.

Similarly s(u)s(ux)iγ = s(uoux)iγ. Hence, s is a homomorphism. •

We now investigate the kernel of θ. In the following diagram, induced by
i v ι' \ A = \J Sn v \J Sn -* X v Y, the horizontal sequences of pointed sets are
exact and the diagram is commutative by [10, (3.2.2) and §3.3]: the preferred
elements for exactness are as indicated. Also the vertical sequence is exact, and,
by obstruction theory, the left and right vertical maps are isomorphisms as
indicated.
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[SA, XxY] -U+ [S2n v S2n, XxY] -^-> [XvY,Xx Y\. > [A, X x Y]j{ι v | / )

'•]-
[SA,XvY] - ^ [S2nvS2n,XvY] Λ[Ivr,Ivy], > [A,XvY]ιvι,

[S2nvS2n,ΩX*ΩY]

The functions μ and μ' and given by μ(α) = α_L 1 and μ'(β) = β ±j. The image
of μ consists precisely of those classes which extend the identity on the ̂ -skeleton.
Also Γ = Γ(i v z',α v β) and Γ = T(j{ι v ι'),α v β). We recall the definition
of T{uJ) in §3.

PROPOSITION 3. The sequence

h[Sln v S2n,ΩX * Ω Γ ] i ^ ( I v F ) ^ [ / ^ l

is an exact sequence of groups.

Proof. Since p v p' is trivial on the image of /*, it follows from [13, pages
276-277] that μ : h[Sln v ^ , Ω I * Ω 7 ] - > [X v 7 , I v F ] i s a homomorphism
from the usual group structure to composition. As easy argument using ho-
mological considerations shows that the image of this homomorphism is con-
tained in $(X v Y). Let θ(σ) = j\(σ) = j. Then, by the commutativity and
exactness of the above diagram, we have σ = μ(d) say. Furthermore, we have
j\(d) = Γ7*(c) say, and therefore d = Γ(c) + h(b) say. But μ(Γ(c)) = 1, so that
a — μ(d) — μ(U(b)). This proves the inclusion Ker#c:Imμ. The proposition
now follows since j\μi* = μfjj* is constant. Π

From this proposition and the diagram above we obtain an exact sequence

0 -> G Λ S{X v Y) Λ U -> 1

where

v S2n,ΩX*ΩY]

im Γ(i v/ ',αvj5)ίl 4[Sr2w v S2", ΩZ * Ω 7 ] '

Note that the kernel of [S2n v S2", X v 7] A <ί(X v 7) is im /* + imΓ, and that
//(im 4) = //(im 4 + im Γ). The construction d >-» 4(Z?) induces the isomorphism

im 4 + im Γ ^ im /*

im Γ ~~~ im 4 Π im Γ

In the homotopy fibre sequence Ω X *Ω7—•Jfv Y -^ X x Y, the map /
may be regarded as the generalized Whitehead product [-£χ,εy] of evaluation
maps (see [11, §3]). Moreover, by obstruction theory, we have that the canonical
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map

χ : \/mim2 S2""1 - (Vm i S"~l) * ( V ^ S"~l)
-> ΩS(\Jmι Sn~ι) * ΩS(\Γ 2 Sn~ι) -

is (3w — 2)-connected, and, without loss of generality, it may be regarded as the
inclusion into ΩX*ΩY of its (3« - 2)-skeleton.

PROPOSITION 4. The map χ induces an isomorphism

Proof Since / is (3n - 2)-connected, χ^ is an isomorphism for n > 4 and an
epimorphism for n — 3. We consider the case « = 3. For a homotopy coloop
Z, the evaluation map SΩZ —> Z has a homotopy section (see for example [12]).
Thus Ω5(\/mi Sn~l) * Ω^V^ 2 S"-1) £ SΩSίV^S"1"1) A Ω ^ V ^ *S'W~1) ->

5(Vm i ^ n " 1 ) Λ Ω^(Vm2 sn~ι) s (Vm i s""1) A m s ( V m 2 ^n~1) ̂  (V '" 1 ^" 1 ) Λ

S(ymi Sn~ή ?! (\/mι S"-1) * (\/m2 Sn~ι) has a homotopy section. Up to
a homotopy self-equivalence of (\/mι Sn~ι) * (\ίm2 Sn~ι), this composite is a
homotopy co-section of /. Hence χ^ is an isomorphism. •

By Proposition 4, z*^2" v S2n,ΩX * ΩF] ^ 0 2 m j m 2 Z / 2 , and G ̂  @NZ/2,
with ΛΓ < 2m\m2 (see Proposition 10). The composite iv = iχ factors as

w = iX: vmim2^s2""1 -+ Vm i^ n v \/m2sn^xv r,

and, after a suitable choice of orientation of the {In — 1)-spheres, the m\mι
components of w are easily shown to be the Whitehead products wrs = [ιr, ιs)
o f S n Λ \/m i S n ^ X and S n - ϊ > \ / m 2 S n c=Y, r=l- m u s = \ . . - m 2 .

Finally, in the following pull-back square of groups

E

e

Rβt* x Ra,β > U — ^ - * U

the map s : U -+ $(X v Y) induces a cross-section of θ, so that

Eς^Gxϋ, and g(X v Y) ^ - — ^ — — .

This completes the proof of Theorem A.
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In order to describe the inclusion of ifyα x Raj into E let us choose the
isomorphism G x U ^ E = ${X v 7) xu U to be given by (y,u) = y + u\-^
(μ(γ), 1) + (s(u),u) = (μ(γ)s(u), ύ). The inverse isomorphism is given by (σ,«)
H-+ (y,κ), where μ(γ) = σs(ύ). Thus the element (1, u) e ker (£_-> <?(JT v 7)),
is identified under this isomorphism with the element (y, w) e G x £/ where μ(y) =
^(w)"1 =ks (w~1) and w e ker π.

We decompose γ in G as γ = (γι,γ2) corresponding to the isomorphism
[S2n v S2n, X v Y] -* π2 r t(X v 7) x π2«(X v 7).

PROPOSITION 5. 77ze monomorphism Rβ^ x i^α^ —> G x C/ w

^ j j r ) . Furthermore, if g = (Sβ)*(ζx)

and h = (Sa)*(ζY), then

γ = (Γίiyi ' ./ίJί^) - (Sβ)*(ζx), Γ(ixι,a)(ζY) - (Sα)*(f r)).

/ The first part is already proved. For the second observe that γ is
a sum of Whitehead products which lie in the kernel of j \ . The result follows on
applying [9, 3.4.3] or using the computation of Γ(iχi,oί)(ζY) - (Sai)*(ζY) given in
§3 below. •

In the next proposition we describe the action of U on G in the extension
Q >_> E -» U.

PROPOSITION 6. Let u = I - j e Ό and γ = (γι,γ2) e G. Then γ' =
{y'vy'i) — u y is given by ^ '

ί = (/ v k)γJ -χ

In particular the subgroup ifyα x R^β of U acts trivially on G.

Proof. By definition, the action of U on G is given by u (γλ,γ2) = (y[,y2)
say, where (γ[,γ'2) _L 1 = s(u)((γuγ2) _L I M I I " 1 ) . Since [X, S2r t v X] -> [X, S2n x
X] is bijective by obstruction theory, we have φxf = (/ v / ) ^ for example.

Similarly, for example, φxg = pg + g = g. Let u~x = ( ^~x = ( ^
\-k ιhf

\
say. Since γ{ and γ2 are sums of (proper) Whitehead products, we

1/
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have

1 ((f\ vhχ)φx,(gλ v kχ)φY)

(y2ki +8ukι)φY)

= s{u)((γιfuγ2kι),s(u-ι))φXvY

= ((fvk)γJι,(fvk)γ2kι)±l,

where fx =f~ι and k\ =k~ι. Π

We now give a necessary and sufficient condition that the semi-direct product
structure on G x U on E carries over to a semi-direct product structure G x U
on $(X v Y). By Proposition 6, the action of U on G induces the action of U
on G. So we can consider the 5-term exact sequence [5, Theorem VI 8.1]

0 -> Der(ί7, G) -> Der(ί7, G) -> Homc/(ify,« x Λ ^ , G) -^ // 2(ί/, G) -> if/2(t7, G)

associated to the group extension Λ^α x i ί α ^ w £/ ̂ > (7 and the (/-module G.
Here Der( C/, G) is the group of derivations (crossed homomorphisms) from U to
G, that is the group of functions d : U —> G such that d{u\ - u2) = d(u\)+
u\ - d(u2) for all u\,u2eU. The group H2(U,G) classifies the extensions of
the group (7 by the {/-module G. We denote the restriction of the section s to
Rβ,<* x ^α,/? by

s': RβtOί x Ratβ ^ μ(G) ̂  G.

PROPOSITION 7. 7%^ group of homotopy self-equivalences $(X v Y) is a
semidirect-product, or more precisely, θ has a right-inverse, if and only if s1 extends
to some derivation from U into G.

Proof It follows from the diagram after Proposition 4 that the cohomology
class in H2(U, G) of the extension G >-• δ{X v Y) -» U maps to the cohomology
class corresponding to the semidirect-product E, that is to the zero element
of H2(U,G). We now show that the cohomology class which classifies the
extension G >-> S(X v Y) -» U is given by s1. The section s1 is a {/-module
homomorphism since, for u = π(w) e ί/ and r e Rβ^a x jRα>ig, we have

^(w . r) = s'(ΰrϋΓx) = s(ΰ)s(r)s(ΰ~ι) = u - s(r).

To see that s' maps to the extension G >-• δ(X v F) -•> £/, observe that the
commutative diagram of group extensions

Rβ,a x R*,β > ί/ — ^ t/

u
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induces the commutative diagram

Homt/(G,G) > H2(U;G) > H2{S{X v Y);G)

1 s*

% α x R^β, G) > H2(U; G) > H2(U', G).

The proposition now follows. •

As an aid to calculation, we note by Proposition 5 that

= (Γ(iγι',β)(ζx) - {Sβ)*{ζx),T{ixha){ζγ) - (Sα)*(Cκ))

In §4 Example 5 we give examples of spaces for which θ has no right-inverse.
We now consider the case where Y = X. We define p : $(X v X) —> Zj as

follows: let θ{σ) = [ , then p(σ) = -hi if/and k e S{X) and p(σ) = -1 if
\ h k J

g and h e $(X). That p is a homomorphism follows easily using the techniques
of the proof of Proposition 2. This homomorphism has a section given by —1
H-» T, where T(x,y) = (j>,x). The action in the split extension Sf(X v X) y->
< f ( I v I ) - » Z / 2 is given by (-l)^σ= TσT. We have, as above, the iso-
morphism G x U ι-> ^ ( X v y) X[/ L̂  given by (y,w) -̂> (μ(γ)s(u),u): the in-

1verse of this isomorphism is given by (σ, w) >-> (y, M), where //(y) = σ^w)"1. The
proof of the following proposition is straightforward.

PROPOSITION 8. The action in the split extension G x Ό/RβΛ x Ra

S{X v X) -+> Z/2 is given by

§3. The group G

Let Z and W be (pointed) spaces. For any map u : Z —>- Ŵ, the u-based
track group πf{W\u) is the set of homotopy classes in the space of functions
ζ:Z A I+ =Zx I/z0 xl -> W, satisfying £(z,0) = £(z, 1) = u{z) for all z e Z .
The set π^(W u) is a group with the obvious operation. If Z is a co-/f-space,
W z is an //-space and there exists an isomorphism

ub : πf(W u) -> nf{W',u.irx) ^ πf(^;*),

defined in the following way. Let F be a homotopy w u~x ~ *, then
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F(z,l -40, forO<ί< -

/ 1\ 1

ub(ζ)(z,ή =

where Φ : Z Λ /+ -> (Z v Z) Λ /+ ^ (Z Λ /+) v (Z Λ /+) -> (Z Λ /+) v Z is
the map induced by the comultiplication of Z followed by the projection.

Given co-//-spaces A and 5 and pointed maps / : B —> ̂ 4, w : ̂ 4 —> X, we
define

πf(X uf) Ά [SB,X].

For a detailed account of the properties of Γ(u,f) see [10, §3].

In our case B = S2n~ι v S2n~x and A = V"" $" v V ^ 5 " B y tlo]> f o r

( ί \ ί 2 ) e fVm iS"+ 1, JTv F] x [ V m 2 S " + ! , ^ v Y] s [VW ] θ"'+1 v V m 2 ^ " + 1 , ^ v F]
we have

Γ(i v ι',xvβ)(ζ\ζ2) = (Γ(ixha)(ζι),Γ(

Hence, as a subgroup of [S2",X v Y] ® [S2n,X v Y],

imΓ{ι v / , α v p Γ [ ^ v S^.ΩX

^ (im Γ(/>/, α) Π ker /,, im Y(ίγι',β) Π ker 7J.

Here ker{7, : [S2", JT v Γ] -> [S2",;r x F]} = 4 ^ , 0 ^ * Ω Y].

Observe that [\/Sn+ι,X v Y] ̂ [\JSn+\X}®[\/Sn+\Y}. So we only
need to study the image of Γ(z>/,α) and Γ(iγi',β) on these two direct summands.
Let C1 = Cx + Cr e [V m i S Λ + 1 , JT] x [V"1 Sn+\ Y] * [\Jmι Sn+\X v Y] and sim-
ilarly ζ2 = ζ\ + C2. We have

Γ(/Zz,α)(z», - (z»+Γ(z,α).

Hence ker;, Π Γ(ιxι, ot){ζι

x} = 0, and, similarly, ker7, Π Γ(zyz
/,jff){C|} = 0. Now

j\Γ(ixι,x)(ζι

γ) = (S<ή*(ζι

γ) by [10, (3.4.3)] and, therefore,

im Γ(ixι,oc) ΠkerΛ = Γ(/^,α){C^ : (Sα)*(C},) = 0}.

Similarly

imΓ(ιVΛ/?)nkery+ = Γ(iyi/,/?){Cj : (Sβ)*(ζ2

x) = 0}.

We have proved the following Proposition.

PROPOSITION 9.

imΓ(z v ι\av β)(M*[S2n v S 2 " , Ω X * Ω F ]

= Γ(ixι, *){ζl

γ : (Sα) (Cj,) - 0} + Γ(iγι',β){ζ2

x : (5yS)*(Ci) = 0}.

Let us compute these groups. Write α in the form a = ̂ z,-al +
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Σi</[zϊί zy]α!/ F ° r n °dd H(CL1) — 0, a1 = tι is a suspension element and an — 0.
Here we use the notation introduced in §1 to define the matrix β(α). For n even
(Λ ^ 2,4,8), since H[ii,ιi\= ± 2 , we have α1 = ί1 + (l/2)α ί f [ιf ,ϊf ] where f' is a
suspension element. For « = 2,4,8, we have α' = ίl + α, , 5 where ί' is a sus-
pension element and 9 is the Hopf map: observe that in this case S((xι) φ S(tι)
in general. With this notation we have by [10, (3.3.3) and (3.3.6)]

T{ixh α) = Γ(ixι, ociJΓ(ixι, [ιh ij\

' /rr \* . V ^ 1 aijΓ{iχi, [//,zy]), for n even,^2,4,8,
KJ

ayTiixi, [ιhij]), for n = 2,4,8,

for * odd.

Consider the map [iuij\ as the composition of w : S2n~ι -+ Sn v Sn and
(if , ij) :S"vS»-+ V " 1 ^ w By [10, (3.4.2)], for ζ\ = ( d , . . . , ζm) e © W l [5" + 1 , 7],
we have

since all elements are of order 2. Also, for the Hopf maps 9 : S2n~ι -* Sn

(Λ = 2,4,8), we have (n + i2)θ = i\9 + ι29 ± [ I I , Ϊ 2 ] . Therefore, by [10, 3.4.3],

Since πn+\ Y ^ φm 2πΛ +i»S''1, we can write ζt in the form ζt = Σχefcιmι+χη, where

η is the generator of πn+ιSn, e* = 0,1, ι, : 5" -> V m i ^ w v V ^ ^^ i s t h e i n "

clusion onto the i-th sphere of the union and c = (i v ι') : \/mιSn v \Jm Sn —>

X v Γ is the inclusion onto the w-skeleton. With this notation iχiii = ci[ and we

have

Γ(ixι, [ιh ij
m2

J2 and

Therefore, for all n,

T(ixι,a)(ζι

γ) = (S<ή*(ζly)
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where the sum runs over all 1 </, j<m\, 1 < A < m2. Observe that the
Whitehead products [ii,ιmχ+χη\ generate some of the last summands in

π2»(Vm' S" v V"12 5") = «2»(V""S") φ n2n{\Jmί S") φ J ^ S 2 - 1 ) .

Now the natural isomorphism

π2n+ι(Ivr,V^v\/5") ^ πln+x(X, \/Sn) ® π 2 n + 1 (F, V<SΛ)

commutes with the connecting homomorphism δ:

πln+λ (x v r, v^w v \jsη —i_> ^

Since ker c* = im <5, the map c* is injective on the subgroup Σχ<μπ2n(S2n~l) of

^(V^vvn
Also ι*[S2n v 5 2 " , Ω I * Ω 7 ] is the subgroup of c*[S2n v S2n,\/Sn v VSn]

given by

z*[S2w v S2n,ΩX*ΩY] s ® ( f e , ^ ^ ] ) θ 0 ( k + i , w ] >

where 1 < j <m\ and 1 < A < m2. So, we can describe its elements as couples
(Z>i,Z)2) of non-square matrices over Z/2. With this notation the element

m\

is represented by the matrix D\ — EQ(ot) where E is the m2 x m\ -matrix with
entries e^ e Z/2 and β(α) denotes the reduction of the matrix β(α) modulo 2. In
particular

dim(im{Γ(/>/,α) - (SOL)*}) = m2 rank β(α).

On the other hand, ζι

γ e ker(*Sα)* if and only if Σξ ζjSoc1 = 0, that is, if and only
if ETa = 0, where Ta the one-column matrix with entries Son1 eπ2n(Sn+x). We
define

rΛ

and

rβ = dim<̂  e e © Z / 2 : eTβ = 0 \ - dim<̂  e e © Z / 2 : eTβ = 0,eQ(β) = 0 >.

We have

( m i Ί Γ Wl - Ί

α - dim<̂  e e 0 Z / 2 : ^Γα = 0 V - dim<̂  e e © Z / 2 : eΓα = 0,έ?β(α) = 0 ̂
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dim{Cy : {Sac)*ζι

γ = 0} = dim{£ e Jt(m2 x muZ/2) : £T α = 0}

= m2 dim^ e e @

and

dim Γ(uπ,α){C}, : (S*)*ζι

γ = 0} = m2rα.

This together with Proposition 9 proves the following proposition.

PROPOSITION 10. The group

h[S2n v S2n,ΩX*QY]

~imΓ(z v i',α v β)Πi*[S2n v 5 2 " ,ΩZ*ΩΓ] '

is a free Z/2-module of dimension N = 2m\πi2 - m2ra - m\rβ.

COROLLARY. Let (SOL)* = 0 and {Sβ)* = 0, then the dimension of the free
Z/2-module G is N = 2m\m2 — mi rank Q(oc) — m\ rank Q(β)). Given further that
det β(α) Λ/irf det Q(y9) are both odd, then G = 0 and

£(X v Y)^U, for

£{X v Y) ^ U x Z/2, /or Z - Y.

Remark. Where Z = V Sn Uα e
2w is a manifold, we have det β(α) = ± 1

and hence rank Q(α) = m. More generally rank Q(a) — m in case det g(α) is
odd. In the case where n is odd, we only can have det β(α) Φ 0 if m is even.

§4. Examples

Example 1. X = Γ = / / P 2 = S4 UV4 ^
8, the quaternionic projective plane.

The group π8(S4) = Z/2 x Z/2 is generated by elements v$ηΊ and Svfη7,
where ^ is the generator of ^+1(5^). Since η3v4 = v'η6 [18, page 44], we have

and

Clearly Ϊ7 Λ (7 has a right inverse and therefore S(HP2 v ί ίP 2 ) s G x ί / . By

[6],

Z/2 =
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where the isomorphism is given by μ(ξ) = ξ±l, ξeπ%(HP2). Thus

U = £{HP2) x £{HP2) = Z/2 x Z/2.

The generator of πs(HP2) is ιη4, and (5v4)*z^4 = ιη4(Sv4) = ι(Svf)ηΊ φ 0
2is the generator of π%{HP2). Therefore, by Proposition 9,

G = i*[Ss v S\ΩHP2*ΩHP2] = {{hi']ηη} x {[z,/W = Z/2 x Z/2.

The isomorphism μ shows that, for each self-equivalence /, / = 1. Moreover,
from /v4 = V4/, we deduce that deg/ = 1. Therefore

(/ v k)[ι,ι% = (1 v /')(/ v k)[ιuι2)ηΊ = [ι,ι')η7,

and, by Proposition 6, the action of U on G is trivial. Finally, by Theorem B,

${HP2 v HP2) = (G x (£{HP2) x S{HP2))) x Z/2 = (Z/2)4 x Z/2,

where the action is given by

(-l).(yi,y2;/,A:) = (y2, yi;Λ:,/).

Thus <?{HP2 v //P2) ^ />(Z/4 x Z/4), the dihedral extension, where the copies
of Z/4 are generated by ( [ i , φ 7 , - l ) and (^4(5v4),-l) in (Z/2)4 x Z/2.

Example 2. JT = F = CP2 = *S8 Uσ8e
16, the Cayley projective plane.

The group n\6(Ss) = Z/2 x Z/2 x Z/2 x Z/2 is generated by elements
σ8>/15, (Sσ')ηl59 v8 and β8. Since S^σg) = (Sσ')ηl5 + v8 + e8, [18, page 64], we
have

generated by {^8(5σ8), v8,β8} and {v8,ε8} respectively. Therefore π : U —• U has
a right inverse and S(CP2 v CP2) = G x t/. By [9, Example 4.1], <f(CP2) s
Z/2xZ/2, generated by μ{{Sσ')ηl5) and μ(v8) = μ(>/8), where
Hence

9\ (Z/2xZ/2 Z/2xZ/2
)

( \λ
h k) \Z/2xZ/2 Z/2xZ/2J)'

As in Example 1, we have/ = 1 and/ = 1, for each self-equivalence / . There-
fore, U acts trivially on G (Proposition 6), and U^(Z/2)S. This is ̂  con-
sequence of Proposition 1, since fgk = fιg' = ιfgf = g, and similarly khf = h.
The generator of πg(CP2) is ιη% and (Sσ$)*ιη% — ιη%(Sσ%) = ι((Sσf)ηl5 + v8 + ε 8 )
Φ 0. Therefore, by Proposition 9,

G = h[S16 v 51 6,ΩCP2 * ΩCP2] = {[ι,ι']ηX5} x {[/,/^i5} = Z/2 x Z/2.
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Finally, by Theorem B,

S{CP2 v CP2) = (G x ί/) x Z/2 = (Z/2)10 x Z/2,

where the action of Z/2 is given by

Example 3. JSΓ = 7 = S"2 x Sn = (Srt v 5Π) U ^ e 2 " (n > 3).
In this case S[i\, 12] = 0 and X and 7 are both manifolds. Therefore G = 0,

x 5 Λ v 5 " x Sw) ^ C/, and

ιZ/2.

Using the isomorphism

pΊlπ2n(Sn v SΛ) ^

S π 2 n ( r ) x π2rt(S"),

we have

nln(Sn) x

π2n(Sn)xπ2n(S») δ(Y)

with the semi-direct product structure given in Proposition 1. The action of Z/2
on U is again given by

h

f
The groups δ(Sn x Sn) have been computed (see [6] and [16]). For n = 5, we
have

Example 4. X = F = ^ w U^^ 2 " (Λ > 3), where 1 is the generator of πn(5"7).
Again S[ι,ι] — 0 and β([/, 1]) = 0. Thus, in Proposition 10, ηM] = 0 and

G = /;[52« v S2",ΩX * ΩX] = { [ M ' ] ^ . , } x { [ M W I > = Z/2 x Z/2.

We also have U ^ U and y(Λf v l ) s 6 x [ / . By Proposition 6, the action is
given by

(/ v k)[ι,ι'\ηln_x = (i v ι')(/ v Λ)[ii,i2]J72ι -i = ( d e § / deg A:)[/,/']%„_,.

Let * ; be the group p'*uπ2nS
n s 7 r ^ ί r, so that [/ = ( κ ' " ) is a
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semi-direct product, as in Proposition 1. Here

for n = - 1 (4) or n — 2,6,

otherwise.

In the case where n is even, we have / = 1 for each self-equivalence /. In the
case where uπlnS

n = Z/2 (e.g. n = 2,6,12,...), δ{X) acts trivially on this group
and U = Z/2x Z/2 x δ(X) x δ(X). Also (see [9, Example 4.4])

2 _ Γ D{Kn) x Z/2, for « odd,

\ D(Kn), for « even.

By Theorem B, we have

δ(X v X) ^ (G x ί/) x Z/2.

Example 5. X = S 3 x S 3, 7 = (S 3 v S3) U/κ6, with β = iiη2+ι2η
2 + [*u*2].

We have β(α) - β( £) = Γ ^ J ) , Γα = 0 and 7> - (ηA Hence, with

the notation of Proposition 10, rα = 2 and 77? = 1, so that G = (Z/2) 2 . On the
other hand, Raβ = 0 and

Λβ« = (5)8)*[54 v S4,S3 v 53] = (η3y®(η3} a π6(S3) Θπ6(S3) cz π 6 ( S 3 v S 3).

By obstruction theory we have that the composite πβ(S3 v S3) —> ̂ ( Z v F) —>
[ ί v F, A" x y] has trivial kernel and therefore the map sf : ify?α x 7?αtβ —> G is
an isomorphism. By Proposition 7, δ(X v 7) is a semidirect-product if and
only if sf has a extension to a derivation from U to G. By Proposition 6, the
subgroup hn2n(\JmSn) x ι'ifn2n(S/mSn) °f ^ always acts trivially on G. Hence,
each derivation from U to G is a homomorphism on this subgroup. In our
example s' has no extension to a homomorphism on hπβ{S3 v S3) x ι'j
S3) since

ify5α = Z/2 x Z/2 c z5|eπ6(*S'3 v »S3) = Z/(12) x

Therefore <^(^ v Γ) is not a semi-direct product of G by E7.
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