I. LLERENA AND J.W RUTTER KODAI MATH. J. 21 (1998), 330-349

THE GROUP OF HOMOTOPY SELF-EQUIVALENCES OF A UNION OF (n-1)-CONNECTED 2*n*-MANIFOLDS

IRENE LLERENA¹ AND JOHN W. RUTTER

Abstract

In this paper we determine the group $\mathscr{E}(X \vee Y)$ of pointed homotopy selfequivalence classes as the quotient of an iterated semi-direct product involving $\mathscr{E}(X)$, $\mathscr{E}(Y)$ and the 2*n*-th homotopy groups of X and Y, in the case where X and Y are (n-1)-connected 2*n*-manifolds or, more generally, are CW-complexes obtained by attaching a 2*n*-cell to a one-point union $\bigvee^m S^n$ of *m* copies of the *n*-sphere for which a certain quadratic form has non-zero determinant $(n \ge 3)$. In the case of manifolds this determinant is ± 1 . We include some examples, in particular one in which $\mathscr{E}(X \vee Y)$ does not itself inherit a semi-direct product structure.

§0. Introduction

A method was given in 1958 by Barcus and Barratt [1] for calculating the group $\mathscr{E}(X)$ of (pointed) homotopy self-equivalence classes of simply-connected CW complexes of the form $X = K \cup_{\alpha} e^{q+1}$ obtained by attaching a (q+1)-cell to a complex K of dimension $\leq q-1$: this method was extended by Rutter [13] to general simply-connected complexes. Since 1958 general results about the group $\mathscr{E}(X)$, such as conditions for finite presentability, have been obtained and many calculations have been made.

P. J. Kahn [6] made calculations of $\mathscr{E}(X)$ for $X = (S^n \lor \cdots \lor S^n) \bigcup_{\alpha} e^{2n}$ and, in particular, for (n-1)-connected 2*n*-manifolds. In this note we calculate $\mathscr{E}(X \lor Y)$ in the case where X and Y are (n-1)-connected 2*n*-manifolds $(n \ge 3)$ or, more generally, are spaces obtained by attaching a 2*n*-cell to a union of *n*spheres for which a certain quadratic form has non-zero determinant. Our main result stated in §1 is that, for such spaces, $\mathscr{E}(X \lor Y)$ is a quotient of a certain iterated semi-direct product in case $X \neq Y$, and involves a further semi-direct product in case X = Y. We also give criteria for which this quotient is not itself a semi-direct product: in previous cases calculations have been completed in general only in cases where a corresponding extension is a semi-direct product.

Previous calculations of $\mathscr{E}(X \lor Y)$ for a one-point union have been made in cases where either X or Y is an h-cogroup (see for example Maruyama–Mimura

¹Partially supported by CIRIT, PB 94-0725

Received March 27, 1998.

[8], Oka-Sawashita-Sugawara [9], Rutter [14] and [15], Sieradski [17] and Yamaguchi [20]). In our case the spaces are not in general h-cogroups. Proofs and other results are given in §2 and §3, and some examples, including one which involves a non-trivial extension are given in §4.

§1. Main results

We consider complexes $X_{\alpha} = \bigvee^{m} S^{n} \cup_{\alpha} e^{2n}$ obtained by attaching one 2*n*-cell to a union of *n*-cells $(n \ge 3)$. By the Hilton-Milnor theorem, the attaching map α has the form

$$\alpha = \sum_{i=1}^{m} \iota_i \circ \alpha^i + \sum_{i < j} [\iota_i, \iota_j] \circ \alpha^{ij}.$$

Here $\alpha^{i} \in \pi_{2n-1}(S^{n})$, $\alpha^{ij} \in \pi_{2n-1}(S^{2n-1})$, and $\iota_{i}: S^{n} \to \bigvee^{m} S^{n}$ is the canonical inclusion of the *i*-th sphere S^{n} in $\bigvee^{m} S^{n}$. We define an integer matrix $Q(\alpha) = (a_{ij})$ by

$$a_{ij} = \begin{cases} \deg \alpha^{ij}, & \text{for } i < j \\ (-1)^n \deg \alpha^{ji}, & \text{for } i > j \\ H(\alpha^i), & \text{for } i = j, \end{cases}$$

where $H(\alpha')$ is the Hopf invariant of α' : in case *n* is odd, we have $a_{ii} = 0$. Therefore $Q(\alpha)$ is symmetric in case *n* is even, and is skew-symmetric in case *n* is odd. The matrix $Q(\alpha)$ can also be defined as the matrix of the cup product form on $H^n(X)$ (compare [19] and [3]). In what follows we consider only those complexes X_{α} for which the matrix $Q(\alpha)$ has non-zero determinant. Any (n-1)-connected 2*n*-manifold has the homotopy type of a space X_{α} as above, and its associated matrix $Q(\alpha)$ is unimodular (see [19, page 169]): in this case the matrix $Q(\alpha)$ is, up to sign, the inverse of the matrix of the *n*-symmetric bilinear form determined by linking numbers on $X \setminus \operatorname{int} E^2$ (see [19, pages 164 and 182]).

We shall in general use the same symbol to denote a map and its homotopy class.

Let $X = X_{\alpha} = (\bigvee^{m_1} S^n) \cup_{\alpha} e^{2n}$ and $Y = X_{\beta} = (\bigvee^{m_2} S^n) \cup_{\beta} e^{2n} \ (n \ge 3)$, where $\bigvee^m S^n$ denotes a one point union of *m* copies of the *n*-sphere. A map $h: X \to Y$ induces a homotopy commutative diagram

$$S^{2n-1} \xrightarrow{\alpha} \bigvee^{m_1} S^n \xrightarrow{\iota} X \xrightarrow{p} S^{2n} \xrightarrow{S\alpha} \bigvee^{m_1} S^{n+1}$$

$$\tilde{h}' \downarrow \qquad \hat{h} \downarrow \qquad h \downarrow \qquad \tilde{h} \downarrow \qquad S\hat{h} \downarrow$$

$$S^{2n-1} \xrightarrow{\beta} \bigvee^{m_2} S^n \xrightarrow{\iota'} Y \xrightarrow{p'} S^{2n} \xrightarrow{S\beta} \bigvee^{m_2} S^{n+1}$$

of cofibre sequences, where the vertical maps are unique up to homotopy, and where $\tilde{h} \simeq S\tilde{h}'$. If h is cellular, \hat{h} and \tilde{h} can be chosen so that the two middle

squares are strictly commutative. We shall always assume that the three maps are chosen in this way.

The fibre sequence $\Omega X * \Omega Y \xrightarrow{i} X \vee Y \xrightarrow{j} X \times Y$ induces the exact sequence of pointed sets

$$[X \lor Y, \Omega X * \Omega Y] \xrightarrow{l_*} [X \lor Y, X \lor Y] \xrightarrow{j_*} [X \lor Y, X \times Y],$$

where the preferred element for exactness is the class of the trivial map. In this paper we prove that j_* induces a faithful representation of $\mathscr{E}(X \vee Y)$ onto the quotient of an iterated semidirect product. This representation involves, besides $\mathscr{E}(X)$ and $\mathscr{E}(Y)$, some groups related to the homotopy groups of X and Y. One of these is

$$G = \frac{i_*[S^{2n} \vee S^{2n}, \Omega X * \Omega Y]}{\operatorname{im} \Gamma(\iota \vee \iota', \alpha \vee \beta) \cap i_*[S^{2n} \vee S^{2n}, \Omega X * \Omega Y]},$$

where $\Gamma(\iota \lor \iota', \alpha \lor \beta) : [\bigvee^{m_1} S^{n+1} \lor \bigvee^{m_2} S^{n+1}, X \lor Y] \to [S^{2n} \lor S^{2n}, X \lor Y]$ is the homomorphism defined in [10, §3.2]. We recall the definition of this homomorphism in §3. For $n \ge 3$, the group $i_*[S^{2n} \lor S^{2n}, \Omega X * \Omega Y]$, and hence *G*, is a finitely generated free $\mathbb{Z}/2$ -module (see §2 and §3). We also define (for $n \ge 3$)

$$egin{aligned} R_{lpha,eta} &= (Slpha)^*[igvee^{m_1}\,S^{n+1},\,Y] \ &\cong rac{(Slpha)^*[igvee^{m_1}\,S^{n+1},\,igvee^{m_2}\,S^n]}{eta_*\pi_{2n}(S^{2n-1})\cap(Slpha)^*[igvee^{m_1}\,S^{n+1},\,igvee^{m_2}\,S^n]}, \end{aligned}$$

and similarly $R_{\beta,\alpha} = (S\beta)^* [\bigvee^{m_2} S^{n+1}, X]$: each of these is also a finitely generated free $\mathbb{Z}/2$ -module for $n \ge 3$. Our main result is the following theorem.

THEOREM A. Let $X \nleftrightarrow Y$, let $n \ge 3$, and let $Q(\alpha)$ and $Q(\beta)$ be non-singular matrices. Then the map $j_* : [X \lor Y, X \lor Y] \to [X \lor Y, X \lor Y]$ induces a faithful representation of $\mathscr{E}(X \lor Y)$ onto the quotient of an iterated semi-direct product:

$$\mathscr{E}(X \vee Y) \cong (G \rtimes \overline{U})/(R_{\beta,\alpha} \times R_{\alpha,\beta}),$$

where $\overline{U} = (\iota_*\pi_{2n}(\bigvee^{m_1} S^n) \times \iota'_*\pi_{2n}(\bigvee^{m_2} S^n)) \rtimes (\mathscr{E}(X) \times \mathscr{E}(Y)).$ Furthermore G, $R_{\beta,\alpha}$ and $R_{\alpha,\beta}$ are finitely generated free $\mathbb{Z}/2$ -modules.

The proof of Theorem A is given in §2. In Proposition 6 we describe the action of \overline{U} on G (see Proposition 1) for the semi-direct product $G \rtimes \overline{U}$. In Proposition 5 we describe $R_{\beta,\alpha} \times R_{\alpha,\beta}$ as a subgroup of the semi-direct product structure $G \rtimes \overline{U}$. In Proposition 10 we compute G. We also give, in Proposition 7, precise conditions under which the structure on $\mathscr{E}(X \vee Y)$ as the quotient $(G \rtimes \overline{U})/(R_{\alpha\beta} \times R_{\beta\alpha})$ of a semi-direct product induces on $\mathscr{E}(X \vee Y)$ the structure of a semi-direct product of the form $G \rtimes U$.

Where $X \simeq Y$ we may assume X = Y without loss of generality. In this case we denote by $S(X \lor X)$ the subgroup of $\mathscr{E}(X \lor X)$ corresponding to the group obtained by putting Y = X in the quotient of the iterated semi-direct product given in Theorem A. Thus (see §2)

$$\mathscr{S}(X \lor X) = \left\{ \sigma \in \mathscr{E}(X \lor X) : j_*(\sigma) = \begin{pmatrix} f & g \\ h & k \end{pmatrix}, f, k \in \mathscr{E}(X), \tilde{H}_*(g) = 0 = \tilde{H}_*(h) \right\}.$$

The group $\mathscr{E}(X \lor X)$ is determined as a further split extension in the following way.

THEOREM B. Let $n \ge 3$, and let $Q(\alpha)$ be a non-singular matrix. Then there is a split exact sequence of groups and homomorphisms

$$\mathscr{S}(X \lor X) \rightarrowtail \mathscr{E}(X \lor X) \twoheadrightarrow \mathbb{Z}/2.$$

The splitting is given by $\{1, -1\} \rightarrow \mathscr{E}(X \lor X)$ where (-1) maps to the homeomorphism $T: X \lor X \rightarrow X \lor X$ given by $(x, y) \mapsto (y, x)$.

The proof Theorem B is given in §2. In Proposition 8 we note the action of $\mathbb{Z}/2$ on $(G \rtimes \overline{U})/(R_{\alpha\beta} \times R_{\beta\alpha})$ in the split extension $(G \rtimes \overline{U})/(R_{\alpha\beta} \times R_{\beta\alpha}) \mapsto \mathscr{E}(X \lor X) \twoheadrightarrow \mathbb{Z}/2$ of Theorem B.

In §4 we give some examples.

§2. Proofs and further results

Each element of the set $[X \lor Y, X \times Y]$ can be written as a matrix

$$\begin{pmatrix} f & g \\ h & k \end{pmatrix} \in \begin{pmatrix} [X, X] & [Y, X] \\ [X, Y] & [Y, Y] \end{pmatrix}.$$

The following result characterises the elements in the image of $j_* : \mathscr{E}(X \lor Y) \to [X \lor Y, X \times Y]$. Its proof is given, for $m_1 = m_2$, in [2] for *n* even, and in [7] for *n* odd. The same proofs yield the case $m_1 \neq m_2$.

THEOREM. Let
$$X = \bigvee^{m_1} S^n \cup_{\alpha} e^{2n}$$
 and $Y = \bigvee^{m_2} S^n \cup_{\beta} e^{2n}$ such that $Q(\alpha)$

and $Q(\beta)$ are non-singular matrices, and let $j_*(\sigma) = \begin{pmatrix} f & g \\ h & k \end{pmatrix}$, where $\sigma \in [X \lor Y, X \lor Y]$. Then, $\sigma \in \mathscr{E}(X \lor Y)$ if, and only if, either

(i) f and k are homotopy equivalences and h and g are homologically trivial, or

(ii) g and h are homotopy equivalences and f and k are homologically trivial.

Using this result, Theorem B is an elementary consequence of Theorem A. By obstruction theory, a map $h: X \to Y$ is homologically trivial if, and only if, $h \in p^* i'_* \pi_{2n}(\bigvee^{m_2} S^n)$. Also by obstruction theory the group structure on $i'_* \pi_{2n}(\bigvee^{m_2} S^n)$ induces a group structure on $p^* i'_* \pi_{2n}(\bigvee^{m_2} S^n)$ for which p^* is a homomorphism. We note the following isomorphisms:

$$\iota'_{*}\pi_{2n}(\bigvee^{m_{2}}S^{n}) \cong \frac{\pi_{2n}(\bigvee^{m_{2}}S^{n})}{\beta_{*}\pi_{2n}(S^{2n-1})}, \text{ and}$$
$$p^{*}\iota'_{*}\pi_{2n}(\bigvee^{m_{2}}S^{n}) \cong \frac{\pi_{2n}(\bigvee^{m_{2}}S^{n})}{\beta_{*}\pi_{2n}(S^{2n-1}) + (S\alpha)^{*}[\bigvee^{m_{1}}S^{n+1}, \bigvee^{m_{2}}S^{n}]}$$

We consider the set of matrices

$$U = \left\{ \begin{pmatrix} f & g \\ h & k \end{pmatrix} \in \begin{pmatrix} \mathscr{E}(X) & p'^* \iota_* \pi_{2n}(\bigvee^{m_1} S^n) \\ p^* \iota'_* \pi_{2n}(\bigvee^{m_2} S^n) & \mathscr{E}(Y) \end{pmatrix} \right\}.$$

We shall often identify U with a subset of $[X \lor Y, X \times Y]$ as indicated above. We consider also the set of matrices

$$\overline{U} = \left\{ \begin{pmatrix} f & \overline{g} \\ \overline{h} & k \end{pmatrix} \in \begin{pmatrix} \mathscr{E}(X) & \iota_* \pi_{2n}(\bigvee^{m_1} S^n) \\ \iota'_* \pi_{2n}(\bigvee^{m_2} S^n) & \mathscr{E}(Y) \end{pmatrix} \right\}.$$

The set \overline{U} , endowed with the operation

$$\begin{pmatrix} f & \bar{g} \\ \bar{h} & k \end{pmatrix} \diamond \begin{pmatrix} f_1 & \bar{g}_1 \\ \bar{h}_1 & k_1 \end{pmatrix} = \begin{pmatrix} ff_1 & f\bar{g}_1 + \bar{g}\tilde{k}_1 \\ \bar{h}\tilde{f}_1 + k\bar{h}_1 & kk_1 \end{pmatrix}$$

is a group with identity $\begin{pmatrix} 1 & \bar{0} \\ \bar{0} & 1 \end{pmatrix}$. The maps \tilde{f}_1 and \tilde{k}_1 have been defined in §1.

The inverse of $\begin{pmatrix} f & \bar{g} \\ \bar{h} & k \end{pmatrix}$ is $\begin{pmatrix} f^{-1} & -f^{-1}\bar{g}\tilde{k}^{-1} \\ -k^{-1}\bar{h}\tilde{f}^{-1} & k^{-1} \end{pmatrix}$. Using the standard

properties of the induced cofiber sequence, we can prove that $(\bar{h}\tilde{f}_1 + k\bar{h}_1)p'$ and $(f\bar{g}_1 + \bar{g}\tilde{k}_1)p'$ are independent of the choices of maps \bar{h} , \bar{h}_1 , \bar{g} , \bar{g}_1 satisfying $\bar{h}p = h$, $\bar{g}p' = g$, $\bar{h}_1p = h_1$, $\bar{g}_1p' = g_1$. Therefore the group structure (\bar{U},\diamond) determines a group structure on the set U under the obvious projection $\pi : \bar{U} \to U$. We have the following Proposition.

PROPOSITION 1. The projection $(\overline{U}, \diamond) \to \mathscr{E}(X) \times \mathscr{E}(Y)$ determines the semidirect product

$$\overline{U} = (\iota_*\pi_{2n}(\bigvee^{m_1} S^n) \times \iota'_*\pi_{2n}(\bigvee^{m_2} S^n)) \rtimes (\mathscr{E}(X) \times \mathscr{E}(Y))$$

with the (left) action given by $(f,k) \cdot (\bar{g},\bar{h}) = (f\bar{g}\tilde{k}^{-1},k\bar{h}\tilde{f}^{-1})$. The projection $(U,\diamond) \to \mathscr{E}(X) \times \mathscr{E}(Y)$ determines the semi-direct product

$$U = (p'^*\iota_*\pi_{2n}(\bigvee^{m_1} S^n) \times p^*\iota'_*\pi_{2n}(\bigvee^{m_2} S^n)) \rtimes (\mathscr{E}(X) \times \mathscr{E}(Y))$$

with a similar action. Also there is a group extension

$$R_{\beta,\alpha} \times R_{\alpha,\beta} \mapsto \overline{U} \twoheadrightarrow U.$$

Now assume $X \neq Y$ and denote by

 $\theta: \mathscr{E}(X \lor Y) \to U$

the map induced by j_* . We prove that θ is an epimorphism and find a homomorphism $s: \overline{U} \to \mathscr{E}(X \lor Y)$ such that $\theta s = \pi$. If π has a right inverse, so does θ . Later, in Proposition 7, we study the general conditions under which θ has a right inverse.

First we recall some of the properties of the coaction in a principal cofibration. Let $C_{\alpha} = B \cup_{\alpha} CA$ be the mapping cone of a map $\alpha : A \to B$. There is a coaction $\varphi = \varphi_{C_{\alpha}} : C_{\alpha} \to SA \lor C_{\alpha}$ given by

$$\varphi(b) = b, \qquad \text{for } b \in B$$

$$\varphi(a,t) = \begin{cases} (a,2t) \in SA, & \text{for } 0 \le t \le \frac{1}{2} \text{ and } a \in A \\ (a,2t-1) \in C_{\alpha}, & \text{for } \frac{1}{2} \le t \le 1 \text{ and } a \in A. \end{cases}$$

Given $\zeta: SA \to Z$ and $\lambda: C_{\alpha} \to Z$, we define

$$\perp \lambda = (\zeta, \lambda) \varphi : C_{\alpha} \to Z.$$

If two maps $\lambda, \lambda_1 : C_{\alpha} \to Z$ coincide on *B*, then there is a difference map $d = d(\lambda, \lambda_1) : SA \to Z$, given by

$$d(a,t) = \begin{cases} \lambda(a,2t), & 0 \le t \le \frac{1}{2} \\ \lambda_1(a,2-2t), & \frac{1}{2} \le t \le 1. \end{cases}$$

The maps $d(\lambda, \lambda_1) \perp \lambda_1$ and λ are homotopic relatively to *B*, but the homotopy class of *d* is not uniquely determined by the homotopy class of λ and λ_1 . In the sequel it is convenient to denote also by φ_X the composite $X \to S^{2n} \vee X \to X \vee S^{2n}$ of φ_X and the switching map.

Now we define

$$s: \overline{U} \to \mathscr{E}(X \lor Y) \quad \text{by} \quad \begin{pmatrix} f & \overline{g} \\ \overline{h} & k \end{pmatrix} \mapsto ((f \lor \overline{h})\varphi_X, (\overline{g} \lor k)\varphi_Y).$$

PROPOSITION 2. $\theta = j_* : \mathscr{E}(X \lor Y) \to U$ is an epimorphism, $s : \overline{U} \to \mathscr{E}(X \lor Y)$ is a homomorphism and the composite θs is the epimorphism $\pi : \overline{U} \to U$.

Proof. Let $\sigma, \sigma_1 \in \mathscr{E}(X \lor Y)$, and $\theta(\sigma) = \begin{pmatrix} f & g \\ h & k \end{pmatrix}$, $\theta(\sigma_1) = \begin{pmatrix} f_1 & g_1 \\ h_1 & k_1 \end{pmatrix}$. Choose decompositions $h = \bar{h}p$, $h_1 = \bar{h}_1p$, $g = \bar{g}p'$, $g_1 = \bar{g}_1p'$. The component $X \to Y$ of $\theta(\sigma\sigma_1)$ has the form

$$X \xrightarrow{\sigma_1 \iota_X} X \lor Y \xrightarrow{p \lor 1} S^{2n} \lor Y \xrightarrow{(\bar{h}, k)} Y.$$

The elements $(p \vee 1)\sigma_1 i_X$ and $(\tilde{f}_1 \vee h_1)\varphi_X$ are mapped to the same element by the induced function $[X, S^{2n} \vee Y] \rightarrow [X, S^{2n} \times Y]$: this latter function is a bi-

jection since $S^{2n} \vee X \to S^{2n} \times X$ is (3n-1)-connected. Therefore we have

$$(h,k)\sigma_1 i_X = (\bar{h},k)(p \vee 1)\sigma_1 i_X = (\bar{h}\tilde{f}_1,kh_1)\varphi_X = (\bar{h}\tilde{f}_1,k\bar{h}_1)(1 \vee p)\varphi_X.$$

A similar argument for $(1 \lor p)\varphi_X$ and $X \xrightarrow{p} S^{2n} \xrightarrow{\nabla} S^{2n} \lor S^{2n}$ in $[X, S^{2n} \lor S^{2n}]$ proves that these elements coincide and hence

$$(h,k)\sigma_1 i_X = (\bar{h}\tilde{f}_1,k\bar{h}_1)(1 \vee p)\varphi_X = (\bar{h}\tilde{f}_1 + k\bar{h}_1)p.$$

Using the standard properties of the induced cofibre sequence, we have that this construction is independent of the choices of \bar{h} and \bar{h}_1 satisfying $\bar{h}p = h$ and $\bar{h}_1p = h_1$. Applying similar arguments for the other components, we obtain

$$\theta(\sigma\sigma_1) = \begin{pmatrix} ff_1 & (f\bar{g}_1 + \bar{g}\tilde{k}_1)p' \\ (\bar{h}\tilde{f}_1 + k\bar{h}_1)p & kk_1 \end{pmatrix},$$

and therefore θ is a homomorphism. Since θs is the epimorphism $\pi : \overline{U} \to U$, it follows that θ is surjective.

Given
$$u = \begin{pmatrix} f & \bar{g} \\ \bar{h} & k \end{pmatrix}$$
 and $u_1 = \begin{pmatrix} f_1 & \bar{g}_1 \\ \bar{h}_1 & k_1 \end{pmatrix}$ consider the composite
 $s(u)s(u_1)i_X = ((f \vee \bar{h})\varphi_X, (\bar{g} \vee k)\varphi_Y)((f_1 \vee \bar{h}_1)\varphi_X)$
 $= ((f \vee \bar{h})\varphi_X f_1, (\bar{g} \vee k)\varphi_Y \bar{h}_1)\varphi_X.$

Now $\bar{h}_1: S^{2n} \to Y$ factors through the *n*-skeleton of Y and therefore, by cellular considerations, $(\bar{g} \lor k)\varphi_Y\bar{h}_1 = i_Yk\bar{h}_1$. Also $\varphi_Xf_1 \simeq (f_1 \lor \tilde{f}_1)\varphi_X$ since they have the same image under $[X, S^{2n} \lor X] \to [X, S^{2n} \times X]$, which is a bijection since $S^{2n} \lor X \to S^{2n} \times X$ is (3n-1)-connected. Thus $(f \lor \bar{h})\varphi_Xf_1 = (\bar{h}\tilde{f}_1 \lor ff_1)\varphi_X$. Therefore

$$\begin{split} s(u)s(u_1)i_X &= ((ff_1 \lor \bar{h}f_1)\varphi_X, i_Yk\bar{h}_1)\varphi_X \\ &= (i_Xff_1, i_Y\bar{h}f_1, i_Yk\bar{h}_1)(\varphi_X, 1)\varphi_X \\ &= (i_Xff_1, i_Y(k\bar{h}_1 + \bar{h}f_1))\varphi_X \\ &= (ff_1 \lor (k\bar{h}_1 + \bar{h}f_1))\varphi_X = s(u \diamond u_1)i_X. \end{split}$$

 \square

Similarly $s(u)s(u_1)i_Y = s(u \diamond u_1)i_Y$. Hence, s is a homomorphism.

We now investigate the kernel of θ . In the following diagram, induced by $\iota \lor \iota' : A = \bigvee S^n \lor \bigvee S^n \to X \lor Y$, the horizontal sequences of pointed sets are exact and the diagram is commutative by [10, (3.2.2) and §3.3]: the preferred elements for exactness are as indicated. Also the vertical sequence is exact, and, by obstruction theory, the left and right vertical maps are isomorphisms as indicated.

$$\begin{bmatrix} SA, X \times Y \end{bmatrix} \xrightarrow{\Gamma'} \begin{bmatrix} S^{2n} \vee S^{2n}, X \times Y \end{bmatrix} \xrightarrow{\mu'} \begin{bmatrix} X \vee Y, X \times Y \end{bmatrix}_{j} \longrightarrow \begin{bmatrix} A, X \times Y \end{bmatrix}_{j(r \vee t')}$$

$$\downarrow_{*} \uparrow \cong \qquad \qquad \downarrow_{*} \uparrow \qquad \qquad \downarrow_{*} \uparrow \qquad \qquad \downarrow_{*} \uparrow \cong$$

$$\begin{bmatrix} SA, X \vee Y \end{bmatrix} \xrightarrow{\Gamma} \begin{bmatrix} S^{2n} \vee S^{2n}, X \vee Y \end{bmatrix} \xrightarrow{\mu} \begin{bmatrix} X \vee Y, X \vee Y \end{bmatrix}_{1} \longrightarrow \begin{bmatrix} A, X \vee Y \end{bmatrix}_{r \vee t'}$$

$$\begin{bmatrix} SA, X \vee Y \end{bmatrix} \xrightarrow{\Gamma} \begin{bmatrix} S^{2n} \vee S^{2n}, X \vee Y \end{bmatrix} \xrightarrow{\mu} \begin{bmatrix} X \vee Y, X \vee Y \end{bmatrix}_{1} \longrightarrow \begin{bmatrix} A, X \vee Y \end{bmatrix}_{r \vee t'}$$

$$\begin{bmatrix} S^{2n} \vee S^{2n}, \Omega X * \Omega Y \end{bmatrix}$$

The functions μ and μ' and given by $\mu(\alpha) = \alpha \perp 1$ and $\mu'(\beta) = \beta \perp j$. The image of μ consists precisely of those classes which extend the identity on the *n*-skeleton. Also $\Gamma = \Gamma(\iota \lor \iota', \alpha \lor \beta)$ and $\Gamma' = \Gamma(j(\iota \lor \iota'), \alpha \lor \beta)$. We recall the definition of $\Gamma(u, f)$ in §3.

PROPOSITION 3. The sequence

$$i_*[S^{2n} \lor S^{2n}, \Omega X * \Omega Y] \xrightarrow{\mu} \mathscr{E}(X \lor Y) \xrightarrow{\theta} U \to 1$$

is an exact sequence of groups.

Proof. Since $p \vee p'$ is trivial on the image of i_* , it follows from [13, pages 276–277] that $\mu : i_*[S^{2n} \vee S^{2n}, \Omega X * \Omega Y] \to [X \vee Y, X \vee Y]$ is a homomorphism from the usual group structure to composition. As easy argument using homological considerations shows that the image of this homomorphism is contained in $\mathscr{E}(X \vee Y)$. Let $\theta(\sigma) = j_*(\sigma) = j$. Then, by the commutativity and exactness of the above diagram, we have $\sigma = \mu(d)$ say. Furthermore, we have $j_*(d) = \Gamma' j_*(c)$ say, and therefore $d = \Gamma(c) + i_*(b)$ say. But $\mu(\Gamma(c)) = 1$, so that $\sigma = \mu(d) = \mu(i_*(b))$. This proves the inclusion Ker $\theta \subset \text{Im } \mu$. The proposition now follows since $j_*\mu i_* = \mu' j_* i_*$ is constant.

From this proposition and the diagram above we obtain an exact sequence

$$0 \to G \xrightarrow{\mu} \mathscr{E}(X \lor Y) \xrightarrow{\theta} U \to 1$$

where

$$G = \frac{i_*[S^{2n} \vee S^{2n}, \Omega X * \Omega Y]}{\operatorname{im} \Gamma(\iota \vee \iota', \alpha \vee \beta) \cap i_*[S^{2n} \vee S^{2n}, \Omega X * \Omega Y]}$$

Note that the kernel of $[S^{2n} \vee S^{2n}, X \vee Y] \xrightarrow{\mu} \mathscr{E}(X \vee Y)$ is im $i_* + \operatorname{im} \Gamma$, and that $\mu(\operatorname{im} i_*) = \mu(\operatorname{im} i_* + \operatorname{im} \Gamma)$. The construction $d \mapsto i_*(b)$ induces the isomorphism

$$\frac{\operatorname{im} i_* + \operatorname{im} \Gamma}{\operatorname{im} \Gamma} \cong \frac{\operatorname{im} i_*}{\operatorname{im} i_* \cap \operatorname{im} \Gamma}$$

In the homotopy fibre sequence $\Omega X * \Omega Y \xrightarrow{i} X \vee Y \xrightarrow{j} X \times Y$, the map *i* may be regarded as the generalized Whitehead product $[-\varepsilon_X, \varepsilon_Y]$ of evaluation maps (see [11, §3]). Moreover, by obstruction theory, we have that the canonical

map

$$\chi: \bigvee^{m_1m_2} S^{2n-1} \simeq (\bigvee^{m_1} S^{n-1}) * (\bigvee^{m_2} S^{n-1})$$
$$\to \Omega S(\bigvee^{m_1} S^{n-1}) * \Omega S(\bigvee^{m_2} S^{n-1}) \to \Omega X * \Omega Y$$

is (3n-2)-connected, and, without loss of generality, it may be regarded as the inclusion into $\Omega X * \Omega Y$ of its (3n-2)-skeleton.

PROPOSITION 4. The map χ induces an isomorphism

$$\chi_*:\bigoplus^{2m_1m_2} \mathbb{Z}/2 \cong [S^{2n} \vee S^{2n}, \bigvee^{m_1m_2} S^{2n-1}] \to [S^{2n} \vee S^{2n}, \Omega X * \Omega Y].$$

Proof. Since χ is (3n-2)-connected, χ_* is an isomorphism for $n \ge 4$ and an epimorphism for n = 3. We consider the case n = 3. For a homotopy coloop Z, the evaluation map $S\Omega Z \to Z$ has a homotopy section (see for example [12]). Thus $\Omega S(\bigvee^{m_1} S^{n-1}) * \Omega S(\bigvee^{m_2} S^{n-1}) \cong S\Omega S(\bigvee^{m_1} S^{n-1}) \wedge \Omega S(\bigvee^{m_2} S^{n-1}) \to S(\bigvee^{m_1} S^{n-1}) \wedge \Omega S(\bigvee^{m_2} S^{n-1}) \cong (\bigvee^{m_1} S^{n-1}) \wedge S\Omega S(\bigvee^{m_2} S^{n-1}) \to (\bigvee^{m_1} S^{n-1}) \cong (\bigvee^{m_1} S^{n-1}) \wedge S\Omega S(\bigvee^{m_2} S^{n-1}) \to (\bigvee^{m_1} S^{n-1}) \cong (\bigvee^{m_1} S^{n-1}) \times (\bigvee^{m_2} S^{n-1}) \to (\bigvee^{m_2} S^{n-1}) \cong (\bigvee^{m_1} S^{n-1}) * (\bigvee^{m_2} S^{n-1}) \otimes (\bigvee^{m_2} S^{n-1}) \to (\bigvee^{m_2} S^{n-1}) \otimes (\bigvee^{m_2} S$

By Proposition 4, $\iota_*[S^{2n} \vee S^{2n}, \Omega X * \Omega Y] \cong \bigoplus^{2m_1m_2} \mathbb{Z}/2$, and $G \cong \bigoplus^N \mathbb{Z}/2$, with $N \leq 2m_1m_2$ (see Proposition 10). The composite $w = i\chi$ factors as

$$w = i\chi: \bigvee^{m_1m_2} S^{2n-1} \to \bigvee^{m_1} S^n \vee \bigvee^{m_2} S^n \subset X \vee Y,$$

and, after a suitable choice of orientation of the (2n-1)-spheres, the m_1m_2 components of w are easily shown to be the Whitehead products $w_{rs} = [l_r, l_s]$ of $S^n \xrightarrow{l_r} \bigvee^{m_1} S^n \subset X$ and $S^n \xrightarrow{l_s} \bigvee^{m_2} S^n \subset Y$, $r = 1 \cdots m_1$, $s = 1 \cdots m_2$.

Finally, in the following pull-back square of groups

the map $s: \overline{U} \to \mathscr{E}(X \lor Y)$ induces a cross-section of $\overline{\theta}$, so that

$$E \cong G \rtimes \overline{U}$$
, and $\mathscr{E}(X \vee Y) \cong \frac{E}{R_{\beta,\alpha} \times R_{\alpha,\beta}}$.

This completes the proof of Theorem A.

In order to describe the inclusion of $R_{\beta,\alpha} \times R_{\alpha,\beta}$ into E let us choose the isomorphism $G \rtimes \overline{U} \cong E = \mathscr{E}(X \vee Y) \times_U \overline{U}$ to be given by $(\gamma, u) = \gamma + u \mapsto (\mu(\gamma), 1) + (s(u), u) = (\mu(\gamma)s(u), u)$. The inverse isomorphism is given by $(\sigma, u) \mapsto (\gamma, u)$, where $\mu(\gamma) = \sigma s(u)^{-1}$. Thus the element $(1, u) \in \ker (E \to \mathscr{E}(X \vee Y))$, is identified under this isomorphism with the element $(\gamma, u) \in G \rtimes \overline{U}$ where $\mu(\gamma) = s(u)^{-1} = s(u^{-1})$ and $u \in \ker \pi$.

We decompose γ in G as $\gamma = (\gamma^1, \gamma^2)$ corresponding to the isomorphism $[S^{2n} \vee S^{2n}, X \vee Y] \rightarrow \pi_{2n}(X \vee Y) \times \pi_{2n}(X \vee Y).$

PROPOSITION 5. The monomorphism $R_{\beta,\alpha} \times R_{\alpha,\beta} \to G \rtimes \overline{U}$ is given by

$$(\bar{g},\bar{h})\mapsto \left(\gamma, \begin{pmatrix} 1_X & \bar{g}\\ \bar{h} & 1_Y \end{pmatrix}\right),$$

where $\mu(\gamma) = s\left(\begin{pmatrix} 1_X & -\iota_*\bar{g} \\ -\iota'_*\bar{h} & 1_Y \end{pmatrix}\right) \in \mathscr{E}(X \vee Y)$. Furthermore, if $\bar{g} = (S\beta)^*(\zeta_X)$ and $\bar{h} = (S\alpha)^*(\zeta_Y)$, then

$$\gamma = (\Gamma(i_Y \iota', \beta)(\zeta_X) - (S\beta)^*(\zeta_X), \quad \Gamma(i_X \iota, \alpha)(\zeta_Y) - (S\alpha)^*(\zeta_Y)).$$

Proof. The first part is already proved. For the second observe that γ is a sum of Whitehead products which lie in the kernel of j_* . The result follows on applying [9, 3.4.3] or using the computation of $\Gamma(i_X \iota, \alpha)(\zeta_Y) - (S\alpha)^*(\zeta_Y)$ given in §3 below.

In the next proposition we describe the action of \overline{U} on G in the extension $G \rightarrow E \rightarrow \overline{U}$.

PROPOSITION 6. Let $u = \begin{pmatrix} f & \bar{g} \\ \bar{h} & k \end{pmatrix} \in \overline{U}$ and $\gamma = (\gamma_1, \gamma_2) \in G$. Then $\gamma' = (\gamma'_1, \gamma'_2) = u \cdot \gamma$ is given by

$$\gamma_1' = (f \lor k)\gamma_1 f^{-1}$$
$$\gamma_2' = (f \lor k)\gamma_2 \tilde{k}^{-1}.$$

In particular the subgroup $R_{\beta,\alpha} \times R_{\alpha,\beta}$ of \overline{U} acts trivially on G.

Proof. By definition, the action of \overline{U} on G is given by $u \cdot (\gamma_1, \gamma_2) = (\gamma'_1, \gamma'_2)$ say, where $(\gamma'_1, \gamma'_2) \perp 1 = s(u)((\gamma_1, \gamma_2) \perp 1)s(u^{-1})$. Since $[X, S^{2n} \vee X] \rightarrow [X, S^{2n} \times X]$ is bijective by obstruction theory, we have $\varphi_X f = (\tilde{f} \vee f)\varphi_X$ for example. Similarly, for example, $\varphi_X \bar{g} = p\bar{g} + \bar{g} = \bar{g}$. Let $u^{-1} = \begin{pmatrix} f^{-1} & -f^{-1}\bar{g}\tilde{k}^{-1} \\ -k^{-1}\bar{h}\tilde{f}^{-1} & k^{-1} \end{pmatrix}$ $= \begin{pmatrix} f_1 & g_1 \\ h_1 & k_1 \end{pmatrix}$ say. Since γ_1 and γ_2 are sums of (proper) Whitehead products, we have

$$s(u)((\gamma_{1},\gamma_{2}) \perp 1)s(u^{-1}) = s(u)((\gamma_{1},\gamma_{2}),1)\varphi_{X \vee Y}((f_{1} \vee \bar{h}_{1})\varphi_{X},(\bar{g}_{1} \vee k_{1})\varphi_{Y})$$

$$= s(u)((\gamma_{1}\tilde{f}_{1} + \bar{h}_{1},f_{1})\varphi_{X},(\gamma_{2}\tilde{k}_{1} + \bar{g}_{1},k_{1})\varphi_{Y})$$

$$= s(u)((\gamma_{1}\tilde{f}_{1},\gamma_{2}\tilde{k}_{1}),s(u^{-1}))\varphi_{X \vee Y}$$

$$= ((f \vee k)\gamma_{1}\tilde{f}_{1},(f \vee k)\gamma_{2}\tilde{k}_{1}) \perp 1,$$

where $\tilde{f}_{1} = \tilde{f}^{-1}$ and $\tilde{k}_{1} = \tilde{k}^{-1}.$

We now give a necessary and sufficient condition that the semi-direct product structure on $G \rtimes \overline{U}$ on E carries over to a semi-direct product structure $G \rtimes U$ on $\mathscr{E}(X \lor Y)$. By Proposition 6, the action of \overline{U} on G induces the action of U on G. So we can consider the 5-term exact sequence [5, Theorem VI 8.1]

$$0 \to \operatorname{Der}(U,G) \to \operatorname{Der}(\overline{U},G) \to \operatorname{Hom}_U(R_{\beta,\alpha} \times R_{\alpha,\beta},G) \to H^2(U,G) \to H^2(\overline{U},G)$$

associated to the group extension $R_{\beta,\alpha} \times R_{\alpha,\beta} \rightarrow \overline{U} \rightarrow U$ and the U-module G. Here $\text{Der}(\overline{U}, G)$ is the group of derivations (crossed homomorphisms) from \overline{U} to G, that is the group of functions $d: \overline{U} \rightarrow G$ such that $d(u_1 \cdot u_2) = d(u_1) + u_1 \cdot d(u_2)$ for all $u_1, u_2 \in \overline{U}$. The group $H^2(U, G)$ classifies the extensions of the group U by the U-module G. We denote the restriction of the section s to $R_{\beta,\alpha} \times R_{\alpha,\beta}$ by

$$s': R_{\beta,\alpha} \times R_{\alpha,\beta} \to \mu(G) \cong G.$$

PROPOSITION 7. The group of homotopy self-equivalences $\mathscr{E}(X \lor Y)$ is a semidirect-product, or more precisely, θ has a right-inverse, if and only if s' extends to some derivation from \overline{U} into G.

Proof. It follows from the diagram after Proposition 4 that the cohomology class in $H^2(U, G)$ of the extension $G \rightarrow \mathscr{E}(X \vee Y) \rightarrow U$ maps to the cohomology class corresponding to the semidirect-product E, that is to the zero element of $H^2(\overline{U}, G)$. We now show that the cohomology class which classifies the extension $G \rightarrow \mathscr{E}(X \vee Y) \rightarrow U$ is given by s'. The section s' is a U-module homomorphism since, for $u = \pi(\overline{u}) \in U$ and $r \in R_{\beta,\alpha} \times R_{\alpha,\beta}$, we have

$$s'(u \cdot r) = s'(\bar{u}r\bar{u}^{-1}) = s(\bar{u})s(r)s(\bar{u}^{-1}) = u \cdot s(r).$$

To see that s' maps to the extension $G \mapsto \mathscr{E}(X \vee Y) \twoheadrightarrow U$, observe that the commutative diagram of group extensions

induces the commutative diagram

$$\begin{array}{cccc} \operatorname{Hom}_{U}(G,G) & \longrightarrow & H^{2}(U;G) & \longrightarrow & H^{2}(\mathscr{E}(X \lor Y);G) \\ & (s')^{*} & & 1 & & s^{*} \\ & & & s^{*} & \\ \operatorname{Hom}_{U}(R_{\beta,\alpha} \times R_{\alpha,\beta},G) & \longrightarrow & H^{2}(U;G) & \longrightarrow & H^{2}(\overline{U};G). \end{array}$$

The proposition now follows.

As an aid to calculation, we note by Proposition 5 that

$$s'((S\beta)^*(\zeta_X), (S\alpha)^*(\zeta_Y)) = (\Gamma(i_Y \iota', \beta)(\zeta_X) - (S\beta)^*(\zeta_X), \Gamma(i_X \iota, \alpha)(\zeta_Y) - (S\alpha)^*(\zeta_Y)).$$

In §4 Example 5 we give examples of spaces for which θ has no right-inverse. We now consider the case where Y = X. We define $\rho : \mathscr{E}(X \lor X) \to \mathbb{Z}_2$ as follows: let $\theta(\sigma) = \begin{pmatrix} f & g \\ h & k \end{pmatrix}$, then $\rho(\sigma) = +1$ if f and $k \in \mathscr{E}(X)$ and $\rho(\sigma) = -1$ if g and $h \in \mathscr{E}(X)$. That ρ is a homomorphism follows easily using the techniques of the proof of Proposition 2. This homomorphism has a section given by $-1 \mapsto T$, where T(x, y) = (y, x). The action in the split extension $\mathscr{L}(X \lor X) \to \mathscr{E}(X \lor X) \to \mathscr{Z}/2$ is given by $(-1) \cdot \sigma = T\sigma T$. We have, as above, the isomorphism $G \rtimes \overline{U} \mapsto \mathscr{L}(X \lor Y) \rtimes_U \overline{U}$ given by $(\gamma, u) \mapsto (\mu(\gamma)s(u), u)$: the inverse of this isomorphism is given by $(\sigma, u) \mapsto (\gamma, u)$, where $\mu(\gamma) = \sigma s(u)^{-1}$. The proof of the following proposition is straightforward.

PROPOSITION 8. The action in the split extension $G \rtimes \overline{U}/R_{\beta\alpha} \times R_{\alpha\beta} \mapsto \mathscr{E}(X \lor X) \twoheadrightarrow \mathbb{Z}/2$ is given by

$$(-1)\cdot\left((\gamma_1,\gamma_2),\begin{pmatrix}f&\bar{g}\\\bar{h}&k\end{pmatrix}\right)=\left((\gamma_2,\gamma_1),\begin{pmatrix}k&\bar{h}\\\bar{g}&f\end{pmatrix}\right).$$

§3. The group G

Let Z and W be (pointed) spaces. For any map $u: Z \to W$, the *u*-based track group $\pi_1^Z(W; u)$ is the set of homotopy classes in the space of functions $\zeta: Z \wedge I^+ = Z \times I/z_0 \times I \to W$, satisfying $\zeta(z, 0) = \zeta(z, 1) = u(z)$, for all $z \in Z$. The set $\pi_1^Z(W; u)$ is a group with the obvious operation. If Z is a co-H-space, W^Z is an H-space and there exists an isomorphism

$$u_b: \pi_1^Z(W; u) \to \pi_1^Z(W; u.u^{-1}) \cong \pi_1^Z(W; *),$$

defined in the following way. Let F be a homotopy $u \cdot u^{-1} \sim *$, then

IRENE LLERENA AND JOHN W. RUTTER

$$u_b(\xi)(z,t) = \begin{cases} F(z,1-4t), & \text{for } 0 \le t \le \frac{1}{4} \\ (\xi,u^{-1}) \circ \Phi\left(z,2t-\frac{1}{2}\right), & \text{for } \frac{1}{4} \le t \le \frac{3}{4} \\ F(z,4t-3), & \text{for } \frac{3}{4} \le t \le 1, \end{cases}$$

where $\Phi: Z \wedge I^+ \to (Z \vee Z) \wedge I^+ \cong (Z \wedge I^+) \vee (Z \wedge I^+) \to (Z \wedge I^+) \vee Z$ is the map induced by the comultiplication of Z followed by the projection.

Given co-H-spaces A and B and pointed maps $f: B \to A, u: A \to X$, we define

$$\Gamma(u,f): [SA,X] \xrightarrow{u_b^{-1}} \pi_1^A(X;u) \xrightarrow{f^*} \pi_1^B(X;uf) \xrightarrow{(uf)_b} [SB,X]$$

For a detailed account of the properties of $\Gamma(u, f)$ see [10, §3].

In our case $B = S^{2n-1} \vee S^{2n-1}$ and $A = \bigvee^{m_1} S^n \vee \bigvee^{m_2} S^n$. By [10], for any $(\zeta^1, \zeta^2) \in [\bigvee^{m_1} S^{n+1}, X \vee Y] \times [\bigvee^{m_2} S^{n+1}, X \vee Y] \cong [\bigvee^{m_1} S^{n+1} \vee \bigvee^{m_2} S^{n+1}, X \vee Y]$ we have

$$\Gamma(\iota \lor \iota', \alpha \lor \beta)(\zeta^1, \zeta^2) = (\Gamma(i_X \iota, \alpha)(\zeta^1), \Gamma(i_Y \iota', \beta)(\zeta^2)).$$

Hence, as a subgroup of $[S^{2n}, X \lor Y] \oplus [S^{2n}, X \lor Y]$,

im
$$\Gamma(\iota \vee \iota', \alpha \vee \beta) \cap \iota^*[S^{2n} \vee S^{2n}, \Omega X * \Omega Y]$$

$$\cong$$
 (im $\Gamma(i_X \iota, \alpha) \cap \ker j_*$, im $\Gamma(i_Y \iota', \beta) \cap \ker j_*$).

Here ker $\{j_*: [S^{2n}, X \lor Y] \rightarrow [S^{2n}, X \times Y]\} = i_*[S^{2n}, \Omega X * \Omega Y].$

Observe that $[\bigvee S^{n+1}, X \lor Y] \cong [\bigvee S^{n+1}, X] \oplus [\bigvee S^{n+1}, Y]$. So we only need to study the image of $\Gamma(i_X \iota, \alpha)$ and $\Gamma(i_Y \iota', \beta)$ on these two direct summands. Let $\zeta^1 = \zeta^1_X + \zeta^1_Y \in [\bigvee^{m_1} S^{n+1}, X] \times [\bigvee^{m_1} S^{n+1}, Y] \cong [\bigvee^{m_1} S^{n+1}, X \lor Y]$ and similarly $\zeta^2 = \zeta^2_X + \zeta^2_Y$. We have

$$\Gamma(i_X\iota,\alpha)(i_X)_* = (i_X)_*\Gamma(\iota,\alpha).$$

Hence $\ker j_* \cap \Gamma(\iota_X \iota, \alpha) \{\zeta_X^1\} = 0$, and, similarly, $\ker j_* \cap \Gamma(\iota_Y \iota', \beta) \{\zeta_Y^2\} = 0$. Now $j_* \Gamma(\iota_X \iota, \alpha) (\zeta_Y^1) = (S\alpha)^* (\zeta_Y^1)$ by [10, (3.4.3)] and, therefore,

im
$$\Gamma(i_X \iota, \alpha) \cap \ker j_* = \Gamma(i_X \iota, \alpha) \{ \zeta_Y^1 : (S\alpha)^* (\zeta_Y^1) = 0 \}.$$

Similarly

im
$$\Gamma(i_Y \iota', \beta) \cap \ker J_* = \Gamma(i_Y \iota', \beta) \{ \zeta_X^2 : (S\beta)^* (\zeta_X^2) = 0 \}$$

We have proved the following Proposition.

PROPOSITION 9.

$$\operatorname{im} \Gamma(\iota \lor \iota', \alpha \lor \beta) \cap i_*[S^{2n} \lor S^{2n}, \Omega X * \Omega Y]$$

= $\Gamma(i_X \iota, \alpha) \{ \zeta_Y^1 : (S\alpha)^*(\zeta_Y^1) = 0 \} + \Gamma(i_Y \iota', \beta) \{ \zeta_X^2 : (S\beta)^*(\zeta_X^2) = 0 \}.$

Let us compute these groups. Write α in the form $\alpha = \sum i_i \alpha' + i_i \alpha'$

 $\sum_{i < j} [t_i, t_j] \alpha^i j.$ For *n* odd $H(\alpha^i) = 0$, $\alpha^i = t^i$ is a suspension element and $a_{ii} = 0$. Here we use the notation introduced in §1 to define the matrix $Q(\alpha)$. For *n* even $(n \neq 2, 4, 8)$, since $H[t_i, t_i] = \pm 2$, we have $\alpha^i = t^i + (1/2)a_{ii}[t_i, t_i]$ where t^i is a suspension element. For n = 2, 4, 8, we have $\alpha^i = t^i + a_{ii}\beta$ where t^i is a suspension element and β is the Hopf map: observe that in this case $S(\alpha^i) \neq S(t^i)$ in general. With this notation we have by [10, (3.3.3) and (3.3.6)]

$$\Gamma(i_{X}\iota, \alpha) = \Gamma(i_{X}\iota, \sum \iota_{i}\alpha') + \sum_{i < j} \alpha^{ij} \Gamma(i_{X}\iota, [\iota_{i}, \iota_{j}])$$

$$= \begin{cases} (S\alpha)^{*} + \sum_{i} \frac{1}{2} a_{ii} \Gamma(i_{X}\iota, [\iota_{i}, \iota_{i}]) + \sum_{i < j} a_{ij} \Gamma(i_{X}\iota, [\iota_{i}, \iota_{j}]), & \text{for } n \text{ even}, \neq 2, 4, 8, \\ (St)^{*} + \sum_{i} a_{ii} \Gamma(i_{X}\iota, \iota_{i}\vartheta) + \sum_{i < j} a_{ij} \Gamma(i_{X}\iota, [\iota_{i}, \iota_{j}]), & \text{for } n = 2, 4, 8, \\ (S\alpha)^{*} + \sum_{i < j} a_{ij} \Gamma(i_{X}\iota, [\iota_{i}, \iota_{j}]), & \text{for } n \text{ odd.} \end{cases}$$

Consider the map $[l_i, l_j]$ as the composition of $w: S^{2n-1} \to S^n \vee S^n$ and $(l_i, l_j): S^n \vee S^n \to \bigvee^{m_1} S^n$. By [10, (3.4.2)], for $\zeta_Y^1 = (\zeta_1, \ldots, \zeta_{m_1}) \in \bigoplus^{m_1} [S^{n+1}, Y]$, we have

$$\begin{split} \Gamma(i_X \iota, [\iota_i, \iota_j])(\zeta_Y^1) &= \Gamma(i_X \iota(\iota_i, \iota_j), w) \Gamma(i_X \iota, (\iota_i, \iota_j))(\zeta_Y^1) \\ &= \Gamma(i_X \iota(\iota_i, \iota_j), w)(\zeta_\iota, \zeta_j) \\ &= [\zeta_\iota, i_X \iota_j] + [i_X \iota_i, \zeta_j], \end{split}$$

since all elements are of order 2. Also, for the Hopf maps $\vartheta: S^{2n-1} \to S^n$ (n = 2, 4, 8), we have $(\iota_1 + \iota_2)\vartheta = \iota_1\vartheta + \iota_2\vartheta \pm [\iota_1, \iota_2]$. Therefore, by [10, 3.4.3],

$$\Gamma(i_X\iota,\iota_i\vartheta)(\zeta_Y^1)=(S\vartheta)^*(\zeta_\iota)+[\zeta_\iota,i_Xu_i].$$

Since $\pi_{n+1} Y \cong \bigoplus^{m_2} \pi_{n+1} S^n$, we can write ζ_i in the form $\zeta_i = \sum_{\lambda} e_i^{\lambda} c_{im_1+\lambda} \eta$, where η is the generator of $\pi_{n+1} S^n$, $e_i^{\lambda} = 0, 1$, $\iota_i : S^n \to \bigvee^{m_1} S^n \vee \bigvee^{m_2} S^n$ is the inclusion onto the *i*-th sphere of the union and $c = (\iota \vee \iota') : \bigvee^{m_1} S^n \vee \bigvee^{m_2} S^n \to X \vee Y$ is the inclusion onto the *n*-skeleton. With this notation $i_X u_i = c\iota_i$ and we have

$$\Gamma(i_X \iota, [\iota_i, \iota_j])(\zeta_Y^1) = c_* \left(\sum_{\lambda=1}^{m_2} (e_\iota^\lambda [\iota_j, \iota_{m_1+\lambda} \eta] + e_j^\lambda [\iota_i, \iota_{m_1+\lambda} \eta]) \right), \text{ and}$$
$$\Gamma(i_X \iota, \iota_i \vartheta)(\zeta_Y^1) = (S\vartheta)^*(\zeta_\iota) + c_* \left(\sum_{\lambda=1}^{m_2} e_\iota^\lambda [\iota_i, \iota_{m_1+\lambda} \eta] \right).$$

Therefore, for all n,

$$\Gamma(i_X\iota,\alpha)(\zeta_Y^1)=(S\alpha)^*(\zeta_Y^1)+c_*\left(\sum_{\lambda,\iota,j}a_{ij}e_{\iota}^{\lambda}[\iota_j,\iota_{m_1+\lambda}\eta]\right).$$

where the sum runs over all $1 \le i$, $j \le m_1$, $1 \le \lambda \le m_2$. Observe that the Whitehead products $[\iota_i, \iota_{m_1+\lambda}\eta]$ generate some of the last summands in

$$\pi_{2n}(\bigvee^{m_1} S^n \vee \bigvee^{m_2} S^n) \cong \pi_{2n}(\bigvee^{m_1} S^n) \oplus \pi_{2n}(\bigvee^{m_2} S^n) \oplus \sum_{\lambda < \mu} \pi_{2n}(S^{2n-1}).$$

Now the natural isomorphism

$$\pi_{2n+1}(X \lor Y, \bigvee S^n \lor \bigvee S^n) \cong \pi_{2n+1}(X, \bigvee S^n) \oplus \pi_{2n+1}(Y, \bigvee S^n)$$

commutes with the connecting homomorphism δ :

Since ker $c_* = \operatorname{im} \delta$, the map c_* is injective on the subgroup $\sum_{\lambda < \mu} \pi_{2n}(S^{2n-1})$ of $\pi_{2n}(\bigvee S^n \vee \bigvee S^n).$ Also $\iota_*[S^{2n} \vee S^{2n}, \Omega X * \Omega Y]$ is the subgroup of $c_*[S^{2n} \vee S^{2n}, \bigvee S^n \vee \bigvee S^n]$

given by

$$\iota_*[S^{2n} \vee S^{2n}, \Omega X * \Omega Y] \cong \bigoplus_{j,\lambda} \langle [\iota_j, \iota_{m_1+\lambda}\eta] \rangle \oplus \bigoplus_{j,\lambda} \langle [\iota_{m_1+\lambda}, \iota_j\eta] \rangle$$

where $1 \le j \le m_1$ and $1 \le \lambda \le m_2$. So, we can describe its elements as couples (D_1, D_2) of non-square matrices over $\mathbb{Z}/2$. With this notation the element

$$(\Gamma(i_X\iota,\alpha)-(S\alpha)^*)(\zeta_Y^1)=\sum_{j,\lambda}\left(\sum_{\iota=1}^{m_1}a_{ij}e_\iota^\lambda\right)[\iota_j,\iota_{m_1+\lambda}\eta],$$

is represented by the matrix $D_1 = E\overline{Q}(\alpha)$ where E is the $m_2 \times m_1$ -matrix with entries $e_i^{\lambda} \in \mathbb{Z}/2$ and $\overline{Q}(\alpha)$ denotes the reduction of the matrix $Q(\alpha)$ modulo 2. In particular

$$\dim(\operatorname{im}\{\Gamma(i_X\iota,\alpha)-(S\alpha)^*\})=m_2 \operatorname{rank} \overline{Q}(\alpha).$$

On the other hand, $\zeta_Y^1 \in \ker(S\alpha)^*$ if and only if $\sum_i \zeta_i S\alpha^i = 0$, that is, if and only if $ET_{\alpha} = 0$, where T_{α} the one-column matrix with entries $S\alpha^{i} \in \pi_{2n}(S^{n+1})$. We define

$$r_{\alpha} = \dim\left\{e \in \bigoplus^{m_1} \mathbb{Z}/2 : eT_{\alpha} = 0\right\} - \dim\left\{e \in \bigoplus^{m_1} \mathbb{Z}/2 : eT_{\alpha} = 0, e\overline{\mathbb{Q}}(\alpha) = 0\right\}$$

and

$$r_{eta} = \dim \left\{ e \in \bigoplus^{m_2} \mathbb{Z}/2 : eT_{eta} = 0
ight\} - \dim \left\{ e \in \bigoplus^{m_2} \mathbb{Z}/2 : eT_{eta} = 0, e\overline{Q}(eta) = 0
ight\}.$$

We have

SELF-EQUIVALENCES OF A UNION

$$\dim\{\zeta_Y^1: (S\alpha)^*\zeta_Y^1 = 0\} = \dim\{E \in \mathcal{M}(m_2 \times m_1, \mathbb{Z}/2) : ET_\alpha = 0\}$$
$$= m_2 \dim\left\{e \in \bigoplus^{m_1} \mathbb{Z}/2 : eT_\alpha = 0\right\}$$

and

$$\dim \Gamma(\iota_X \iota, \alpha) \{ \zeta_Y^1 : (S\alpha)^* \zeta_Y^1 = 0 \} = m_2 r_\alpha.$$

This together with Proposition 9 proves the following proposition.

PROPOSITION 10. The group

$$G = \frac{i_*[S^{2n} \vee S^{2n}, \Omega X * \Omega Y]}{\operatorname{im} \Gamma(\iota \vee \iota', \alpha \vee \beta) \cap i_*[S^{2n} \vee S^{2n}, \Omega X * \Omega Y]},$$

is a free $\mathbb{Z}/2$ -module of dimension $N = 2m_1m_2 - m_2r_\alpha - m_1r_\beta$.

COROLLARY. Let $(S\alpha)^* = 0$ and $(S\beta)^* = 0$, then the dimension of the free $\mathbb{Z}/2$ -module G is $N = 2m_1m_2 - m_2 \operatorname{rank} \overline{Q}(\alpha) - m_1 \operatorname{rank} \overline{Q}(\beta)$. Given further that det $Q(\alpha)$ and det $Q(\beta)$ are both odd, then G = 0 and

$$\mathscr{E}(X \lor Y) \cong U, \quad for \ X \neq Y$$

 $\mathscr{E}(X \lor Y) \cong U \rtimes \mathbb{Z}/2, \quad for \ X \simeq Y$

Remark. Where $X = \bigvee S^n \cup_{\alpha} e^{2n}$ is a manifold, we have det $Q(\alpha) = \pm 1$ and hence rank $\overline{Q}(\alpha) = m$. More generally rank $\overline{Q}(\alpha) = m$ in case det $Q(\alpha)$ is odd. In the case where *n* is odd, we only can have det $Q(\alpha) \neq 0$ if *m* is even.

§4. Examples

Example 1. $X = Y = HP^2 = S^4 \cup_{\nu_4} e^8$, the quaternionic projective plane. The group $\pi_8(S^4) \cong \mathbb{Z}/2 \times \mathbb{Z}/2$ is generated by elements $\nu_4\eta_7$ and $S\nu'\eta_7$, where η_k is the generator of $\pi_{k+1}(S^k)$. Since $\eta_3\nu_4 = \nu'\eta_6$ [18, page 44], we have

$$\iota_*\pi_8(S^4) \cong rac{\pi_8(S^4)}{(\nu_4)_*\pi_8(S^7)} = Z/2 = \{\eta_4 S \nu_4\},$$

and

$$p^*\iota_*\pi_8(S^4) \cong rac{\pi_8(S^4)}{(
u_4)_*\pi_8(S^7) + (S
u_4)^*[S^5, S^4]} = 0.$$

Clearly $\overline{U} \xrightarrow{\pi} U$ has a right inverse and therefore $S(HP^2 \vee HP^2) \cong G \rtimes U$. By [6],

$$\mathbf{Z}/2 = \pi_8(\mathbf{H}P^2) \stackrel{\mu}{\cong} \mathscr{E}(\mathbf{H}P^2),$$

where the isomorphism is given by $\mu(\xi) = \xi \perp 1, \ \xi \in \pi_8(HP^2)$. Thus

$$U = \mathscr{E}(\boldsymbol{H}\boldsymbol{P}^2) \times \mathscr{E}(\boldsymbol{H}\boldsymbol{P}^2) = \boldsymbol{Z}/2 \times \boldsymbol{Z}/2.$$

The generator of $\pi_5(HP^2)$ is η_4 , and $(Sv_4)^* \iota \eta_4 = \iota \eta_4(Sv_4) = \iota(Sv')\eta_7 \neq 0$ is the generator of $\pi_8(HP^2)$. Therefore, by Proposition 9,

$$G = i_*[S^8 \vee S^8, \Omega HP^2 * \Omega HP^2] = \{[i, i']\eta_7\} \times \{[i, i']\eta_7\} = \mathbb{Z}/2 \times \mathbb{Z}/2.$$

The isomorphism μ shows that, for each self-equivalence $f, \hat{f} = 1$. Moreover, from $\hat{f}v_4 = v_4\tilde{f}$, we deduce that deg $\tilde{f} = 1$. Therefore

$$(f \lor k)[\iota, \iota']\eta_7 = (\iota \lor \iota')(\hat{f} \lor \hat{k})[\iota_1, \iota_2]\eta_7 = [\iota, \iota']\eta_7$$

and, by Proposition 6, the action of U on G is trivial. Finally, by Theorem B,

$$\mathscr{E}(\boldsymbol{H}\boldsymbol{P}^2 \vee \boldsymbol{H}\boldsymbol{P}^2) = (\boldsymbol{G} \rtimes (\mathscr{E}(\boldsymbol{H}\boldsymbol{P}^2) \times \mathscr{E}(\boldsymbol{H}\boldsymbol{P}^2))) \rtimes \boldsymbol{Z}/2 = (\boldsymbol{Z}/2)^4 \rtimes \boldsymbol{Z}/2,$$

where the action is given by

$$(-1).(\gamma_1, \gamma_2; f, k) = (\gamma_2, \gamma_1; k, f).$$

Thus $\mathscr{E}(HP^2 \vee HP^2) \cong D(\mathbb{Z}/4 \times \mathbb{Z}/4)$, the dihedral extension, where the copies of $\mathbb{Z}/4$ are generated by $([\iota, \iota']\eta_7, -1)$ and $(\iota\eta_4(S\nu_4), -1)$ in $(\mathbb{Z}/2)^4 \rtimes \mathbb{Z}/2$.

Example 2. $X = Y = CP^2 = S^8 \cup_{\sigma_8} e^{16}$, the Cayley projective plane.

The group $\pi_{16}(S^8) = \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2$ is generated by elements $\sigma_8\eta_{15}$, $(S\sigma')\eta_{15}$, $\bar{\nu}_8$ and ε_8 . Since $S(\eta_7\sigma_8) = (S\sigma')\eta_{15} + \bar{\nu}_8 + \varepsilon_8$, [18, page 64], we have

$$\iota_*\pi_{16}(S^8) \cong \frac{\pi_{16}(S^8)}{(\sigma_8)_*\pi_{16}(S^{15})} \cong \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2 \quad \text{and}$$
$$p^*\iota_*\pi_{16}(S^8) \cong \frac{\pi_{16}(S^8)}{(\sigma_8)_*\pi_{16}(S^{15}) + (S\sigma_8)^*[S^9, S^8]} \cong \mathbb{Z}/2 \times \mathbb{Z}/2$$

generated by $\{\eta_8(S\sigma_8), \overline{v}_8, \varepsilon_8\}$ and $\{\overline{v}_8, \varepsilon_8\}$ respectively. Therefore $\pi : \overline{U} \to U$ has a right inverse and $S(CP^2 \lor CP^2) = G \rtimes U$. By [9, Example 4.1], $\mathscr{E}(CP^2) \cong \mathbb{Z}/2 \times \mathbb{Z}/2$, generated by $\mu((S\sigma')\eta_{15})$ and $\mu(v_8) = \mu(\eta_8)$, where $\mu(\xi) = \xi \perp 1$. Hence

$$U = \left\{ \begin{pmatrix} f & g \\ h & k \end{pmatrix} \in \begin{pmatrix} \mathbf{Z}/2 \times \mathbf{Z}/2 & \mathbf{Z}/2 \times \mathbf{Z}/2 \\ \mathbf{Z}/2 \times \mathbf{Z}/2 & \mathbf{Z}/2 \times \mathbf{Z}/2 \end{pmatrix} \right\}.$$

As in Example 1, we have $\tilde{f} = 1$ and $\hat{f} = 1$, for each self-equivalence f. Therefore, U acts trivially on G (Proposition 6), and $U \cong (\mathbb{Z}/2)^8$. This is a consequence of Proposition 1, since $f\bar{g}\tilde{k} = f\iota g' = \iota fg' = \bar{g}$, and similarly $k\bar{h}\tilde{f} = \bar{h}$. The generator of $\pi_9(CP^2)$ is $\iota\eta_8$ and $(S\sigma_8)^*\iota\eta_8 = \iota\eta_8(S\sigma_8) = \iota((S\sigma')\eta_{15} + \bar{\nu}_8 + \varepsilon_8) \neq 0$. Therefore, by Proposition 9,

$$G = \iota_*[S^{16} \vee S^{16}, \Omega CP^2 * \Omega CP^2] = \{[\iota, \iota']\eta_{15}\} \times \{[\iota, \iota']\eta_{15}\} = \mathbb{Z}/2 \times \mathbb{Z}/2.$$

Finally, by Theorem B,

$$\mathscr{E}(CP^2 \vee CP^2) = (G \times U) \rtimes \mathbb{Z}/2 = (\mathbb{Z}/2)^{10} \rtimes \mathbb{Z}/2,$$

where the action of Z/2 is given by

$$(-1).\left((\gamma_1,\gamma_2),\begin{pmatrix}f&\bar{g}\\\bar{h}&k\end{pmatrix}\right) = \left((\gamma_2,\gamma_1),\begin{pmatrix}k&\bar{h}\\\bar{g}&f\end{pmatrix}\right).$$

Example 3. $X = Y = S^n \times S^n = (S^n \vee S^n) \cup_{[l_1, l_2]} e^{2n} \ (n \ge 3)$. In this case $S[l_1, l_2] = 0$ and X and Y are both manifolds. Therefore G = 0, $\mathscr{S}(S^n \times S^n \vee S^n \times \widetilde{S^n}) \cong U$, and

$$\mathscr{E}(S^n \times S^n \vee S^n \times S^n) \cong U \rtimes \mathbb{Z}/2.$$

Using the isomorphism

$$p^*i'_{*}\pi_{2n}(S^n \vee S^n) \cong \frac{\pi_{2n}(S^n \vee S^n)}{\beta_{*}\pi_{2n}(S^{2n-1}) + (S\alpha)^*[S^{n+1} \vee S^{n+1}, S^n \vee S^n]} \\ \cong \pi_{2n}(S^n) \times \pi_{2n}(S^n),$$

we have

$$U \cong \begin{pmatrix} \mathscr{E}(X) & \pi_{2n}(S^n) \times \pi_{2n}(S^n) \\ \pi_{2n}(S^n) \times \pi_{2n}(S^n) & \mathscr{E}(Y) \end{pmatrix}$$

with the semi-direct product structure given in Proposition 1. The action of Z/2on U is again given by

$$(-1).\begin{pmatrix} f & g \\ h & k \end{pmatrix} = \begin{pmatrix} k & h \\ g & f \end{pmatrix}.$$

The groups $\mathscr{E}(S^n \times S^n)$ have been computed (see [6] and [16]). For n = 5, we have

$$\mathscr{E}(S^5 \times S^5) \cong \operatorname{Sym} = \left\langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\rangle \subset GL(2, \mathbb{Z}).$$

Example 4. $X = Y = S^n \cup_{[l,l]} e^{2n}$ $(n \ge 3)$, where *i* is the generator of $\pi_n(S^n)$. Again S[l, l] = 0 and $\overline{Q}([l, l]) = 0$. Thus, in Proposition 10, $r_{[l, l]} = 0$ and

$$G = i_*[S^{2n} \vee S^{2n}, \Omega X * \Omega X] = \{[i, i']\eta_{2n-1}\} \times \{[i, i']\eta_{2n-1}\} = \mathbb{Z}/2 \times \mathbb{Z}/2.$$

We also have $\overline{U} \cong U$ and $\mathscr{S}(X \lor X) \cong G \rtimes U$. By Proposition 6, the action is given by

$$(f \lor k)[\iota, \iota']\eta_{2n-1} = (\iota \lor \iota')(\hat{f} \lor \hat{k})[\iota_1, \iota_2]\eta_{2n-1} = (\deg \hat{f} \deg \hat{k})[\iota, \iota']\eta_{2n-1}.$$

Let K_n be the group $p'^*\iota_*\pi_{2n}S^n \cong \frac{\pi_{2n}S^n}{\{[\iota,\iota]\eta_{2n-1}\}}$, so that $U = \begin{pmatrix} \mathscr{E}(X) & K_n \\ K_n & \mathscr{E}(Y) \end{pmatrix}$ is a

semi-direct product, as in Proposition 1. Here

$$\{[i, i]\eta_{2n-1}\} = \begin{cases} 0, & \text{for } n \equiv -1(4) \text{ or } n = 2, 6, \\ Z/2, & \text{otherwise.} \end{cases}$$

In the case where *n* is even, we have $\tilde{f} = 1$ for each self-equivalence *f*. In the case where $\iota_*\pi_{2n}S^n = \mathbb{Z}/2$ (e.g. n = 2, 6, 12, ...), $\mathscr{E}(X)$ acts trivially on this group and $U = \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathscr{E}(X) \times \mathscr{E}(X)$. Also (see [9, Example 4.4])

$$\mathscr{E}(S^n \cup_{[l,l]} e^{2n}) = \begin{cases} D(K_n) \times \mathbb{Z}/2, & \text{for } n \text{ odd,} \\ D(K_n), & \text{for } n \text{ even.} \end{cases}$$

By Theorem B, we have

$$\mathscr{E}(X \lor X) \cong (G \rtimes U) \rtimes \mathbb{Z}/2.$$

Example 5.
$$X = S^3 \times S^3$$
, $Y = (S^3 \vee S^3) \cup_{\beta} e^6$, with $\beta = \iota_1 \eta^2 + \iota_2 \eta^2 + [\iota_1, \iota_2]$.
We have $Q(\alpha) = Q(\beta) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $T_{\alpha} = 0$ and $T_{\beta} = \begin{pmatrix} \eta^2 \\ \eta^2 \end{pmatrix}$. Hence, with

the notation of Proposition 10, $r_{\alpha} = 2$ and $r_{\beta} = 1$, so that $G = (\mathbb{Z}/2)^2$. On the other hand, $R_{\alpha,\beta} = 0$ and

$$R_{\beta,\alpha} = (S\beta)^* [S^4 \vee S^4, S^3 \vee S^3] = \langle \eta^3 \rangle \oplus \langle \eta^3 \rangle \subset \pi_6(S^3) \oplus \pi_6(S^3) \subset \pi_6(S^3 \vee S^3).$$

By obstruction theory we have that the composite $\pi_6(S^3 \vee S^3) \to \mathscr{E}(X \vee Y) \to [X \vee Y, X \times Y]$ has trivial kernel and therefore the map $s' : R_{\beta,\alpha} \times R_{\alpha,\beta} \to G$ is an isomorphism. By Proposition 7, $\mathscr{E}(X \vee Y)$ is a semidirect-product if and only if s' has a extension to a derivation from \overline{U} to G. By Proposition 6, the subgroup $\iota_*\pi_{2n}(\bigvee^m S^n) \times \iota'_*\pi_{2n}(\bigvee^m S^n)$ of \overline{U} always acts trivially on G. Hence, each derivation from \overline{U} to G is a homomorphism on this subgroup. In our example s' has no extension to a homomorphism on $\iota_*\pi_6(S^3 \vee S^3) \times \iota'_*\pi_6(S^3 \vee S^3)$ since

$$R_{\beta,\alpha} = \mathbf{Z}/2 \times \mathbf{Z}/2 \subset \iota_* \pi_6(S^3 \vee S^3) \cong \mathbf{Z}/(12) \times \mathbf{Z}/(12).$$

Therefore $\mathscr{E}(X \lor Y)$ is not a semi-direct product of G by U.

References

- W.D. BARCUS AND M.G. BARRATT, On the homotopy classification of the extensions of a fixed map, Trans. Amer. Math. Soc., 88 (1958), 57-74.
- [2] I. BOKOR AND I. LLERENA, On wedge cancellation phenomena, Math. Preprint Series Univ. Barcelona, 1993.
- [3] T.D. COCHRAN AND N. HABEGGER, On the homotopy theory of simply connected four manifold, Topology, 29 (1990), 419-440.
- [4] D. FRANK AND D.W KAHN, Finite complexes with infinitely-generated groups of selfequivalences, Topology, 16 (1977), 189–192.
- [5] P HILTON AND U. STAMMBACH, A Course in Homological Algebra, Springer-Verlag, 1971.

- [6] P.J. KAHN, Self-equivalences of (n 1)-connected 2n-manifolds, Math. Ann., 180 (1969), 26–47.
- [7] I. LLERENA, Wedge cancellation of certain mapping cones, Compositio Math., 81 (1992), 1– 17
- [8] K. MARUYAMA AND M. MIMURA, On the group of self-homotopy equivalences of $KP^2 \vee S^m$, Mem. Fac. Sci. Kyushu Univ. Ser A Math., **38** (1984), 65-74.
- [9] S. OKA, N. SAWASHITA AND M. SUGAWARA, On the group of self-equivalences of a mapping cone, Hiroshima Math. J., 4 (1974), 9–28.
- [10] J.W RUTTER, A homotopy classification of maps into an induced fibre space, Topology, 6 (1967), 379-403.
- [11] J.W RUTTER, Fibred joins of fibrations and maps II, J. London Math. Soc., 8 (1974), 453– 459.
- [12] J.W RUTTER, The suspension of the loops on a space with comultiplication, Math. Ann., 209 (1974), 69–82.
- [13] J.W RUTTER, The group of homotopy self-equivalence classes of CW complexes, Math. Proc. Cambridge Philos. Soc., 93 (1983), 275-293.
- [14] J.W. RUTTER, The group of homotopy self-equivalence classes using an homology decomposition, Math. Proc. Cambridge Philos. Soc., 103 (1988), 305-315.
- [15] J.W RUTTER, Homotopy self-equivalence groups of unions of spaces: including Moore spaces, Quaestiones Math., 13 (1990), 321-334.
- [16] N. SAWASHITA, On the group of self-equivalences of the product of spheres, Hiroshima Math. J., 5 (1975), 69–86.
- [17] A.J. SIERADSKI, Twisted self-homotopy equivalences, Pacific J. Math., 34 (1970), 789-802.
- [18] H. TODA, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Studies, Princeton Univ. Press, New Jersey, 1962.
- [19] C.T.C. WALL, Classification of (n-1)-connected 2*n*-manifolds, Ann. of Math., 75 (1962), 163-189.
- [20] K. YAMAGUCHI, On the self-homotopy equivalences of the wedge of certain complexes, Kodai Math. J., 6 (1983), 346–375.

Facultat de Matematiques University of Barcelona Gran Via de les Corts Catalanes 585 08071 Barcelona Spain

DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF LIVERPOOL LIVERPOOL L69 3BX ENGLAND