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MINIMAL H3 ACTIONS AND SIMPLE QUOTIENTS OF A

DISCRETE 6-DIMENSIONAL NILPOTENT GROUP

PAUL MILNES

Abstract

A simple C*-algebra is introduced that is generated by a minimal effective action of

the (discrete, nilpotent, non-abelian) Heisenberg group H3 on the torus T2 It appears

as a simple quotient of the group C*-algebra C*(H6,4) of a 6-dimensional discrete

nilpotent group H6,4, and also as a C*-crossed product generated by an action of Z2 on

Γ 3 The rest of the infinite dimensional simple quotients of C*(H6,4) are identified and

displayed as C* -crossed products generated by minimal effective actions, and also as

matrix algebras over simple C* -algebras from groups of lower dimension.

1. Introduction

In 3 dimensions there is a unique (up to isomorphism) connected, simply
connected, nilpotent Lie group, which we call G3 (following Nielsen [N]); G3
(= R3 as a set) is the Heisenberg group with multiplication

(k,m,n){k' ,m' ,ri) = (k + k' + nm'\m + m'\n + ri).

The faithful irreducible representations of the lattice subgroup H3 (= Z 3 as a set)
of G3 generate the irrational rotation algebras A#. In 4 dimensions there is also
a unique such connected group G4, and in 5 dimensions there are 6 such groups
Gst, 1 < / < 6. The main thrust in [MW1, MW2] was to find cocompact
subgroups H4 c= G4 and Hs,, c Gs,,, that would be analogous to H3 <= G3, and
then for these H's to identify the infinite dimensional simple quotients of C*(H),
both the faithful ones (generated by a faithful representation of H) and the non-
faithful ones, and also to give matrix representations over lower dimensional
algebras for as many of the non-faithful quotients as possible. In the course of
this work, it was observed that all flow presentations of simple C*-algebras that
arose used actions of abelian groups, namely, Z or Z 2 , or subgroups of them. It
was also observed in the 5-dimensional setting that one of the groups, H56,
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differed from another, H5 5, just by having one more (non-trivial) commuta-
tor. The same is true for a pair of 6-dimensional groups, Hβ,Ί and H6,4. For
these last 2 groups, the relevant commutator is at a 'higher level', i.e., its value is
not in the centre of the group; this makes a greater change in the multiplication
formula. Furthermore, the C*-algebras A^'4 generated by faithful irreducible
representations of H64 are simple quotients of C*(H6,4) and have flow pre-
sentations with H3 acting on Γ 2 .

In §§2 and 3 of the present paper, these aspects of H6,4 are given in some
detail, and A^'4 is shown to have another flow presentation, this time by an
action of Z2 on Γ 3 . A^'4 is also shown to have an automorphism of order 4,
that is analogous to the Fourier automorphism of the irrational rotation alge-
bra. In §4, the rest of the infinite dimensional simple quotients of C*(H6,4) are
identified and displayed as C*-crossed products generated by minimal effective
actions, and also as matrix algebras over simple C*-algebras from groups of
lower dimension.

Preliminaries
To present the results and proofs of the paper, we need notation for

semidirect products and C*-crossed products; the discussion which follows is quite
standard, appearing in [MW1], [Z-M] and many other places.

Suppose that N and K are discrete groups, the identity of each of them being
denoted by e. Suppose that there is a homomorphism s ^ σs from K into the
automorphism group of N. Then G = N x K becomes a group, the semidirect
product of N and K, with the multiplication formula

We will usually write s(t) instead of σs(t).
Conversely, if TV is a normal subgroup of G with quotient group K = G/N

suitably embedded as a subgroup in G, then G is canonically isomorphic
to a semidirect product N x K, whose automorphisms are determined by G,
σs(t) = sts~ι (product in G).

Now replace TV by a C*-algebra A with identity 1 and assume that we have a
homomorphism s *-> σs from K into the automorphism group of A. Then, for
/ a n d g in the Banach space £ι(K,A), the convolution product f*g and in-
volution / * are defined by

( \ ( ( ~1 t\\ A -f*( \ ( -f ( — 1Λ *Λ

with these definitions, έι(K,A) becomes a Banach *-algebra. The C*-crossed
product C*(A,K) is defined to be the enveloping C*-algebra of Sι(K,A).

For aeA and seK, the ^-functions as and δs in fx{K,A) c C*(A,K) are
defined by as(s) = a, as(sf) = 0 otherwise, and δs(s) = 1 (the identity of A),
δs(s') = 0 for sf φ s.
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2. The nilpotent group H64

Let λ — e2πiθ for an irrational θ, and let unitaries U, V and W and subsidiary
operators X and Y satisfy the commutation relations

f [U, V\ = X, [V, W] = Y, [U, Y} = λ= [X, W],
(OR) \

[and [t/, W] = \ = [U,X] = [V,X] = [F, Y] = [W, Y] = [Y,X].

Let A^'4 denote the C*-algebra generated by these unitaries, concrete repre-
sentations of which are given in §2. Note that U, V and W generate A^4; the
unitaries X and Y have been introduced only to control the notation.

A "discrete group construction" in [MW1] shows how to construct a group
from unitaries like these; use (CR) to collect terms in the product

λ9 Yh WkXJ Vm Unλ9' Yh> Wk'Xj> Vm> Un\

then the exponents give the multiplication for a group H6,4 (= Z6, as a set),
namely,

j {g,h,kj,m,n){g',ti,kf J',m',ri) =

1 (g + G' + jk' + nh1, h + ti + mk', k + k',j + f + nrn', m + m',n + ri)

with inverse

(g,h,kj,m,n)~ι = (~g + jk + nh — kmn, —h + km, —k, -j + nm, -ra, — ri).

We think of H6,4 as the lattice subgroup of Nielsen's G6,4 = R6 [N], although,
in fact, Nielsen's group has a quite different multiplication. The simplest
isomorphism we have been able to devise of our H6,4 onto a cocompact subgroup
of Nielsen's Gβ^ is

(g,h,kj,m,ή) ι-> (g + j - nrn,h,-j + nm,k,n,rri).

An essential (and obvious) property of H6,4 is that

π : (g,h,k,j,m,ή) »-> λgYhWkXJVmUn

is a representation of H6,4 that generates A^'4.

Presentations of H64 as a semidirect product N x K
1. The form of GO, 4 in [N] is not useful for our purposes. Accordingly, we

have given H6,4 in the form above because it is already a semidirect product
Z 3 x H3 with normal subgroup N\ = Z 3 = (Z, Z, Z, 0,0,0) c He 4 being acted
on by Kx = H 3 = H M / N i - (0,0,0,Z,Z,Z) via

the multiplication formula (m) for H6,4 = N\ x K\ is the result. This group is
isomorphic to the semidirect product part of one of the (central) extension
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presentations of another discrete 6-dimensional group Hβj; the addition of one
further non-trivial commutator [X, U] = Y to (CR) yields the fairly large cocycle
that completes this presentation of H6,7

2. One observes that N2 = Z 3 = (Z,0,0,Z,0,Z) c H 6 4 is also a normal
subgroup with K2 = H3 = Hβ,4/N2 = (0, Z, Z, 0, Z, 0). One consequence of
these 2 presentations of He,4 as Z 3 x H3 is an automorphism of H6,4

φλ : {g,h,k,j,m,n) ι-> (g - nh - jkj,n,-h +km,-m,-k),

which will be used below (Remark 2 in §3) to yield an interesting automorphism
of A6/.

3. A quite different semidirect product presentation of H6,4 as N3 x K3 =
Z 4 x Z 2 shows that H6,4 is related to a semidirect product presentation of H67;
it is also useful in identifying the 'other' (non-faithful) simple quotients
of C*(H6,4) towards the end of the next section. For it the normal subgroup
is N3=Z4 = (Z, Z, 0, Z, Z, 0) c H 4 with quotient #3 = H M / # 3 - Z 2 = (0,0,
Z, 0,0, Z) acting on Z 4 via

(k,n) : (g\hfj'f,mf) ^ (g' + kf + nti + knrn',ti + km'Jf + nrnf,m),

and yielding the multiplication for the semidirect product 7V3 x K3,

(g,hj,m,k,n)(g'\ti\f\mf\k'' ,n')

= {g+g'+kf+nh'+knm' ,h+ti+km\j+j'+nmf ,m+m' ,k+k' ,n+ri).

An isomorphism from H6,4 to N3 x K3 is given by

φ2 : (g,h,k,j,m,ή) ̂  (g - jk,h - km,-j\-rn,k,n).

(For H6,7, the formula for the action of Z 2 = (0,0,Z,0,0,Z) on Z 4 =

(Z, Z, 0, Z, Z, 0) has 4 more terms,

/ +tom / +/«(n-l)/2+m / «(«-l)(n

+ nm\mι).
See [JM], presentation 2 in §2.)

4. The normal subgroup 7V4 = Z = (Z, 0,0,0,0,0) c H6,7 with quotient
KA = H6,4/Λ^4 = (0, Z, Z, Z, Z, Z) ^ H 5 , 2 permits the interpretation that A^'4 is
generated by a representation of canonical commutation relations over )
(or a ^-representation of H52); here b is the cocycle

See p. 325 of [MW2] of more details.

3. Simple quotients of C*(H 6 4 )

Let λ = e2πiθ for an irrational θ. Since A^'4 is generated by a representation
of H6,4, it is a quotient of C*(H6,4). There are a number of methods to prove
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that quotients of group C*-algebras are simple; see pp. 318-9 in [MW2]. Of
these, we will use the minimal flow method involving Corollary 5.16 in [EH]. In
Proposition 1 we shall show that the first 2 concrete representations of A^'4 given
below yield C*-algebras that are generated by irreducible representations; since
primitive ideals of C*(H6,4) are maximal [H], it follows that these concrete
representations are simple.

The next theorem asserts that the C*-algebra A^'4 is simple and universal for
the equations (CR), and has a unique tracial state. The existence of the unique
tracial state is easy to verify directly (and can also be proved by citing results
from the literature).

In this theorem we use a flow 3F = (H3, T2) to generate a C*-crossed
product C*(^(J 2),H 3). The required action of H3 on T2 is given by

(j,m,n) : (w,υ) -> ( r ^ r ^ π ^ t ; ) ,

which looks awkward. However, since H3 is not abelian, inversion must be used
to transfer the action of H3 to ^(Γ 2 ), sf = f o s~\ so

{(j,m,n)f{w,υ)=fo(j,m,n)~\w,v)

\ = f((-j + nm,-m,-n)(w,v)) = f(λnw,λJwmv).

If we let w and v also denote the generators (w, v) \-> w and (w, v) ι-> v of
then

generates the action of H3 on #( T2).

1. THEOREM. Let λ = e2πiθ for an irrational θ.
(a) There is a unique {up to isomorphism) C*-algebra KQ generated by

unitaries U, V, W, X and Y satisfying (CR); A '̂ is simple and is universal for the
equations (CR). Let H3 act on %>(T2) as indicated in the previous paragraph; then

(b) Let π' be a representation of He A such that π — π' {as scalar s) on the
center (Z, 0,0,0,0,0) o/H6,4, and let A be the C*-algebra generated by πf. Then
A ~ Aβ via a unique isomorphism ω such that the following diagram commutes.

U π > A 6,4
A16,4

 >^0

A

(c) The C*-algebra KQ has a unique tracial state.

Proof The proof can be much as for Theorem 1.1 in [MW2]; we give some
details.
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One must note first that the flow (H3, T2) above is minimal and effective; so
C*(^(Γ 2 ) ,H 3 ) is simple, by Corollary 5.16 of Eflfros and Hahn [EH].

Once the simplicity of C*(#( J 2 ),H3) is established, it is straightforward to
prove the rest of (a) using the correspondence of

< W ) , 5(0,1,0), 5(1,0,0), ι>(o,o,o), "(o,o,o) e ^ ( H 3 , * ( Γ 2 ) ) c C*(^(Γ 2 ) ,H 3 )

to U} V, X, W, Y, respectively; see [MW2; proof of Theorem 1.1], for example,
also for (b) and (c). •

Concrete representations of A^'4

As well as giving a pleasing connection with geometry and topology, the
minimal flow presentations of these C*-algebras (as in Theorem 1) also provide
the most attractive concrete representations of the algebras. The first 2 concrete
representations of A^'4 arise in this setting.

1. The first arises from the flow (H3, J 2 ) in the theorem. If we use the
' / *-> sf notation for the action of H 3 on %(T2) as at (•), then on Jt\ = L2(T2)
the unitaries U : / ι-> (0,0,1)/, V : / ι-» (0,1,0)/ and W : / *-> vf (along with
their subsidiary operators X : / »-> (1,0,0)/ and Y : f \-> wf) satisfy (CR), so the
C*-subalgebra stf\ c S£{#t\) they generate is isomorphic to A^'4.

2. The second is connected with the semidirect product N^xK^ — Z^x

Z2 ^ H6,4 (and is similar to the flow representation of A^'7 in [JM; §3]). Let Z2

act on k2 = L2{T3) via

(o) (M) : / ^ / o α f o α 2

w ,

where the commuting homeomorphisms

oc\ : (x, w, v) —• (A:, λw, xv) and α2 : (x, w, v) —• (λx, w, wv)

generate a minimal distal flow SF\ = (Z2, Γ 3 ). Then the unitaries defined on 2ft2
by

tfo/ = /oα 2 , Vof = vf, W0f = foau Xof = wf, and Yof = xf,

where x also denotes the function (x, w, 1;) ̂  x in ^ ( J 3 ) , satisfy

(CR)o [ϋb, Ko] = *b, [^0, Fo] - r 0 , [ί/o, yb] = A = [Wo,Xo\.

With the correspondence U, V,X, W,Y ~ Uo, VQ\XQ\ WO, YO, one sees that
these are just the (non-trivial) commutators in (CR), so the correspondence
generates an isomorphism of A^'4 onto the C*-subalgebra s&ι c $£{2ft-ι) gen-
erated by I7O,. . .,ΓO . A^'4 is also isomorphic to the C*-crossed product
C*(<<ί(Γ3),Z2) generated by # Ί .

Note that, in (o), the inversion in / H-> f o s~ι (as at (*)) has been omitted;
this is possible because Z2 is abelian. We note as well that this representation
differs from the concrete representation for A^'7 on L2(T3) [JM; §3] only in that,
for A!)'7, the formula for 0C2 is (x,w,v) —> (λx,xw,wv).
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3. A third comes from a representation p of H6,4 on / 2 ( Z 5 ) ,

where

5 = (h + Λ' + mk', k + fc',7 + / H- ww', m + m', n + «').

The unitaries £/= />(0,0,0,0,0,1), K = />(0,0,0,0,1,0) and HP = />(0,0,1,0,0,0)

satisfy (CR), so the C*-algebra generated by p is isomorphic to A^'4.

Remarks. 1. The other infinite dimensional simple quotients of C*(H6,4),
Ai and A2 in the next section, each have concrete representations entirely
analogous to the last 2 concrete representations of A^'4.

2. The automorphism φλ of H6,4 in the previous section produces an au-
tomorphism φ\ of A^ 4 generated by

φ\ : YhWkXJVmUn ^ γrhWlkXljVlmUln

with U'=W~\ V'=V~\ X'=Y~\ W=U and Y' = X. One verifies
readily that £/', V, X', W and Y' satisfy (CR). φ\ is of order 4, like the
Fourier automorphism U ι-> V, V ι-> C/"1, of A^; thus its square

is analogous to the flip automorphism U ι-» C/"1, F H F " 1 , of A#. See Walters
[W] for more on these automorphisms of A#.

1. PROPOSITION. The concrete representations in 1 and 2 above of Aθ' are
irreducible, from the same primitive ideal kernel in C*(H6,4), and are not unitarily
equivalent.

Proof. We show that representation 1 is irreducible, and start by noting
that, in our notation, {wmvn :m,ne Z} is the usual basis for J f 1 = L2(T2). Then
we have

U : wmvn ^ λmwmv\ V : wmvn .-> wm+nvn and W : wmvn .-> λmwmvn+ι.

Suppose that T e B(jf\) commutes with U, V and W\ we must show that T is a
multiple of the identity. Let matrix coefficients for T be given by

Twmvm=
m',n'eZ

with Σm, n,GZ \a™fn>\2 < 00 and, in fact, uniformly bounded in m, n.

Now TW = IVT, TV = VT and TU = UT imply that

(!) flm',11' = αm',«'+l' ( 2 ) λ am',n' = λ am>,n' a n d ( 3 ) «m',«' = am'+n\n>>

respectively. Then (3), with n = 0, implies that (4) a™;°n, = 0 if n' ψ 0, because
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of the convergence condition. Also (1) and (4) imply that a™)n

n, = 0 if n φ n', (2)
implies that a™;"n, = 0 if m φ m', and then (1) and (3) imply that a%£ is constant
for all m, n, i.e., T is a multiple of the identify.

The proof that representation 2 is irreducible is similar, and is omit-
ted. Since the unitaries Uo, V^\ X^\ Wo, Yo satisfy (CR),

π' : (h,kj,m,n) ~ Yo

h Wk X~J V^m Uo

n

gives the representation of H6,4, and hence of /ι(Hβ^) and of C*(H6,4), that
generates s$2 But it follows from Theorem 1 that the map

is an isometry, so π' and the representation π : (h,kj,m,ή) \-+ YhWkXJVmUn

generating si\ have the same kernel / c C*(H6,4).
To see that π and π' are not unitarily equivalent, suppose that T is a linear

isometry of J f i onto JtfΊ, and that T intertwines U, V, W and Uo, VQ1, WQ and
is given by

Twmvn = Σ d7bcχa™bχ)C

a,b,ceZ

Then the first equation alone gives the contradiction T(jf\) §Ξ 2^2- For

U0{xawbvc) = λaxawb+cvc,

and TU = C/0Γ gives A m ^ χ - ^ " < ^ c , c 5 so d££c = 0 if cφ 0, since

The following corollary is a very special case of a classical result of Thoma
[T].

1. COROLLARY. He,4 is not a type I group.

4. Other simple quotients of A^'4

When λ = e2πιθ for an irrational θ, A^'4 is a simple quotient of C*(H6,4) and
the representation

77 (n h k j wi r\\ —•» 2g YhWk YJ VmTJn H ^ Λ —>• A 6 ' 4

is faithful. But there are other infinite dimensional simple quotients of C*(H6,4);
for them π is not faithful.

When π is not faithful, the action of H3 in the first concrete representation of
A^'4 becomes intractable; accordingly, we work with the formulation of the
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second concrete representation of A#'4, the commutator equations

(CR)o [Uo, Vo] = Xo, [Wo, Vo] = 7 0 , [tfo, Yo) = λ = [W0,X0]

So, now suppose that λ is a primitive q-th root of unity and that A is a
simple quotient of C*(H6,4) that is irreducibly represented and generated by
unitaries Uo, Vo, Wo, Xo and YΌ satisfying (CR)o Then Xfi commutes with each
of Uo, Vo and Wo; hence, by irreducibility, it is a multiple of the identity,
X$=μ'. Similarly, Y$ = η'.

1. Suppose that neither μ' nor η' is a root of unity, and in fact, that μf and
η' are linearly independent, i.e.,

μtrηrs =\ for r, s e Z implies r = s = 0.

In (CR)o substitute Xo = μX\ and Ύo — η Y\ with μq — μf and ηq = η' and get

ί [t/0, Vo] = μXu [Wo, Vo] = ηYu [Uo, Yι] = λ = [W0,Xι],

U
If Zq denotes the subgroup of T with q elements, the C*-algebra Ai generated by
the unitaries can be presented as C [^{Z1 x T),Z2), and also concretely rep-

2 2 ^
p ^{ ) , ) ,

resented on L2(Zq x J ) , using a minimal distal flow # 2 = ( Z 2 , Z ^ x Γ). The
formulae are almost the same as for the second concrete representation of ^ 4

using (Z 2 , J 3 ) , the only difference being that the homeomorphisms generating
are

cc\ : (x,w,v) —• (x, λw, ηxv) and (X2 : (x, w, f) —• (Ax,

2. Suppose that // is not a root of unity, but η is a primitive g'-th root of

unity; put q" = lcm {^,^7}. Then Wq" is also a multiple of the identity, and we

can assume that Wq" = 1, since W is a generator. The equations become

([U,V] =μX\, [W,V] =ηY\, [U,Y\] =λ= [W,Xχ],

(CR) 2 < q _ q _ >. _

[ a n d Xx - Yx - Wq = 1.

The generated C*-algebra A2 can be represented as C*(C(Z2 x T),Z2), and
concretely on L2(Z2 x J ) , with the same formulae as for Ai.

3. Suppose that μ and η are not roots of unity, but are linearly dependent,
μrV = 1 for some r, r' e Z. This case can be reduced to the previous one by a
change of variables, much as for case 2 of C*(Hs52) [MW2; p. 322]. Specifically,
we have μt>r" = ηtr" with (ί, *') = 1, so that te + t's' = 1 for some s,sf e Z. The
substitution

W'\ ft, —t'\fW\ fW'U'*'

Uf ) = \s', s ) V U ) = V WJ't/J

in (CR)i gives unitaries U\ V, Wr, X' and Y' that generate the same algebra A3
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as U, V, W, X and Y (since W = WlsVn' and U= Wf~s>Uft), and satisfy

([U',V]=μ''Xl, [W',V] = η»Yl, [U\ Y[] = λ= [W\X[],

\

i.e., (CR)i with some variables changed; the point of the substitution is that η" =
t\tμ~t' is a root of unity (of order dividing r"), but μ" = ηsμs is not. The
method of 2 can now be applied.

4. When μp> = 1 = ηq\ we can assume Wq" = 1 = C/̂ " = F7 7", where /?" =
lcm{q,p'}, and so the generated C*-algebra A4 is finite dimensional.

The preceding comments are summarized in the next theorem.

2. THEOREM. A C*-algebra A is isomorphic to a simple infinite dimensional
quotient o/C*(H6,4) if and only if A is isomorphic to A^'4 for some irrational θy or
to a C*(%{Z2 x T),Z2)y as in case 1 or 2 above.

A result that has been used implicitly above, and should be stated explicitly,
is the analogue of Theorem 1 that holds for Az ^ C*{y2(Z2 x T),Z2), i— 1,2.

3. THEOREM. For / = 1 , 2 , A ^ C ^ Z ^ x 7 ) , Z 2 ) is the unique {up to
isomorphism) C*-algebra generated by unitanes U, V, W, X and Y satisfying
(CR)/; A, is simple and is universal for the equations (CR)/.

As for Theorem 1, the result is a consequence of the minimality and
effectiveness of the flow involved.

Matrix representations of the non-faithful quotients
The algebras in 1 and 2 above have representations as matrix algebras with

entries in simple C*-algebras from groups of lower dimension. For the first one

we need A ^ , the simple C*-algebra generated by a faithful irreducible repre-

sentation of H52, in particular, by unitaries U\, V\ and W\ satisfying

(t) [UUVι]=μu [WuVι]=ηx and [UuWx] = l,

where μx — e~2πιφ and ηx = e~2πι^ are linearly independent; see [MW2; Theorem
2.1] (with the advice that the equations have been adjusted a little for the present
context).

4. THEOREM. The algebra Kx in 1 above is isomorphic to Mq2(A ' ,) for

Proof Here we need μx = μq and ηx =ηq, and unitaries U\, V\ and Wx

satisfying (f) and generating A H . Then define unitaries £/', V, W\ X1 and Y'
in Mqi(A ' .) as follows (all unspecified entries being 0).
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If U2 e Mq(A5

φ

2

φ) has t/i's on the diagonal and / e Mq(A5

φ

2

φ) is the identity
matrix, then

U' e Mq(Mq(A5

φ'
2

φ)) = Mq2{A5

φ

2

φ) has U2 in the upper righthand corner and
/'s on the subdiagonal, i.e.,

u' =

(0

I

0

0

0

Vo

0

0

7

0

0

0

0

0

0

0

0

0

... o

... o

... o

... o

... /

... o

0

0

0

0

0
/

U2\

0

0

0

0

0 )

Let V2eMq(A5

φφ) have Vx,ηVx,η
2V\,... ,ηq-χVλ on the diagonal, and let X2e

Mq(A^φ) have 1,1,1 ,...,λq on the diagonal. Then

V} e Mq{Mq(A5

φ

2

φ)) has F2, {μX2)~l V2, {μX2)~2V2,..,
diagonal, i.e.,

(V2 0 0 ... 0

V2 on the

V =

-1
0 (μX2Γ

ιV2
0

0 0

0

0

Let W2eMq(A
subdiagonal, i.e.,

V 0 0 o ...
2,) have W\ in the upper righthand corner and Γs on the

W2 =

1

0

0

0

Vo

0

0

1

0

0

0

0

0

0

0

0

0

... o

... o

... o

... o

... i

... o

0

0

0

0

0

1

W\ \
0

0

0

0

0 )
Then

W e Mq{Mq(A5

φ

2

φ)) has W2s on the diagonal.

X' e Mq(Mq(A5

φ'φ)) has X2's on the diagonal.

Y' e Mq(Mq(A5

φ

2

φ)) has /, I/, Γ7, . . . , V~XI on the diagonal.



MINIMAL H 3 ACTIONS 317

Then the unitaries U', V, W, X' and Y' satisfy (CR)i, e.g., [W2, V2] = η

and [W2,XΪJ] = λJ, so [W',V'] = ηY'. They also generate Mq2{A5

φ\) =

Mg(Mq{A%)), so A, S M ? 2 ( A ^ ) . ' •

5. THEOREM. The algebra A2 in 2 above is isomorphic to MQ(A^) for suitable

Q and γ.

Proof. The difference here is in the simple C* -algebra A generated by

unitaries U\, V\ and W\ satisfying (f), when η is a primitive q'-ύi root of unity.

Now ηx = ηq is a primitive r-th root of unity, say, for some r dividing q'\ note

that lcm{#,r} = lcm{q,q'} = q". Then A ^ Mr(A3

γ) for e~2mγ = μ[ = μ<*r [MW1;

Theorem 2.3], and we can regard U\, V\ and W\ as members of Mr(A?y)

generating Afr(Ay). We use them to construct matrices U',...,Yf in Mqi(A) —

Mq2r(Aγ) as in Theorem 4; then, with Q = q2r, these matrices satisfy (CR)2 and

generate MQ(A*).
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