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ON BOUNDARY BEHAVIOUR OF SYMPLECTOMORPHISMS
ELISABETTA BARLETTA AND SORIN DRAGOMIR

Let Q = C” be a strictly pseudoconvex domain, y an admissible weight, and
K,(z,{) the reproducing (or y-Bergman) kernel for L2H(L,7), the space of square
integrable functions, with respect to the measure ydy, which are holomorphic in
Q (du is the Lebesgue measure in R?"), cf. e.g. Z. Pasternak-Winiarski [17].
Consider the complex tensor field:

i .
H, = Z <E@—z‘710gKy(Z’ z)) dz, ® dz,

1<1,7<n

and the corresponding real tangent (0,2)-tensor field g, given by:
9y = Re{H,| ()xy) }>

where x(Q) is the C®(Q)-module of all real tangent vector fields on Q. Under
suitable conditions (cf. section 2) g, is a Kdhlerian metric on Q, hence w, =
—iddlog K,(z,z) is a symplectic structure (the Kédhler 2-form of g,). One of the
problems we take up in the present paper may be stated as follows. Let F:
Q—Q be a symplectomorphism of (Q,w,) in itself, smooth up to the
boundary. Does F : 0Q — 0Q preserve the contact structure of the boundary?

Our interest may be motivated as follows. If F:Q — Q is a biholo-
morphism then, by a celebrated result of C. Fefferman (cf. Theorem 1 in [4], p. 2)
F is smooth up to the boundary, hence F : 0Q — 0Q is a CR diffeomorphism,
and in particular a contact transformation. Also biholomorphisms are known to
be isometries of the Bergman metric g; (cf. e.g. [7], p. 370) hence symplecto-
morphisms of (Q,w;). On the other hand, one may weaken the assumption on
F by requesting only that F be a C® diffeomorphism and F*w; = w;. Then,
by a result of A. Koranyi and H. M. Reimann [11], if F is smooth up to the
boundary then F :0Q — 0Q is a contact transformation.

The main ingredient in the proof of A. Koranyi and H. M. Reimann’s result is
the fact that, when y = 1, a certain negative power of the Bergman kernel (p(z) =
K (z,z)_l/ ("“)) is a defining function of Q (allowing one to relate the symplectic
structure of Q to the contact structure of its boundary). In turn, this is a
consequence of C. Fefferman’s asymptotic expansion of K(z,{) (cf. Theorem 2 in
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[4], p. 9). Therefore, should one extend A. Kordnyi and H. M. Reimann’s ideas
to weighted Bergman kernels and related structures, the first obstacle is whether a
similar asymptotic expansion is known for K,(z,{). Indeed, this is available
when Q = {9 < 0} is a smoothly bounded strictly pseudoconvex domain and y =
lp|™, me {0,1,2,...}, by a result of M. M. Peloso [18] (cf. Theorem 1). Cf. also
[19] for a study of the boundary behaviour of K, (z,{) when y = |p|*, « > —1 (not
necessarily an integer). However, each point of the curve o+ |p|* (in the
Banach manifold W (Q) of all weights on Q) is isolated (cf. Theorem 2) hence our
present knowledge of the asymptoyic properties of K,(z,{), as y runs over W(Q),
is rather limited.

We apply Theorem 1 to study the boundary behaviour of a symplecto-
morphism of (Q,w,~), me{1,2,...} (cf. Theorem 3).

Using the analytic behaviour of K,(z,{) with respect to y (cf. [16], p. 131) we
prove an analogue of Fefferman’s asymptotic formula for more general weights of
the form: an essentially bounded function times a nonnegative integer power of
the defining function (cf. Theorem 4).

In section 4 we show that the components of any symplectomorphism of a y-
Kobayashi domain Q satisfy a Beltrami system (in the sense of [20]). If Q is the
Siegel domain, the tangential equations induced (on 0Q) by this system turn out
to be (cf. Proposition 2) the equations introduced in [10] in connection with the
study of quasiconformal maps of strictly pseudoconvex CR manifolds (cf. also [9],

(12)).

1. The Forelli-Rudin-Ligocka-Peloso asymptotic expansion formula

Let Q = C" be an open set and W(Q) the set of all weights on Q (i.e. ye
W(Q) is a Lebesgue measurable function y: Q — (0,0)). For each ye W(Q)
let L?(Q,y) be the Hilbert space of all functions f :Q — C for which

uﬂn=(LJfﬁwmyﬁ<al

Let L2H(Q,y) be the set of all functions in L?(Q,y) which are holomorphic
in Q. A weight ye W(Q) is admissible (cf. [17]) if 1) L?H(Q,y) is a closed
subspace of L?(Q,y), and 2) for any zeQ the evaluation functional §, :
L?’H(Q,y) — C, 6.(f) = f(2), is continuous. The set of all admissible weights
on Q is denoted by AW (Q). If ye AW(Q) then, by the Riesz representation
theorem, there is a unique function K,(z,-) (called the weighted Bergman kernel

of Q, of weight y, or the y-Bergman kernel of Q) so that K,(z,-) € L’H(Q,7) and

ﬂ@=Lf@&@£MOWML

for any f e L2H(Q,y), ze Q. For y =1 this is the ordinary Bergman kernel of
Q (cf. e.g. [2]).
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Let Q be a smoothly bounded strictly pseudoconvex domain Q = {ze C":
¢(z) < 0} where ¢ is such that the Levi form L, satisfies

Ly(w)& = Cilel*, ¢ecr,
for p(w) < do, oo >0, and C; depending only on Q. Set

(1) W(,z) = (F((2) — p(@)x(IC — 2l) + (1= x (I — z))IE - 2/
where
FG=-3 20 2"3 (€ - )t - 2)
p= 0z, az,

and y is a C® cut-off function of the real variable ¢, with y(z) =1 for |f| < &/2
and y(¢) =0 for |f| = 3g/4. We may state the following

THEOREM 1 (Forelli-Rudin-Ligocka-Peloso'). For any nonnegative integer
me{0,1,2,...}, lp|" €e AW(Q). Let K,((,z) be the |p|™-Bergman kernel for
L?H(Q,|p|™). Then

) Kn((,2) = calVo(2)|” - det Ly(z) - (¢, 2) 7" + E(C, 2)

where E€ C*(Q x Q—A), A is the diagonal of 0Q x 0Q, and E satisfies the
estimate

|E(,2)] < cp[P(,2)| "2 log) W (¢, 2)]].

This extends C. Fefferman’s asymptotic expansion formula for the Bergman
kernel of a strictly pseudoconvex domain (cf. [4] for m = 0) to the case of |p|™-
Bergman kernels, m e {1,2,...} (cf. Lemma 2.2 in [18], p. 229). Part of the
proof (relating K, ((,z) to the ordinary Bergman kernel of the domain
{(z,&) e C" x C™ : p(z) + |¢|* < 0}) actually works for an arbitrary (admissible)
weight. Indeed, one has the following

LemMma 1. Letme{l,2,...} and ye AW (Q). Let Kq,((z,£),(w,n)) be the
Bergman kernel of the domain Q, = {(z,&) e Q x C™ : |&|*" < y(z)}. Then

3 Ky(z,w) = 21 Ko, ((2,0), (v, 0).

Proof. For simplicity set K(z,w) = Kq, ((z,0), (w,0)). Also, for fixed z,we
Q, we set u(y) = Kq,((2,0),(w,n)). As Kg, is anti-holomorphic in #, u is

! We learned Theorem 1 from [18]. However, M. M. Peloso claims Theorem 1 1s implicit 1n [14],
while E. Ligocka employs an older idea by F Forelli and W. Rudin [6].
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harmonic. Hence

2m

u(0) = w 'IJ u(n)d ,
0) =5, — 7(w) B0, 10 (17) dpu(m)

where @, is the ‘area’ of the sphere S*c R ((w,n)eQ, yields e
B(0,y(w)'/®™)).  Therefore
2m

@) K(zw)y(w) = — IL o K20, () ditr)
m—1J [y " <p(w

For each fe L2H(Q,y) set f(z,&) = f(z). Clearly f is holomorphic in Q,,.
Also

1) = L (2, &) 2 du(z, &)

m

- |f<z)12<j ) dﬂ(f)) du(z)
Q 117" <¥(2)

- Gzt J ) du(z) = 222 £ < o

ie. f e L3(Qn). As Ko, reproduces the L2 holomorphic functions on Q,,, one
has (by (4))

£() =F(z,0) = jﬂ Ka, ((2,0), (w, )7 (w, ) d(ow, )

~| s ([ 2 Kgm«z,m,(w,n))du(n)) du(w)
Q 1" <y(w)

=L [ 0Kz w)700) ),

ie. (wyn_1/2m)K(z,w) reproduces the functions in L2H(Q,y). As u is anti-
holomorphic, |u|° is subharmonic. Hence

1
u(0))? < J
I ( )‘ VOI(B(O,y(W)l/(Zm))) B(O,y(w)l/(zm))

lu(m)|du(n)

or
K (z,w)|* <

o | 1K ((2,0), (v, 1)) Pdu(n).
Inl><y(w) /@™
Finally, we may integrate against w € Q so that to get
|, 1K)y n) o

2m

= W2m-1 le Ko, ((2,0), (w,m)[*du(w, 1) < oo

W2m—1
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ie. K(z,-)eL*(Q,y). Then (3) follows from the uniqueness statement in the
Riesz representation theorem.

When y = |p|", me{1,2,...}, the domain Q,, is strictly pseudoconvex and
(2) follows from Lemma 1 and from Fefferman’s asymptotic expansion formula
for Kq,, ie.

Ko, ((z,€), (w,n))
= ConSt'IV(pl(wa 77)' - det Lwl (W, 77) ' "P((Z, é)v (W, '7))—(”+m+1) + E((Z) é)v (W7 ’7))7
for some E € C*(Q,, x Q, — A;) satisfying the estimate

|E((z,€), (w,n))| < const.]¥((z, &), (w,n))|” "2 g W ((z, &), (w, 1))

where ¥ is defined as in (1), with the obvious modifications, while ¢,(z,¢) =
o(z) + |¢|* and A, is the diagonal of 0Q,, x 9Q,, (as IQ x {0} = 0Q,,, A imbeds
in Ay).

Let Ly(Q) be the Banach space (algebra) of all real valued Lebesgue
measurable, essentially bounded functions on Q = {p < 0}, with the norm
l9]l o = esssup,.qlg(z)|, g€ Lg (). By a result of Z. Pasternak-Winiarski (cf.
Proposition 2.3 in [16], p. 116) W(Q) is a Banach manifold modelled on LF (Q),
and AW(Q) is an open subset of W(Q). Note that the Fefferman like
asymptotic expansion of a weighted Bergman kernel is known (cf. Theorem
1 above) only for the points of the curve C:(—1,00)— W(Q), C(a)=
lp|* € AW (Q), « > —1, corresponding to the integer values of the parameter. Of
course, it is desirable to extend Theorem 1 to all ye AW (Q). As a measure of
the amount of job left unsolved we may state the following

THEOREM 2. Let Q = {9 < 0} be a domain in C". The curve C:(—1,0)
— W(Q), C(a) = |g|*, & > —1, is discontinuous and each point of C is an isolated
point.

Set
U(Q) ={ge Ly (Q) : essinf,cng(z) > 0}
(an open subset of Ly (Q)). Given pe W(Q) let @, : U(Q) — W(Q) be defined

)
by (®.9)(z) =g(2)u(z), ge UQ), zeQ, and set U(Q,u) =0,(U(RQ)). By
Proposition 2.3 in [16], p. 116, the family

{D,(4) : ue W(Q), A = U(Q), A open}

is a basis of open sets for the topology of W(Q). At this point, we may prove
Theorem 2. Given a9 > —1, C is continuous in ap if and only if for any open
subset 4 < U(Q) with 1e A4, there is d4 >0 so that |p|" ™ e A for any
l« — ag] < 4. Note that for each u: Q — [0, 00), if u e C°(Q) and ul,q = 0 then
essinfou < 0 (indeed, if essinfou > 0 then

(5) u(z) > L
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for some L>0. A priori (5) holds ae. in Q, yet {u <L} is open, hence
empty. Therefore (5) holds everywhere in Q and, for z — 0Q, it gives L <0, a
contradiction).

LemMa 2. Let a9 > —1, 6 >0 and A an open subset of U(Q) with 1€ A.
Then |9|* ™ € A if and only if o= 0.

Proof. If a> oy then (by the observation above) |p|* ™|, =0 yields
lp|* ™™ ¢ U(Q). If in turn o < oy then lim, sq|p(z)|* ™ = oo hence |p|*™™ ¢
LZ(Q), just by observing that, for each v:Q — [0,00), if ve C°(Q) and
lim,_;0v(z) = oo then esssupgv = 0.

Finally U(Q, |p|™) is an open neighborhood of |p|* yet (by Lemma 2) it
contains no other point of C.

2. Symplectomorphisms of y-Kobayashi domains

Let Q = {¢ < 0} be a domain and y € AW (Q) and admissible weight. By a
result in [17] one has the representation

2)=> $O(2)
%

for any complete orthonormal system {¢,} in L*H (Q, 7). Hence K,(z,z) >0
for any z € Q, provided that A) for each z € Q there is f € L2H(Q,y) w1th f(2)
# 0. If the weight y = (1 + h)|p|™ (with he LE(Q), ||All, < 1/2, me {1,2,...})
satisfies condition A) then it makes sense to consider the function

Pim(2) = K imyjom (2, ) Votm e,

and (by Theorem 4)
ph,m(z)
< lp(2){®(2) + Cllp(2)|*lloglg(2)]| + (1 + F(z))*]y /et

for some ® € C*(Q) so that ®(z) # 0 near 0Q. Hence p,, ,(z) — 0 as z — Q.
As the boundary behaviour of [Kl(kl) m h®](z,w), k > 1 (cf. notations in section 3)

is not known, one may not conclude that p,,(z) is a defining function for
Q. However, as a corollary of Theorem 1 one has

Kon(z,2) = ©(2)lo(2)|" "™ + B(2) loglo(z)|,

for some ®, ®e C®(Q), ®(z) #0 near IQ, hence p,, = Po,m € C*(Q) and
Vp,, # 0 on 0Q, i.e. p,, can be used as a defining function for Q (Q = {p,, > 0}).

Let Q, = {{e C":¢,({) <0} be the Siegel domain, where ¢,({) = |¢'|*~
m({;), and for each (= ({;,...,{,) one sets {' = ({s,...,¢,). Let Ky (L,2) be
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the |p,|“-Bergman kernel for L2H(Q,, |p,|*), « > —1. As Q, is unbounded and o
not necessarily an integer, neither Theorem 1 nor its proof apply, yet p,({) =
K, (¢,0)7V1%) s a4 (well defined) defining function for Q,. Indeed (cf. (1)) K,
may be explicitely computed as

2n—1+o¢cn oc
K,((,z) = ;
(¢ 2) [i(Z_l — Cl) _ 2<C/,Z,>]n+l+a

Cha=n"(a+1) - (a+n)

hence p,({) = Cg,({), for some constant C depending only on n and o.

Let Q « C" be a domain and y € AW(Q). In general g, is not definite, or
even nondegenerate. For instance, if Q is bounded and y € L'(Q) then g, is a
Kéhlerian metric on Q (cf. [3]) yet the arguments in [3] break down for the case
of an unbounded domain. We call Q a y-Kobayashi domain if (Q,y) satisfies
condition A) and additionally B) for any ze Q and any Ze T'(Q),, Z #0,
there is f € L?H(Q,y) so that f(z) =0 and Z(f) # 0 (our A)-B) correspond to
the conditions (A.1)-(A.2) in [8], pp. 271-272, hence the adopted terminology).
Here T'°(Q) is the holomorphic tangent bundle over Q. The unit ball in C”
is a 1-Kobayashi domain. The Siegel domain Q, is an (unbounded) |g,|*-
Kobayashi domain for any a > —1 (cf. Lemmae 4 and 5 in [1]). By a result in
[15], A)-B) imply that g, is a Kahlerian metric on Q, hence (Q,w,) is a
symplectic manifold.

From now on, it is understood that Q is a strictly pseudoconvex domain
satisfying all hypothesis of Theorem 1. We may state:

THEOREM 3. Let me {0,1,2,...} and Q= {9 <0} a |¢p|"-Kobayashi do-
main. Let F be a symplectomorphism of (Q,wp,), i.e. a C* diffeomorphism F :
Q — Q with F*w,, = w,,. If F is smooth up to the boundary then F : 0QQ — 0Q is
a contact transformation.

Here wy, is short for wy,». For y =1 and m = 0 Theorem 3 is the result by
A. Koranyi and H. M. Reimann quoted in the introduction. The proof is
imitative of that of Proposition 1 in [11], p. 1121. We need some notation. Let
& be the foliation of U (a one-sided neighborhood of the boundary of Q) by
level sets of p,, (so that p,!(0) =0Q). Each leaf M, =p,!(c) is a strictly
pseudoconvex CR manifold with the CR structure T ¢(M.) = [T(M.) ® C]N
T'YY(U). Let Ty o(F) be the subbundle of T(U) ® C whose portion over M, is
T1,0(M.). As Q is strictly pseudoconvex, there is a uniquely defined complex
vector field & of type (1,0) on U which is orthogonal to T ¢(#) with respect to
00p,, and for which dp,,(¢) =1 (cf. e.g. [13], p. 163). Define r: U — R by
setting r = 2(0dp,,)(&, &) so that ¢ and r are characterized by

(6) €|00py = 10py;  Opm(&) = 1.
Let 6, =i(0 — d)p,,/2 and N =2Re(¢). Then (dp,)N =2 and 6,(N)=0.
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Note that

@) 0 = i(n+1+m) (aap m _ OPm 1 5Pm)

Pm P

Set H(F) = Re{T1,o(F) ® T1,0(F)} (so that the portion of H(#) over a leaf
M, is the maximally complex, or Levi, distribution of M.). Then (by (7))

wm(X, N) =0,
for any X € H(#). On the other hand, we may write (7) as

o= n+1+ )<d7f_____dpm/\0m)

m Pn

hence (by F*w, = wp)
0 = wn((dF)X,(dF)N) = (n+ 1+ m)p,'d0,,((dF)X, (dF)N)
— (n+ 1 +m)p;2(dp,, A Om)((dF)X,(dF)N)
for any X € H(#). As F is smooth up to the boundary,
(d0n)((dF)X, (dF)N)
stays finite near 0Q. Hence, in the limit

(dp)((dF) X)0n((dF)N) — (dp,,)((dF)N)Om((dF)X)

vanishes on 0Q. If X lies in H(0Q), the maximal complex distribution of dQ as
a CR manifold, then (dF)X e T(0Q2) hence (dp,,)((dF)X)=0. Finally (dp,,)
((dF)N) # 0 (as F is a diffeomorphism and dp,, # 0 on 0Q) hence 6,,((dF)X) =
0 for any X € H(0Q). g.e.d.

Let w, be short for w, |, « > —1. Although €, is unbounded and a not
necessarily an integer, Theorem 3 remains true for a symplectomorphism F of
(Qn, wy), 1.e. if F is smooth up to 9Q, then the restriction of F to 0Q, is a contact
transformation (the proof is a verbatim transcription of the proof of Theorem 3,
where p,, is replaced by p,).

3. The effect of the analytic behaviour of weighted Bergman kernels

Let U be an open subset of a normed space 2 and let % be a topological
vector space. Together with [16], one says that a map f : U — % is analytic on
U if for any x € U there is a ball B< & of center 0 € & so that x+ B < U and

(8) f(x+h)= x)+2ak

for any h € B, where a; : % — % is a continuous k-linear function, k € {1,2,...},
and the series in (8) converges uniformly on B.
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Let HA(Q) be the vector space of all real analytic functions F: Q x Q — C
which are holomorphic with respect to the first # variables and anti-holomorphic
with respect to the last n variables. Set

IFlly = sup [|F(z,{)]
(z,{)eX?

for Fe HA(Q), X = Q. The family of seminorms
{Illx: X =Q,X compact}

makes HA(Q) into a Fréchet space. By a result of Z. Pasternak-Winiarski (cf.
Theorem 5.1 in [16], p. 131) the map U(Q) — HA(Q), g — Ky, is analytic on
U(Q) for any ye AW (Q).

THEOREM 4. Let Q = {p < 0} be a smoothly bounded strictly pseudoconvex
domain in C" so that L,(w)¢ > const.|¢|%, Ee C", for p(w) <o, 6 > 0. Then
Jor any he B(0,1/2) c L§(Q) there is E, € C*(Q x Q) so that

) Ko (zw) = ca|Vo(w)|* - det Ly(w) - ¥(z,w) """ 1 Ey(z,w)
and E, satisfies the estimate
(10) (En(z,w)| < C- {|®(z, w)| "™+ 2 l0g W (2, w)|
+ |p(2) |2 (4|2 (L - F(z) + F(w) + F(2)F(w)))

where F(z) = |¢(z)|3/2 + |¢(z)|1/2]]og|(p(z)]| and C is a constant depending only on
Qand m>1, m>n—1.

The proof of Theorem 4 relies on (2) and on the analyticity of the weighted
Bergman kernel as a map AW(Q) —» HA(Q), y— K,. Set

(K& (.. )] (2, w)
= | Ko )y} un) o)
|, Kt i)y o) i) .

: L Koy (e, tge—1 ) e (i) Ky (2, i) y (i) dpa(uage) -
for ye AW(Q), ge U(Q), h,... .l e LF(Q), k> 1. Then
K¥)(hi, ... he) € HA(Q)

(cf. Lemma 5.1 in [16], p. 129). By (2) and by (5.5) in Theorem 5.1 of [16], p.
131, it follows that (9) holds good with
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E,=E+ Z mh(k

where #*%) = (h,... h) (k components), E € C*(Q x Q — A) satisfies the estimate
in Theorem 1, and the series is uniformly convergent on B(0,1/2) ={he
LE(Q) : ||h|l, < 1/2} with respect to any seminorm |- ||, on HA(Q), with X
an arbitrary compact subset of Q. It remains that we prove the estimate
(10). Let k>3 (the cases k =1 and k =2 are looked at later on). Then (by

2)
LR [CAD

—(n+14m)

= j{cQ|V(o(u1)|2 -det Ly(uy) - ¥(w,u) +E(w,u1)}

- {calVo(u)|® - det Ly(ue) - ¥(z, ) """ + E(z, u)}
i) K ) (e ) o ) ™l ()| deonn) g
hence

[Kl(ﬁ)m'"h(k)](z’ w)
= c31)(z,w) + ca(ly(z,w) + Ii(z,w)) + Is(z,w),

where
L(z,w) = L Gj(u1, w) (JQ LK %2 (g 10 ) Hy (2, )| p ()| ™ d,u(uk))

o)™ du(uy),
for 1 <j<4 and G;, H, are given by

—(n+1+m)

|Vo(u )| -det Ly(uy) - ¥(w, u1) h(uy)

w) =
Gs(ur, w) = Ga(ur,w) = E(w, u1)h(ur)
= Hy(z,u) = |Vo(u)|* - det L, (ug) - ¥(z, ) """ h(uy.)
E(z,ux)h(uy).

5
—~
N
<
=
Il
=
N
<
z
I

By a result in [16], p. 131, we have
k-2
NEE 2RED1C, )l < A1 Ko )

where || -], is short for |- ||, ». Then we may perform the estimates

m
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5z w)] < jﬂlcjwl,w)l
1/2
k-2 - m
(252 ) o i)

1/2
- (]Q (2, ) |<o<uk>|'"du<uk>) o)™ dian)

= L |Gy (w1, w)] - K B2 - [ (2, )l ()™ dpa(an)

< A2V Hy 2, Yl L |Gj (11, W) - 11 Ko (-5 1) el @ (200) ™ dpa(a)

Yet

1Ko (-5 1) ],y < const.|p(uy)| "M/

by Lemma 2.8 in [18], p. 233. Hence
(1n) [1i(z, w)| < const.[[hll%; *| Hy(z, )|

' L |Gy (ar, W) - lp(aan)| ™12 o).
We look at the case j =1. To this end, set

p(w)|" dp(w)
for v>—1 and ae R. By Lemma 2.7 in [18], p. 232, one has
const. ifa<0
Jva(z) < llogle(z)l| if a=0
lp(z)]™*  ifa>0.

Then
Gz = [ 1) Plou)” )

2 —2(n+1+m) m
sconst-llhlloojQ [P (z, ue)| lo(ux)™ | dpa(uar)
= const.||Al|2 T ni14m(2)

so that

| H (2, )|l,, < const.||h|||p(z)] " Hm/2,

295
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Then (by (11))
\I1(z, w)| < const.||h||% ()| "1™/

- L 1G1 (1, w)] @) |12 )

—(n+1—m)/2d (u )
< const.||A||* o(z “(”+1+M)/2J lp(u1)] e
141l le(2)] . R

= const. 4| [o(2) " V2T iy 2, s 1 my 2 (W)
We may conclude that
(12) |11 (2, w)| < const.|||% g(z)| T2 g (w) |2,

Next (for j =2)
|1 Ha(z, )13 = JQ |E (2, ) | (oa) oo ()| ™ ()
< const.|[A]>, j | (2, ) |2 log| W (2, ) | oae) | ™ ().
Q

This integral may be written as a sum f{l‘P(z,uk)lzl}+f{|‘l‘(z,uk)1 <1} In the first
integral log|W(z,ux)| < |¥(z,u)| while for the second (cf. [18], p. 229)

¥ (2, ue)| = const.(|o(2)] + lp(ue)| + |z — we|® + |Im ¥ (z, ui))

> const.|p(z)|
yields |log|¥(z, ux)|| < const.|log|p(z)||. Hence

1Ha (2, )|, < const.JA]|,

- (L 1 2 1) |2 )| )

+const foglo(2) P [ [¥(2 uk>|-2<"+'">“lw<uk)i'"du(uk))
= const.||4[|2, (Jmn-2+m(z) + [10gl@(2)|*Tom,nm(2))
i.e.
1Bz, )l < const Al ()|~ 2(lo(2)] + loglo(2)])-

Then (by (11))
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|L(z,w)| < const.||a|l s o(2)| "™ (|g(2)] + [logle(2)|))
- jg 1Gaur, )] )|~ dpay)

< const.[|4]| |o(2)| "2 (Jp(2)|

lo(un)] ™" dp(uy)
I\P(W U )|n+l+m

+ lloglp()]) L

= const.||h]| % |p(2)| "2 (p(z) + [1ogl@(2) )T (nr1-m)y2, (ns1 42 (W)

ie.
(13) |z, W) < const. Al o(2)] " 2 p(w) TR (2).
Next (as H; = H3)

|I3(z, w)| < const. ||| |p(z)| ("1 )/
' JQ [E(w,up)] - lo(un)| "' dpa(un)
= ConSt”h“fo|(P(Z)|_(n+l+m)/2J [ (w, uy )|~ +1/2
Q

Jlog| ¥ (w, u)|| - ()|~ dp(uy )

< const.||h|% [p(z)| T2

' {L [ (w, )|~ ()| (g

+ const.[log|p(w)|| j [ (w, 1) |2 o gy )2 dﬂ(ul)}

= const.||4]|% |p(z)|" "+

AT nr1-m) /2, (i—24m) j2(W) + [10g|@(W) [T _ (- 1-m) 2, (n4m)2(W) }
< const.||h|% p(z)| "+
Alpw)[7 "2 4 floglp(w)]| - [p(w)] /2
i.e.
(14) I3(z,w)| < const. ||| p(z)| "2 g (w) | E ().
Finally (as H, = H4 and G3 = Gy)

(15 |a(z, w)| < const.|JAl|% |p(z)| "2 p(w)| TR E (2)F (w).
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The estimates (12)—(15) lead to

k —\n
(16) |[K1(,[)¢|’"h(k)](z, W)l < COI‘lSt.Hh“]:OW(zN (n+1+m)/2

Jp(w)| "1 4 F(2) + F(w) + F(2)F(w)).

To deal with K

Llgm We firstly note that

[K(l) V) (z,w) = cAJi(z,w) + ca(J2(z, w) + J3(z, w)) + Ja(z,w)

Lg|™
where
Ji(z,w) = jg V(1) |*|det Ly (ur)| ¥ (z, up) O+
F0u) " b)) dpn)
Iaew) = | Votu) - ToA LT - Bz )
F0w,u) k() o)™ dp(un)
J3(z,w) = PQ V() - det Ly(ur) - W(z, )"+
- E(w,un)h(ur)|p()|™ dps(mr)
Tatew) = | B, EGe () ()| dn).
Then
[J1(z, w)]
< const il | 190, u) " 0n, ) ()| )
? 1/2
< const ., - ([ ¥zl o) " )
1/2
([ om a2 o) dutan)
= const. ||l o Ion, s 14m(2) 2o s tm(w) /2
1.€.
(17) [1(z, w)| < comst.[|h]] ,|p(2)| "1+ 2 | p(w)| T2,

Next



BOUNDARY BEHAVIOUR 299
|T2(z, w)|

< const.|| ]|, jQ E(z,)] - ¥ (w, u)] ™ ()| ™ ()
) 12
< const il |15z, ) Plotun)|” dutun)

1/2
(] rom a2 o) dutan)
Q

= ConSt'“h”oo : ”E(Za ')”me,n+1+m(W)]/2
< const.||h||, - [|E(z, ), l0(w)| /2,
On the other hand
E(z,)]

= const. L (2, 1) |2 Log W (2,0 ||| ()
—2(n+14+m)+3 m
< const.(JQ | (z,u1)| lo(u)|™ du(uy)

+lloglp(a)* | 1(eym) 0 o) d#(un)

= const.(Jy, n-24m(2) + [108|0(2) | 2T nim(2))
< const.|p(z)] " (Jp(2)| + [loglp(2)I|)
1.€.
IE(z, ) < lo2)[" " 2F (2),
We conclude that

(18) [2(z, w)| < const.[|A]] o [o(z)| "2 g (w) |2 E(2).
Similarly

(19) [3(z,w)| < const.||h] o [o(2)| "2 p(w) |72 F ().
Finally

. [a(z,w)| < const.||A]l, [ E(z; )l, - 1E(w, )
1.€.

(20)  Wa(z, )| < const.[hll , o(2)] =" 2 lp(w) | (2)F (w).
By taking into account the estimates (17)—(20) it follows that (16) holds good for
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k=1 as well. To deal with K(z){p h? one firstly uses the Schwarz inequality
and Lemma 2.8 in [18], p. 233, so that to obtain

Kb D) (2, )]
< const.[|A]|2 |p(z)| "+ JQ | Ko (a1, )] - l0(u)] ™72 dpa(uy ).
On the other hand

j Kot w)] - () "2 ()

Sconst.<J | (w, ul)l—(n+1+m)I(p(ul)|—(n+l—m)/2dﬂ(ul)
Q

+ j [ (w, up) |~ og | (w, uy ) || - |p(uy )|~ du(u.))
Q

= const.(J_(ui1-m)/2, (n+14m)/2(W) + T (s 1-m) /2, (n—24m) /2 (W)
+ loglo(W) - (n+1-m) /2, (r+m)/2(W))
< const.(l(p(w)r( + lp(w)|” (n=2+m)/2

+ [logle(w)|| - lp(w)|~"*™/2) = const.|p(w)|~ "2 (1 4 F(w))

hence we may conclude that (16) holds for k =2 as well. At this point (16)
furnishes

n+1+m)/2

;| (K nh®)(z, )|
1 —(n+1+m)/ (n+14+m)/
< ConSt-m‘ lp(2)| =2 o (w)| - 2
(1 4+ F(z) + F(w) + F(z)F(w))

which, together with the estimate in Theorem 1, yields (10).

4. The complex dilatation of a symplectomorphism and the Beltrami
equations

Let Q = C" be a y-Kobayashi domain, for some y e AW (Q). Let F be a
symplectomorphism of (Q,w,) in itself. We have

LEMMA 3. For any zeQ and any ZeT"°(Q)
(d.F)Z ¢ T"*(Q)p,

Z #0, one has

zZ
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The proof is by contradiction. Assume that (d.F)Z € T"%(Q)g,, for some Z e

T'(Q),, Z#0, and some zeQ. As F is a diffeomorphism (d,F)Z # 0.
Hence

0 < [(d:F)Z|)* = g,,r(((d:F)Z, (d:F)Z)
= —io,:(Z,Z) = =) Z|I%,

a contradiction.
Let T"°(Q), consist of all Ze T(Q) ® C with (dF)Z e T'°(Q).

LemMa 4. For any symplectomorphism F of (Q,w,) there is a C-antilinear
bundle map dil(F): TH%(Q) — TH%(Q) so that

TQ), ={Z - dil(F)Z: Ze T"°(Q)}.
To prove Lemma 4, let mp; : T(Q) ® C — T*!(Q) be the natural projection.
Then
T'°(Q), = Ker(ng,1 o (dF)).

Let (z!,...,z") be the natural complex coordinates on C”. Set
p O gy _OF
k™ ozk Tk pzk?

etc.. Then det(F]-’?) # 0 everywhere on Q. Indeed, if det(F}-’; (20)) = 0 at some zg
€ Q then ZkFI%(ZO)C—k= 0,1<j<n, for some ({!,...,(") e C"—{0}. Set Z=
>, 4i(0/027),, e TH(Q),. Then Z #0 and
- 0
@2 = TR (= ) T,

1,k

a contradiction (by Lemma 3) Let dil(F): T'%(Q) — T"%Q) be given by
dil(F)(0/0z') = Y, dil(F ) 6/62 (followed by C-antilinear extension) where

(21) Z dil(F)*F{.

Finally, note that d/0z/ — dil(F)d/dz/ € Ker(m, 1 o (dF)). q.e.d.
The bundle map dil(F) is referred to as the complex dilatation (of the
symplectomorphism F).

PROPOSITION 1. Let F be a symplectomorphism of (Q,w,) and dil(F) its
complex dilatation. Then

w,(Z, SE)W) + w,@F)Z, W) = 0,
for any Z, W e TH0(Q). Also, dil(F) =0 if and only if F is holomorphic.
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Indeed, if Z € T"°(Q) then (dF)(Z — dil(F)Z) € T"°(Q). Therefore, as o,
vanishes on complex vector of the same type,

0 = w,((dF)(Z — dil(F)Z), (dF)(W — dil(F)W))
= 0,(Z - dI(F)Z, W — GIF)W) = —,(Z, d1(F) W) — w,(d(F)Z, W)

for any Z, W e TH0(Q).
By (21), each component F/ of the symplectomorphism F satisfies the first
order PDE (with variable coefﬁcients)

of
22) 621 Z /k ozk

where dj—." = dil(F )}k. We refer to (22) as the Beltrami equations (cf. e.g.
[20]). On the other hand, with any contact transformation F : M — N between
two strictly pseudoconvex CR manifolds M and N one may associate (cf. [10],
p. 61) a complex dilatation u: T} 0(M)— T 0(M) and whenever M = H,_;
(the Heisenberg group) and N is a real hypersurface in C” (carrying the standard
CR structure induced from the complex structure of C”), the components F’ of
F satisfy the PDE

(23) Lif = Zu Lgf

where Lz = 9/0z* — 1z°‘6/6t are the Lewy operators (cf. e.g. [5], p. 435-436) on
H, |, and uL, = Z/} U L/,v We refer to (23) as the tangential Beltrami equations.

Consider the Siegel domain Q, = {p, < 0} and let F = (F!,...,F") be a
symplectomorphism of (Q,,w,) in itself. Let &, be the foliation of C” by level
sets of ¢,. If F is smooth up to 0Q, then x (the complex dilatation of F)
restricted to T ¢(%,) converges to the complex dilatation of the boundary
contact transformation (the proof is a word by word repetition of the proof
of Proposition 2 in [11], p. 1122). Also, if ¢: H,_; — 0Q, is the CR iso-
morphism ¢(z,¢) = (¢ + i|z]%, z), then each F’ o ¢ satisfies the tangential Beltrami
equations (23) (this follows from the remark at the end of section 2 and by a
result in [10], p. 62).

Let d" be smooth functions defined on some neighborhood of Q,. The
complex vector fields 0/af — > djka/ack span a rank n complex vector sub-
bundle B< T(Q,) ® C. For the Siegel domain Q,, the vector field ¢ (de-
termined by (6)) is given by & = 2id/0(". ! The CR isomorphism ¢ : H,_; ~ 0Q,
maps the Lewy operators L; into Z; = /3" + (*E, 2 <o <n. We establish the
following

PROPOSITION 2. Let D be an open neighborhood of Q, and u: T"°(D) —
T"°(D) a fibrewise C-antilinear bundle morphism which maps Ti o(0Q,) into
itself. Let By < T(0Q,)® C be the rank n—1 complex subbundle spanned
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by Z; —,ugZﬂ, 2<a<n, where yg are given by u(Zy) = ,ugZﬁ. Let d]-.k
be given by p(0/00) = cg..ka/ac" and set h({) = ZiEﬂdIﬂE/; — dil — 1. Then

= [T(6Q,) ® C]NB

on 0Q,N{C:h({) #0}. In particular, the trace on 0Q, of any solution f €
C*(Q,) of the Beltrami equations (22) satisfies the tangential Beltrami equations

Zif = u Z,gf on the open set {{ € dQ, : h({) # 0}.

Indeed, as u(T1,0(0Q,)) < T1,0(0),
i =df - 2it,dl,
2illty = d} - 2i¢,dl,
where (, =(* Consequently Z = a/(8/0C —41;."6/64“") is tangent to 0Q,N
{h # 0} if and only if a' = —2i{,a% ie. Z e T®(By). q.e.d.

PROPOSITION 3. Let F : Q, — Q, be a C*® diffeomorphism, smooth up to the
boundary, each of whose components F’ satisfies the PDE
ZiF = yf Z5F)

in Q,, for some C*® functions ,u :Q, — C. If Fis a foliated map, i.e. it preserves
the foliation F,, then for any o > —1 there is f, € C*(Q,), f, # 0 everywhere, so
that

F*oy = f,0,, modb,, dp,.
Proof. Set Vy,= Z,(F')0/0{ and W, = Zz(F’)0/dl’. As
(dF)T(Fn) = T(Fn),
Zy — Z eT(#,)®C,

o W, = /1& Vg,
(where ) = /tg ) one has

(dF)(Za —~ 1Z5) = Vi — Wi W € T1 o(F2).

Note that

H(#,) ® C = Re{B, ® By}
and

(F*0,)By < 0u(T1,0(Fn)) =0
hence

F*0, = ab, + bdp,,
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for some C*® functions a,b:Q,— R. Here 0, = (i/2)(0—0)p,. Also
p,o F = Jp, for some Ae C*(Q,), A >0 everywhere. Next, one may use

Pa p?
to conclude that

. a n+1+a
F wa:zwa+T

Finally a # 0 everywhere (for if a(zp) =0 at some zj € Q, then
0a,F(zo)(dzoF) = b(ZO) dzopw
ie. (dF)T(Fn), < H(Fn)p,) a contradiction).

((da — adlogl) A 6, + (db — bdlogl) A dp,).

o
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