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ON BOUNDARY BEHAVIOUR OF SYMPLECTOMORPHISMS

ELISABETTA BARLETTA AND SORIN DRAGOMIR

Let Ω c C" be a strictly pseudoconvex domain, γ an admissible weight, and
Kγ(z, C) the reproducing (or y-Bergman) kernel for L2//(Ω,y), the space of square
integrable functions, with respect to the measure γdμ, which are holomorphic in
Ω (dμ is the Lebesgue measure in R2n), cf. e.g. Z. Pasternak-Winiarski [17].
Consider the complex tensor field:

and the corresponding real tangent (0,2)-tensor field gγ given by:

gγ = R e { ^ | ^ Ω ) x ^ Ω ) } ,

where χ(Ω) is the C°°(Ω)-module of all real tangent vector fields on Ω. Under
suitable conditions (cf. section 2) gγ is a Kahlerian metric on Ω, hence ωγ =
-idδ logKγ(z,z) is a symplectic structure (the Kahler 2-form of gγ). One of the
problems we take up in the present paper may be stated as follows. Let F :
Ω —• Ω be a symplectomorphism of (Ω,ωy) in itself, smooth up to the
boundary. Does F : 3Ω —> 3Ω preserve the contact structure of the boundary?

Our interest may be motivated as follows. If F : Ω —> Ω is a biholo-
morphism then, by a celebrated result of C. Fefferman (cf. Theorem 1 in [4], p. 2)
F is smooth up to the boundary, hence F : 3Ω —> 3Ω is a CR diffeomorphism,
and in particular a contact transformation. Also biholomorphisms are known to
be isometries of the Bergman metric g\ (cf. e.g. [7], p. 370) hence symplecto-
morphisms of (Ω,ωi). On the other hand, one may weaken the assumption on
F by requesting only that F be a C 0 0 diffeomorphism and F*a>\ =ω\. Then,
by a result of A. Koranyi and H. M. Reimann [11], if F is smooth up to the
boundary then F : 3Ω —• dΩ is a contact transformation.

The main ingredient in the proof of A. Koranyi and H. M. Reimann's result is
the fact that, when γ = 1, a certain negative power of the Bergman kernel (p(z) =
K\(z,z)~ι^n+i>}) is a defining function of Ω (allowing one to relate the symplectic
structure of Ω to the contact structure of its boundary). In turn, this is a
consequence of C. Fefferman's asymptotic expansion of K\(z, ζ) (cf. Theorem 2 in
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[4], p. 9). Therefore, should one extend A. Koranyi and H. M. Reimann's ideas
to weighted Bergman kernels and related structures, the first obstacle is whether a
similar asymptotic expansion is known for Kγ(z,ζ). Indeed, this is available
when Ω = {φ < 0} is a smoothly bounded strictly pseudoconvex domain and γ =
\φ\m, m e {0,1,2,...}, by a result of M. M. Peloso [18] (cf. Theorem 1). Cf. also
[19] for a study of the boundary behaviour of Kγ(z,ζ) when γ = \φ\a, α > - 1 (not
necessarily an integer). However, each point of the curve (χ\-+\φ\a (in the
Banach manifold W{Ω) of all weights on Ω) is isolated (cf. Theorem 2) hence our
present knowledge of the asymptoyic properties of Kγ(z,ζ), as γ runs over W(Ω),
is rather limited.

We apply Theorem 1 to study the boundary behaviour of a symplecto-
morphism of ( Ω , ί θ | ^ ) , m e { l , 2 , . . . } (cf. Theorem 3).

Using the analytic behaviour of Kγ(z, ζ) with respect to γ (cf. [16], p. 131) we
prove an analogue of Fefferman's asymptotic formula for more general weights of
the form: an essentially bounded function times a nonnegative integer power of
the defining function (cf. Theorem 4).

In section 4 we show that the components of any symplectomorphism of a γ-
Kobayashi domain Ω satisfy a Beltrami system (in the sense of [20]). If Ω is the
Siegel domain, the tangential equations induced (on dΩ) by this system turn out
to be (cf. Proposition 2) the equations introduced in [10] in connection with the
study of quasiconformal maps of strictly pseudoconvex CR manifolds (cf. also [9],
[12]).

1. The Forelli-Rudin-Ligocka-Peloso asymptotic expansion formula

Let Ω <= Cn be an open set and W(Ω) the set of all weights on Ω (i.e. γ e
W(Ω) is a Lebesgue measurable function γ : Ω —» (0, oo)). For each γ e W(Ω)
let L2(Ω,γ) be the Hubert space of all functions / : Ω -> C for which

1/2

< OO.

Let L2H(Ω,y) be the set of all functions in L2(Ω, γ) which are holomorphic
in Ω. A weight γe W(Ω) is admissible (cf. [17]) if 1) L2H(Ω,γ) is a closed
subspace of L2(Ω,y), and 2) for any z e Ω the evaluation functional δz :
L2H(Ω,γ) —> C, δz(f) = / ( z ) , is continuous. The set of all admissible weights
on Ω is denoted by AW(Ω). If γeAW(Ω) then, by the Riesz representation
theorem, there is a unique function Kγ(z, •) (called the weighted Bergman kernel
of Ω, of weight γ, or the γ-Bergman kernel of Ω) so that Kγ(z, •) e L2H(Ω, γ) and

/ ( z ) = f(ζ)Kγ(z,ζ)γ(ζ)dμ(ζ),
JΩ

for any / 6 L2H(Ω,γ), z e Ω. For γ = 1 this is the ordinary Bergman kernel of
Ω (cf. e.g. [2]).
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Let Ω be a smoothly bounded strictly pseudoconvex domain Ω = {z e Cn :
φ(z) < 0} where φ is such that the Levi form Lφ satisfies

Lφ{w)ξ>Cλ\ξ\\ ξsC\

for φ(w) < δo, ί?o > 0, and C\ depending only on Ω. Set

(1) Ψ ( C , z ) = ( F ( ζ , z ) - φ(z))χ(\ζ - z\) + ( 1 - χ(\ζ - z\))\ζ - z \ 2

where

and χ is a C 0 0 cut-off function of the real variable t, with /(ί) = 1 for |;| < εo/2
and χ(t) =0 for \t\ > 3εo/4. We may state the following

THEOREM 1 (Forelli-Rudin-Ligocka-Peloso1). For any nonnegatiυe integer
/we {0,1,2,...}, \φ\meAW(Ω). Let Km(ζ,z) be the \φ\m-Bergman kernel for
L2H(Ω.,\φ\m). Then

(2) Km(ζ,z) = cΩ\Vφ(z)\2 detL,(z) Ψ(ζ,z)~{n+ι+m) + £(C,z)

where E e CG0(Ω x Ω — Δ), Δ is the diagonal of <3Ω x δQ, and E satisfies the
estimate

\E{U)\ < c'Ω\Ψ(ζ,z)\-^+m)+ι'2 • |log|Ψ(C,z)||.

This extends C. Fefferman's asymptotic expansion formula for the Bergman
kernel of a strictly pseudoconvex domain (cf. [4] for m = 0) to the case of \φ\m-
Bergman kernels, m e {1,2,...} (cf. Lemma 2.2 in [18], p. 229). Part of the
proof (relating Km(ζ,z) to the ordinary Bergman kernel of the domain
{(z,ξ) eCn xCm : φ(z) + \ξ\2 < 0}) actually works for an arbitrary (admissible)
weight. Indeed, one has the following

LEMMA 1. Let me {1,2,...} and γ e AW(Ω). Let KΩm((z,ξ),(w,η)) be the

g

(3)

m

Bergman kernel of the domain Ωm = {(z,f) eΩxCm : \ξ\2m < γ(z)}. Then

Proof For simplicity set K(z, w) = Kam ((z, 0), (w, 0)). Also, for fixed z,we
Ω, we set 1/(17) = A^((z,0),(w, 17)). As K&m is anti-holomorphic in η, u is

JWe learned Theorem 1 from [18]. However, M. M. Peloso claims Theorem 1 is implicit in [14],

while E. Ligocka employs an older idea by F Forelli and W. Rudin [6].
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harmonic. Hence

u(0)=-^-y(w)-l\ u{η)dμ{η),

CO2m-\ J B{0,γ{w)ι/{2m))

where ωs is the 'area' of the sphere Ss cz Rs+ι ((w,η) eΩm yields η e

B(0,γ(w)ι/{2m))). Therefore

(4) K(z,w)γ(w) = - ^ - f
J\η\2m<γ(w)

For each f e L2H(Ω1γ) set /(z, ί ) = /(z). Clearly/ is holomorphic in Ω w .
Also

2m j Ω " W I M / r w 2m

i.e. / e L 2 ( Ω m ) . As A^m reproduces the L2 holomorphic functions on Ωm> one
has (by (4))

/(z)=/(z,O) = |

f ([ \
— / (w) ! Knm((z,0), (w,η))dμ(η) I dμ{w)

JΩ \hr!\2<y(w) I

^f f(w)K(z,w)γ(w)dμ(w)1
JΩ

i.e. (cύ2m-\/2rn)K(z,w) reproduces the functions in L2H(Ω,,γ). As u is anti-
holomorphic, \u\2 is subharmonic. Hence

|w(o)|2 < L___J
or

l^z,^)!2^-^-^)"1 ί
ω2m-\ J|^|2<K^1/(2w)

Finally, we may integrate against w e Ω so that to get

f \K(z,w)\2γ(w)dμ(w)
JΩ

2 m ( \KΆm{{z,0),{W,η))\2dμ{w,η) < oo
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i.e. K(z, •) e I 2 ( Ω , γ). Then (3) follows from the uniqueness statement in the
Riesz representation theorem.

When y = | ^ | m , m e { l , 2 , . . . } , the domain Ωm is strictly pseudoconvex and
(2) follows from Lemma 1 and from Fefferman's asymptotic expansion formula
for KΩm, i.e.

= comt\Vφι(w,η)\ detL f l ( W j ι/) Ψ((z,f), (w,η)

for some 2? G C°°(Ωm x Ωm - Δi) satisfying the estimate

where Ψ is defined as in (1), with the obvious modifications, while φλ(z,ξ) —
φ(z) + \ξ\2 and Δi is the diagonal of dΩm x dΩm (as <3Ω x {0} c <3Ωm, Δ imbeds
in Δi).

Let Lχ(Ω) be the Banach space (algebra) of all real valued Lebesgue
measurable, essentially bounded functions on Ω = {φ < 0}, with the norm
ll̂ lloo = e s s s uPzεΩl#(z)l> ΘELR(Ω) β y a result of Z. Pasternak-Winiarski (cf.
Proposition 2.3 in [16], p. 116) W{Ω) is a Banach manifold modelled on Lf(Ω),
and AW(Ω) is an open subset of W(Ω). Note that the Fefferman like
asymptotic expansion of a weighted Bergman kernel is known (cf. Theorem
1 above) only for the points of the curve C: ( - 1 , oo) —> W(Ω)} C(μ) =
1̂ 1α G ;4 W(Ω), α > - 1 , corresponding to the integer values of the parameter. Of
course, it is desirable to extend Theorem 1 to all yG^4W(Ω). As a measure of
the amount of job left unsolved we may state the following

THEOREM 2. Let Ω = {φ < 0} be a domain in Cn. The curve C : ( - 1 , oo)
—> W(Ω), C(α) = |#?|α, α > —1, is discontinuous and each point of C is an isolated
point.

Set

U(Ω) = {ge Lf(Ω) : essinfzeΩ#(z) > 0}

(an open subset of L£(Ω)). Given μ e W{Ω) let Φ^ : U(Ω) -+ W(Ω) be defined
by (Φtf)(z) = g(z)μ(z), g e U(Ω), zeΩ, and set U(Ω,μ) = Φμ(U(Ω)). By
Proposition 2.3 in [16], p. 116, the family

{Φμ(A) : μ e W(Ω), A <Ξ t/(Ω), A open}

is a basis of open sets for the topology of W(Ω). At this point, we may prove
Theorem 2. Given αo > - 1 , C is continuous in αo if and only if for any open
subset A^U(Ω) with I e A, there is δA > 0 so that J^|α~α° e A for any
|α - αo | < δA. Note that for each u : Ω -> [0, oo), if w e C°(Ω) and w|aΩ = 0 then

w < 0 (indeed, if essinf^w > 0 then

(5) u(z) > L
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for some L > 0. A priori (5) holds a.e. in Ω, yet {u < L} is open, hence
empty. Therefore (5) holds everywhere in Ω and, for z -» dΩ, it gives L < 0, a
contradiction).

LEMMA 2. Let αo > - 1 , δ > 0 am/ 4̂ aw opew swfoe/ o/ ί/(Ω) with \ e A.
Then M a ~ a o e A if and only if a = a0.

Proof If a > ao then (by the observation above) |^|α~α°|δΩ = 0 yields
H α ~ α o <£ t/(Ω). If in turn α < α0 then limz^^Ω |^(z)|α~α° = oo hence \φ\a~*° φ
L%(Ω), just by observing that, for each v: Ω -» [0, oo), if veC°(Ω) and

= oo then esssupΩz; = oo.

Finally ί/(Ω, |^|α°) is an open neighborhood of |̂ |α° yet (by Lemma 2) it
contains no other point of C.

2. Symplectomorphisms of y-Kobayashi domains

Let Ω = {φ < 0} be a domain and 7 e ^ W(Ω) and admissible weight. By a
result in [17] one has the representation

for any complete orthonormal system {φk} in L2H(Ω,γ). Hence A^y(z,z)>0
for any z G Ω, provided that A) for each z e Ω there is / e L2H(Ω, γ) with /(z)
* 0. If the weight γ = (1 + λ ) M m (with A e L£(Ω), H * ^ < 1/2, m e {1,2,...})

satisfies condition A) then it makes sense to consider the function

PH.m(z) = K{ι+h)lφΓ(z,z)-ι/{"+1+m\ z e Ω ,

and (by Theorem 4)

Ph,m(z)

< \φ(z)\{Φ(z)

for some Φ e C°°(Ω) so that Φ(z) Φ 0 near <3Ω. Hence ρKm{z) -> 0 as z -> 3Ω.

As the boundary behaviour of [Jf^? ,mA^](z, w), /: > 1 (cf. notations in section 3)

is not known, one may not conclude that p^m(z) is a defining function for

Ω. However, as a corollary of Theorem 1 one has

Km(z,z) = Φ(z)\φ(z)\-{n+l+m) +Φ(z)log\φ(z)\,

for some Φ, Φ G C ° ° ( Ω ) , Φ(Z) Φ 0 near <3Ω, hence pm = /?0?m e C0 0(Ω) and
V/?w / 0 on 3Ω, i.e. /?w can be used as a defining function for Ω (Ω = {pm > 0}).

Let Ωn = {ζ e Cn : φn(ζ) < 0} be the Siegel domain, where φn(ζ) = \ζ'\2-
Im(Ci), and for each ζ = (ζx,..., ζn) one sets ζ' = (C 2 , . . . , C«) Let A«(C, z) be
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the |^Jα-Bergman kernel for L2H(Ωn, \φn\
a), α > — 1. As Ωn is unbounded and α

not necessarily an integer, neither Theorem 1 nor its proof apply, yet ρa(ζ) =
^ α (C,C)" 1 / ( w + 1 + α ) is a (well denned) denning function for Ωn. Indeed (cf. [1]) Ka

may be explicitely computed as

hence pa(ζ) — Cφn(ζ), for some constant C depending only on n and α.
Let Ω c C" be a domain and y e AW{Ω). In general #y is not definite, or

even nondegenerate. For instance, if Ω is bounded and γeLι(Ω) then gγ is a
Kahlerian metric on Ω (cf. [3]) yet the arguments in [3] break down for the case
of an unbounded domain. We call Ω a y-Kobayashi domain if (Ω, γ) satisfies
condition A) and additionally B) for any zeΩ and any Z e Γ 1 0 ( Ω ) 2 , Z Φ 0,
there is / e L2H(Ω, γ) so that f(z) = 0 and Z ( / ) Φ 0 (our A)-B) correspond to
the conditions (A.1)-(A.2) in [8], pp. 271-272, hence the adopted terminology).
Here Γ 1 0 (Ω) is the holomorphic tangent bundle over Ω. The unit ball in Cn

is a 1-Kobayashi domain. The Siegel domain Ωn is an (unbounded) \φn\
a-

Kobayashi domain for any α > - 1 (cf. Lemmae 4 and 5 in [1]). By a result in
[15], A)-B) imply that gγ is a Kahlerian metric on Ω, hence (Ω,ωy) is a
symplectic manifold.

From now on, it is understood that Ω is a strictly pseudoconvex domain
satisfying all hypothesis of Theorem 1. We may state:

THEOREM 3. Let m e {0,1,2,...} and Ω = {φ < 0} a \φ\m-Kobayashi do-
main. Let F be a symplectomorphism of (Ω,ωm), i.e. a C°° diffeomorphism F :
Ω —• Ω with F*ωm = ωm. IfF is smooth up to the boundary then F : <9Ω —» dΩ is
a contact transformation.

Here ωm is short for ω\φ^. For γ — 1 and m = 0 Theorem 3 is the result by
A. Koranyi and H. M. Reimann quoted in the introduction. The proof is
imitative of that of Proposition 1 in [11], p. 1121. We need some notation. Let
3F be the foliation of U (a one-sided neighborhood of the boundary of Ω) by
level sets of ρm (so that ρ~^{0) = dΩ). Each leaf Mc=p~m

ι(c) is a strictly
pseudoconvex CR manifold with the CR structure 7\ 0 (M c ) = [T{MC) ®C]Π
Tι>°(U). Let T\${&) be the subbundle of T(U)®C whose portion over Mc is
T\,o(Mc). As Ω is strictly pseudoconvex, there is a uniquely defined complex
vector field ξ of type (1,0) on U which is orthogonal to T\ o ( ^ ) with respect to
ddpm and for which dpm(ξ) = 1 (cf. e.g. [13], p. 163). Define r.U^R by
setting r— 2(ddpm)(ξ,ξ) so that ξ and r are characterized by

(6) ξ\ δdpm - rδpm, dpm (ξ) = 1.

Let θm = i(d - d)pm/2 and N = 2Re(<J). Then (dpm)N = 2 and θm(N) = 0.
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Note that

Set H(^) = RQ{T^0(^) φ Tιo{^)} (so that the portion of H(^) over a leaf
Mc is the maximally complex, or Levi, distribution of Mc). Then (by (7))

ωm(X,N) = 0,

for any X eH(3F). On the other hand, we may write (7) as

fdθm dpm A # m

N

hence (by F*ω m = ωm)

0 = ωm((</F)JT, (dF)N) = (Λ + 1 + rn)pm

ιdθm((dF)X, (dF)N)

- (n+ 1 + m K 2 ( ψ m Λ βw)((dF)JΓ, (dF)tf)

for any l e i / f f ) . As F is smooth up to the boundary,

(^)((^)JM^F)Λ0
stays finite near dΩ. Hence, in the limit

(dPm)((dF)X)θm((dF)N) - (dpJ((dF)N)θm((dF)X)

vanishes on dΩ. If X lies in H(dΩ), the maximal complex distribution of dΩ as
a CR manifold, then (dF)X e T{dΩ) hence (dpm)((dF)X) = 0. Finally (dpm)
((dF)N) φ 0 (as F is a diffeomorphism and <//?m ^ 0 on 3Ω) hence θm((dF)X) =
0 for any XeH(dΩ). q.e.d.

Let ωα be short for ω^Λ|«, α > — 1. Although Ωn is unbounded and α not
necessarily an integer, Theorem 3 remains true for a symplectomorphism F of
(ΩΛ,ωα), i.e. if F i s smooth up to dΩn then the restriction of F t o dΩn is a contact
transformation (the proof is a verbatim transcription of the proof of Theorem 3,
where pm is replaced by /?α).

3. The effect of the analytic behaviour of weighted Bergman kernels

Let U be an open subset of a normed space 9£ and let <& be a topological
vector space. Together with [16], one says that a map / : U —• <9f is analytic on
C/ if for any x e J7 there is a ball B a % oϊ center 0 e ΘC so that % + ^ <= ί/ and

(8) /(

for any he B, where ^ : 3Ck —»> ^ is a continuous /:-linear function, A: e {1,2,...},
and the series in (8) converges uniformly on B.
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Let HA(Ω) be the vector space of all real analytic functions F Ω x Ω ^ C
which are holomorphic with respect to the first n variables and anti-holomorphic
with respect to the last n variables. Set

= sup \F{z,ζ)\

for F e HA(Ω), X c Ω. The family of seminorms

{|| \\x : X c Ω,X compact}

makes HA(Ω) into a Frechet space. By a result of Z. Pasternak-Winiarski (cf.
Theorem 5.1 in [16], p. 131) the map E/(Ω) -• HA(Ω), g ι-> Kgγ, is analytic on
U(Ω) for any yeAW(Ω).

THEOREM 4. Let Ω = {φ < 0} be a smoothly bounded strictly pseudoconvex
domain in Cn so that Lφ(w)ξ > const.|ί|2, ξ e Cn, for φ(w) < δ0, So > 0. Then
for any h e B(0,1/2) c L^(Ω) there is Eh eC^iΩx Ω) so that

(9) K{ι+h)wr(z, w) = cΩ\Vφ(w)\2 d e t L » Ψ(z, w)- ( r t + 1 + m ) + Eh(z, w)

and Eh satisfies the estimate

(10) (Eh(z,w)\ < C { |Ψ(z,w)r ( w + 1 + m ) + 1 / 2 | log |Ψ(z,w)| |

4- \φ(z)\-{n+l+m)/2\φ(w)\-{n+l+m)/2(l + F{z) + F(w) + F(z)

F(z) = |^(z)|3^2 + |^(z)|^ 2 | log|^(z)| | and C is a constant depending only on
Ω and m > 1, m > n - 1.

The proof of Theorem 4 relies on (2) and on the analyticity of the weighted
Bergman kernel as a map AW(Ω) -> HA{Ω), γ h-> AΓy. Set

= Kgγ(uuw)hι(uι)γ(uι)dμ(uι)
JΩ

J Ω

J Ω
 gγ

for 7 G ^ ) ^ ( Ω ) 5 fife t/(Ω), hu... ,hk e L%(Ω), k>\. Then

(cf. Lemma 5.1 in [16], p. 129). By (2) and by (5.5) in Theorem 5.1 of [16], p.
131, it follows that (9) holds good with



2 9 4 ELISABETTA BARLETTA AND SORIN DRAGOMIR

where h^ = (A,..., A) (k components), E e C°°(Ω x Ω - Δ) satisfies the estimate
in Theorem 1, and the series is uniformly convergent on 2?(0,1/2) = {A e
L%(Ω) : ||A||^ < 1/2} with respect to any seminorm || | |^ on HA(Ω), with X
an arbitrary compact subset of Ω. It remains that we prove the estimate
(10). Let k > 3 (the cases k — 1 and k = 2 are looked at later on). Then (by
(2))

= l{ca\^φ(uι)\2 detLf(uι) }Ψ{w,uι) ("+λ+m) + E{w,ux)}

• {cίϊ\Vφ(uk)\2 • detLφ(uk) • ψ(z,w J t)~ ("+ 1 + l" ) + E(z,uk)}

• h{u\)h{uk)[Kλ Γ,m/!^~2'](MA:,u\)\φ{u\)\m\φ{uk)\mdμ(u\)dμ{uk)

hence

= cjjx (z, w) + cΩ(/2(z, w) + 73(z, w)) + 74(z, w),

where

^{uk,u,)Hj{z,uk)\φ{uk)\m dμ{uk]

•\φ(ux)\mdμ{uλ),

for 1 < j < 4 and G,, H} are given by

= |V^(Mi)|2 det^(M 1 ) Ψ(w,Mi)" ( " + 1 + m ) %i)

z , ^ ) = H3(z,uk) = \Vφ(uk)\2 • dctLφ(uk) • Ψ(z,uk)-{n+ι+m)h(uk)

H2(z, uk) = H4(z, uk) = E(z, uk)h{uk).

By a result in [16], p. 131, we have

where || | |m is short for || ||, .«. Then we may perform the estimates
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\Ij(z,w)\< f \Gj(uuW)\
JΩ

V2

(ja\Hj(z,uk)\2 \φ{uk)\m dμ{uk)\ \φ(u,)\m dμ{ux)

[
JΩ

Yet

by Lemma 2.8 in [18], p. 233. Hence

(11) | / y ( z , w ) | t 2

[ j
JΩ

We look at the case j = 1. To this end, set

\φ{w)\vdμ{w)

Jf!)sι\Ψ(z,w)\"+ι+v+a

for v > -1 and aeR. By Lemma 2.7 in [18], p. 232, one has

( const. if a < 0

Then

Z , . ) ! ! ^ f |Jϊi(z,Mjk)
JΩ

£const.||*|β f |Ψ(z,t/
JΩ

= const. |

so that
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Then (by (11))

ux)f \Gx{uuw)\\φ{ux)\-
JΩ

00
 JΩ |Ψ(w,w,)|

We may conclude that

(12) \IY(z,w)\ <

Next (for j = 2)

\\H2(zr)\\2

m= f \E(z,uk)\2\h(uk)\2\φ(uk)\mdμ(uk)
JΩ

< const| |A||^ [ |Ψ(z,iι*)Γ2<Λ + 1 + w>+>g|Ψ(z,uk)\\2\φ{uk)\mdμ(uk).
JΩ

This integral may be written as a sum J j ) ψ ( z ^ ) )> 1} + J{|ψ(2,Myt)|<i} I n t n e first

integral log|Ψ(z,κ*)l ^ | Ψ ( ^ ^ ) I w h i l e f o r t h e second (cf. [18], p. 229)

| + \φ(uk)\ + |z

yields |log|Ψ(z, w^)|| < const.|log|^(z)||. Hence

i.e.

O |Ψ(z, uk)\ ^n m' \φ(uk)\m dμ(uk)
Ω

f _?r 4- U l \
+ const.|log|^(z)|| |Ψ(z,w^)| 2 ^ + m ^ ι\φ(Uk)\mdμ(uk) )

JΩ /

- const.||A||^(/W|#l_2+lfI(z) + |log|^(z))| |2/w,w + m(z))

\\H2(z,-)\\m < consL\\h\\Jφ(z)\-^+m)/2(\φ(z)\ + \log\φ(z)\\).

Then (by (11))
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\h(z,w)\ * 1

1^2(^1, w)I |^(wi)Γ dμ(u\)
Ω

<const||/z||^|φ)r^^2(|^(z)|

JΩ \Ύ{\

= const . | |Λ | | ^ |^(z)r ( ^ ) / 2 ( |^(z) + |log|^(z)| |)/_ ( n + 1_m ) / 2, ( w + 1 + m ) / 2(w)

i.e.

(13) |/2(z,w)I <const. | |A| |^ |^(z) |"

Next (as Hx = H3)

\h(z,w)\<constmί\φ(z)r{n+l+m)/2

f \E{w,ux)\-\φ{ux)\-("+λ

JΩ

onst.||/I||^|^(^)j-<"+1+m>/2 ί
JΩ

| J |

\lθg\φ(w)\\ • \φ(w)

i.e.

(14) | / 3 (z , W ) |^cons t . | |A | | *k(2) | - ( " + I + M ) / 2 |K

Finally (as H2 = H4 and G3 = G4)

(15) |/4(z, w)\

Γ{n+m)/2}
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The estimates (12)—(15) lead to

(16) \[K*lrhW](z,w)\ < const.||A||* l ^ z ) ! " ^ 1 ^ 2

• \φ(w)\-{n+l+m)/2(l + F(z) + F(w) + F(z)F(w)).

To deal with κ[ι)^m we firstly note that

where

Then

i.e.

(17)

Next

l(z,w)= f
JΩ

J2(z,w)=\ \Vφ(uι)\2'άetLφ(uι)Έ(z,uι)
JΩ

/ 3 (^,w)= f |
JΩ

'W^)h{uλ)\φ{uλ)\m dμ{ux)

J4(z,w)= f ^(z,
JΩ

< const.
' •" J Ω

1/2

HΛIU f | Ψ
JΩ

G
G

J { ) \ \ φ {
1/2
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\J2{z,w)\

< const.\\h\\ω f \E(z,ux)\ • |Ψ(w, W , )Γ ( " + 1 + m V(«i )Γdμ( U ι )

<comt.\\h\\oo(jΩ\E(z,ux)\2\φ(ux)\mdμ(ux)j
\ 1/2

)

1/2

\\E(z,

On the other hand

\E(z,-)\\2

m

< const, f | Ψ ( z , M l ) Γ 2 ( " + 1 + m ) + 1 |log|Ψ(z,M,)||2Wwi)r dμ{uλ)
JΩ

< const.Q |Ψ(z,M l)|"2 ("+ 1 + m ) + 3k(«i)Γdμ{ux)

= const. (/m,n_2+m(z) + |log|^(z)||2Λ,n+m(z))

< const>(z)Γ ( " + m ) (Wz) | 2 + |log|^(z)||2)

i.e.

\\E(z,-)\\m<\φ(z)\-O+l+m)/2F(z).

We conclude that

(is) { + ι + ) / 2 i

Similarly

(19)

Finally

\J4(z,w)\<Const\\h\L\\E(z,-)L-\\E(w,-)\\m

i.e.

(20) \J4(z, w)\ < const. | |A| | 0 O |^(z)|- ( '< + 1 + m ) / 2 | 9>(w)|- ("+ 1 + m ) / 2F(z) JP(W).

By taking into account the estimates (17)-(20) it follows that (16) holds good for
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k = 1 as well. To deal with AΓJ) ,mh^ one firstly
and Lemma 2.8 in [18], p. 233, so that to obtain
k = 1 as well. To deal with AΓJ) ,mh^ one firstly uses the Schwarz inequality

const.||Λ||i|?»(z)Γ ("+ 1 + m ) / 2 ί \Km{uuw)\ • \φ{uλ)\-(n+χ-m^2dμ{uλ).
JΩ

On the other hand

f \Km{uuw)\.\φ{ux)\-(n+λ-m)lldμ{ux)
JΩ

< const.

= CθnSt.(/_(n+1_m)/2,(n+l+m)/2(M;) + J-{n+l-m)/2,(n-2+m)/2(w)

+ \\θg\φ(w)\\J_{n+l_m)/2,(n+m)/2(w))

^(w)r ( n + 1 + m ) / 2 + \φ(w)\-{n-2+m)/2

|log|?(Mθ|| \φ{w)Γ{n+m)l2) =

hence we may conclude that (16) holds for k = 2 as well. At this point (16)
furnishes

k=\

•(\+F(z)+F(w) + F(z)F(w))

which, together with the estimate in Theorem 1, yields (10).

4. The complex dilatation of a symplectomorphism and the Beltrami
equations

Let Ω c C" be a y-Kobayashi domain, for some γ e AW(Ώ). Let F be a
symplectomorphism of (Ω,ωy) in itself. We have

LEMMA 3. For any zeΩ and any Z e Γ 1 0 ( Ω ) z , Z Φ 0, one has
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The proof is by contradiction. Assume that (dzF)Z e Γ 1 0 (Ω) F ( z ) for some Z e
Γ 1 0(Ω) 2 5 Z ^ O , and some z e Ω. As F is a diffeomorphism (dzF)Z φ 0.
Hence

0 < \\(d2F)Z\\2 = g%F(z){{dzF)Z, (d2F)Z)

= -iωγ,2(Z,Z) = -\\Z\\2,

a contradiction.
Let Γ1 0 (Ω) f consist of all Z e Γ(Ω) <g> C with (ίtf")Z e Tι'°(Ω).

LEMMA 4. For any symplectomorphism F of (Ω, ωγ) there is a C-antilinear
bundle map dil(F) : Tι'°(Ω.) -» Γ' ^Ω) so

Γ' ^Ω)^. = {Z - dil(F)Z : Z € Γ 1 0(Ω)}.

To prove Lemma 4, let πo 1 : ^(Ω) ® C —> Γo>' (Ω) be the natural projection.
Then

Let (z',...,z") be the natural complex coordinates on C". Set

fc δzk' k dzk1

etc.. Then det(F-fc) # 0 everywhere on Ω. Indeed, if det(F-fc(zo)) = 0 at some ZQ

e Ω then Σ,k Ffeo)^ = 0, 1 < j < n, for some (C1,..., ζ") e C" - {0}. Set Z =

Σ , ζj{d/dz% € Γ' o(Ω)Zo. Then Z # 0 and

a contradiction (by Lemma 3). Let dil(F) : Γ 1 0(Ω) -+ Γ 1 0(Ω) be given by
dil(F)(d/dzJ) = J2kdil(F)jd/dzk (followed by C-antilinear extension) where

(21) Ff

Finally, note that d/dz^ - ά\\{F)d/dzJ e Ker(πo,i o (dF)). q.e.d.

The bundle map dil^) is referred to as the complex dilatation (of the
symplectomorphism F).

PROPOSITION 1. Let F be a symplectomorphism of (Ω,ωy) and dil(F) its
complex dilatation. Then

ωγ{Z, dil(F) W) + ωγ(dil(F)Z, W) = 0,

for any Z,WeTl'°(Ω). Also, dil(F) = 0 if and only if F is holomorphic.
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Indeed, if Z e Γ 1 0 ( Ω ) then (dF)(Z - dil(F)Z) e Γ1»°(Ω). Therefore, as
vanishes on complex vector of the same type,

0 = ωγ((dF)(Z - dil(F)Z), (dF)(W - άi\(F)W))

= ωγ(Z - dil(F)Z, JF - dil(jF) W) = - ω y ( Z , dil(F) FK) -

for any Z, FΓe Γ1 '°(Ω).
By (21), each component FJ of the symplectomorphism F satisfies the first

order PDE (with variable coefficients)

where d-k = dil(F)j. We refer to (22) as the Beltrami equations (cf. e.g.
[20]). On the other hand, with any contact transformation F : M —> N between
two strictly pseudoconvex CR manifolds M and N one may associate (cf. [10],
p. 61) a complex dilatation μ:T\^{M)^>T\^{M) and whenever M = Hn-\
(the Heisenberg group) and N is a real hypersurface in Cn (carrying the standard
CR structure induced from the complex structure of Cn), the components FJ of
F satisfy the PDE

n-\

(23) Lΰj = y ^μ^Lβj

β=\

where L^ = d/dza — izad/dt are the Lewy operators (cf. e.g. [5], p. 435-436) on
//Λ_i, and μLa = Σ ^ μ f A# We r e ^ e r t o (23) as the tangential Beltrami equations.

Consider the Siegel domain Ωn = {φn < 0} and let F = ( F 1 , . . . , F n ) be a
symplectomorphism of (Ωr t,ωα) in itself. Let $Fn be the foliation of Cn by level
sets of φn. If F is smooth up to dΩn then μ (the complex dilatation of F)
restricted to T\^{^n) converges to the complex dilatation of the boundary
contact transformation (the proof is a word by word repetition of the proof
of Proposition 2 in [11], p. 1122). Also, if φ : Hn-\ —• dΩn is the CR iso-
morphism φ(z,ή — {t + i\z\ ,z), then each FJ o φ satisfies the tangential Beltrami
equations (23) (this follows from the remark at the end of section 2 and by a
result in [10], p. 62).

Let dk be smooth functions defined on some neighborhood of Ωn. The
complex vector fields d/dζJ - Σk d-kd/dζk span a rank n complex vector sub-
bundle B a T(Ωn) ® C. For the ^Siegel domain Ωn, the vector field ξ (de-
termined by (6)) is given by ξ = 2id/dζι. The CR isomorphism φ : Hn-\ « dΩn

maps the Lewy operators L« into Z« = d/dζa + ζ^ξ, 2 < α < n. We establish the
following

PROPOSITION 2. Let D be an open neighborhood of Ωn and μ : Γ10(Z>) —>
7τl'°(Z)) α fibrewise C-antilίnear bundle morphism which maps 7Ί;o(dΩw) into
itself. Let Bb c T{dΩn) ®C be the rank n - 1 complex subbundle spanned
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by Zά — μβZβ, 2 < oc <n, where μβ- are given by μ(Zα) = μβZβ. Let d-k

be given by μ(d/δζJ) = dfd/dζk and set h(ζ) = 2iΣβd
β

χζβ -d{-\. Then

on dΩn Π {ζ : h(ζ) Φ 0}. In particular', the trace on dΩn of any solution f e
CCO(ΩW) of the Beltrami equations (22) satisfies the tangential Beltrami equations
Zsf = μβ-Zβf on the open set {ζ e dΩn : h(ζ) Φ 0}.

Indeed, as μ{Th0(dΩn)) <= Tl0(dΩn),

where ζa = ζ*. Consequently Z = aJ(d/dζJ - dfd/dζk) is tangent to dΩn Π

{h Φ 0} if and only if a1 = -2iζaa
a, i.e. Z e Γ™(Bb). q.e.d.

PROPOSITION 3. Let F : Ωn —> Ωn be a C 0 0 dijfeomorphism, smooth up to the
boundary, each of whose components FJ satisfies the PDE

in Ωny for some C 0 0 functions μβ : Ωn —> C. If F is a foliated map, i.e. it preserves
the foliation J%, then for any α > - 1 there is fa e C2(Ωn), faφ0 everywhere, so
that

F*a>oc = / α ω α , mod^α, dρa.

Proof Set Fα = Za(FJ)d/dζJ and Wa = Zd{FJ)d/dζJ. As

(where μ% = μβ) one has

(dF)(ZΛ-4zβ) = Va-μξWβ e Tx

Note that

Hi&n) ® C = Re{ftφ Tb}

and

{F*ea)Bb c θa(Tlt0(^n)) - 0

hence
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for some C 0 0 functions a,b : Ωn —> R. Here θa = (i/2)(d — d)ρa. Also
pΛ o F = λ/>α for some /I e C2(ΩW), A > 0 everywhere. Next, one may use

ωα =

to conclude that

,jdθa dpa A #αΊ

F*ωα = ^ ω α + ^ — - -((da-adlogλ) A θa +(db - bd log λ) A dρa).

Finally a φ 0 everywhere (for if a(zo) — 0 at some zo e Ωn then

θa,F(zo)(dZoF) = b(z0) dZopa,

i.e. (dZ0F)T(^n)2Q c i / ( f w ) f ( z o ) , a contradiction).
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