ON BOUNDARY BEHAVIOUR OF SYMPLECTOMORPHISMS

ELISABETTA BARLETTA AND SORIN DRAGOMIR

Let $\Omega \subset \mathbb{C}^n$ be a strictly pseudoconvex domain, γ an admissible weight, and $K_{\gamma}(z,\zeta)$ the reproducing (or γ -Bergman) kernel for $L^2H(\Omega,\gamma)$, the space of square integrable functions, with respect to the measure $\gamma d\mu$, which are holomorphic in Ω ($d\mu$ is the Lebesgue measure in \mathbb{R}^{2n}), cf. e.g. Z. Pasternak-Winiarski [17]. Consider the complex tensor field:

$$H_{\gamma} = \sum_{1 \leq i,j \leq n} \left(\frac{\partial^2}{\partial z_i \partial \bar{z}_j} \log K_{\gamma}(z,z) \right) dz_i \otimes d\bar{z}_j$$

and the corresponding real tangent (0,2)-tensor field g_{γ} given by:

 $g_{\gamma} = \operatorname{Re}\{H_{\gamma}|_{\chi(\Omega) \times \chi(\Omega)}\},\$

where $\chi(\Omega)$ is the $C^{\infty}(\Omega)$ -module of all real tangent vector fields on Ω . Under suitable conditions (cf. section 2) g_{γ} is a Kählerian metric on Ω , hence $\omega_{\gamma} = -i\partial\overline{\partial}\log K_{\gamma}(z,z)$ is a symplectic structure (the Kähler 2-form of g_{γ}). One of the problems we take up in the present paper may be stated as follows. Let F: $\Omega \to \Omega$ be a symplectomorphism of $(\Omega, \omega_{\gamma})$ in itself, smooth up to the boundary. Does $F : \partial\Omega \to \partial\Omega$ preserve the contact structure of the boundary?

Our interest may be motivated as follows. If $F: \Omega \to \Omega$ is a biholomorphism then, by a celebrated result of C. Fefferman (cf. Theorem 1 in [4], p. 2) F is smooth up to the boundary, hence $F: \partial\Omega \to \partial\Omega$ is a CR diffeomorphism, and in particular a contact transformation. Also biholomorphisms are known to be isometries of the Bergman metric g_1 (cf. e.g. [7], p. 370) hence symplectomorphisms of (Ω, ω_1) . On the other hand, one may weaken the assumption on F by requesting only that F be a C^{∞} diffeomorphism and $F^*\omega_1 = \omega_1$. Then, by a result of A. Korányi and H. M. Reimann [11], if F is smooth up to the boundary then $F: \partial\Omega \to \partial\Omega$ is a contact transformation.

The main ingredient in the proof of A. Korányi and H. M. Reimann's result is the fact that, when $\gamma \equiv 1$, a certain negative power of the Bergman kernel ($\rho(z) = K_1(z,z)^{-1/(n+1)}$) is a defining function of Ω (allowing one to relate the symplectic structure of Ω to the contact structure of its boundary). In turn, this is a consequence of C. Fefferman's asymptotic expansion of $K_1(z,\zeta)$ (cf. Theorem 2 in

Received October 27, 1997

[4], p. 9). Therefore, should one extend A. Korányi and H. M. Reimann's ideas to weighted Bergman kernels and related structures, the first obstacle is whether a similar asymptotic expansion is known for $K_{\gamma}(z,\zeta)$. Indeed, this is available when $\Omega = \{\varphi < 0\}$ is a smoothly bounded strictly pseudoconvex domain and $\gamma = |\varphi|^m$, $m \in \{0, 1, 2, ...\}$, by a result of M. M. Peloso [18] (cf. Theorem 1). Cf. also [19] for a study of the boundary behaviour of $K_{\gamma}(z,\zeta)$ when $\gamma = |\varphi|^{\alpha}$, $\alpha > -1$ (not necessarily an integer). However, each point of the curve $\alpha \mapsto |\varphi|^{\alpha}$ (in the Banach manifold $W(\Omega)$ of all weights on Ω) is isolated (cf. Theorem 2) hence our present knowledge of the asymptoyic properties of $K_{\gamma}(z,\zeta)$, as γ runs over $W(\Omega)$, is rather limited.

We apply Theorem 1 to study the boundary behaviour of a symplectomorphism of $(\Omega, \omega_{|\varphi|^m}), m \in \{1, 2, ...\}$ (cf. Theorem 3).

Using the analytic behaviour of $K_{\gamma}(z,\zeta)$ with respect to γ (cf. [16], p. 131) we prove an analogue of Fefferman's asymptotic formula for more general weights of the form: an essentially bounded function times a nonnegative integer power of the defining function (cf. Theorem 4).

In section 4 we show that the components of any symplectomorphism of a γ -Kobayashi domain Ω satisfy a Beltrami system (in the sense of [20]). If Ω is the Siegel domain, the tangential equations induced (on $\partial \Omega$) by this system turn out to be (cf. Proposition 2) the equations introduced in [10] in connection with the study of quasiconformal maps of strictly pseudoconvex CR manifolds (cf. also [9], [12]).

1. The Forelli-Rudin-Ligocka-Peloso asymptotic expansion formula

Let $\Omega \subset \mathbb{C}^n$ be an open set and $W(\Omega)$ the set of all weights on Ω (i.e. $\gamma \in W(\Omega)$ is a Lebesgue measurable function $\gamma : \Omega \to (0, \infty)$). For each $\gamma \in W(\Omega)$ let $L^2(\Omega, \gamma)$ be the Hilbert space of all functions $f : \Omega \to \mathbb{C}$ for which

$$\|f\|_{\gamma} = \left(\int_{\Omega} |f|^2 \gamma \, d\mu\right)^{1/2} < \infty.$$

Let $L^2H(\Omega, \gamma)$ be the set of all functions in $L^2(\Omega, \gamma)$ which are holomorphic in Ω . A weight $\gamma \in W(\Omega)$ is *admissible* (cf. [17]) if 1) $L^2H(\Omega, \gamma)$ is a closed subspace of $L^2(\Omega, \gamma)$, and 2) for any $z \in \Omega$ the evaluation functional δ_z : $L^2H(\Omega, \gamma) \to C$, $\delta_z(f) = f(z)$, is continuous. The set of all admissible weights on Ω is denoted by $AW(\Omega)$. If $\gamma \in AW(\Omega)$ then, by the Riesz representation theorem, there is a unique function $K_{\gamma}(z, \cdot)$ (called the *weighted Bergman kernel* of Ω , of weight γ , or the γ -Bergman kernel of Ω) so that $\overline{K_{\gamma}(z, \cdot)} \in L^2H(\Omega, \gamma)$ and

$$f(z) = \int_{\Omega} f(\zeta) K_{\gamma}(z,\zeta) \gamma(\zeta) \, d\mu(\zeta),$$

for any $f \in L^2 H(\Omega, \gamma)$, $z \in \Omega$. For $\gamma = 1$ this is the ordinary Bergman kernel of Ω (cf. e.g. [2]).

Let Ω be a smoothly bounded strictly pseudoconvex domain $\Omega = \{z \in \mathbb{C}^n : \varphi(z) < 0\}$ where φ is such that the Levi form L_{φ} satisfies

$$L_{\varphi}(w)\xi \geq C_1|\xi|^2, \quad \xi \in \mathbf{C}^n,$$

for $\varphi(w) < \delta_0$, $\delta_0 > 0$, and C_1 depending only on Ω . Set

(1)
$$\Psi(\zeta, z) = (F(\zeta, z) - \varphi(z))\chi(|\zeta - z|) + (1 - \chi(|\zeta - z|))|\zeta - z|^2$$

where

$$F(\zeta,z) = -\sum_{j=1}^{n} \frac{\partial \varphi}{\partial z_j}(z)(\zeta_j - z_j) - \frac{1}{2} \sum_{j,k=1}^{n} \frac{\partial^2 \varphi}{\partial z_j z_k}(z)(\zeta_j - z_j)(\zeta_k - z_k)$$

and χ is a C^{∞} cut-off function of the real variable t, with $\chi(t) = 1$ for $|t| < \varepsilon_0/2$ and $\chi(t) = 0$ for $|t| \ge 3\varepsilon_0/4$. We may state the following

THEOREM 1 (Forelli-Rudin-Ligocka-Peloso¹). For any nonnegative integer $m \in \{0, 1, 2, ...\}, |\varphi|^m \in AW(\Omega)$. Let $K_m(\zeta, z)$ be the $|\varphi|^m$ -Bergman kernel for $L^2H(\Omega, |\varphi|^m)$. Then

(2)
$$K_m(\zeta, z) = c_{\Omega} |\nabla \varphi(z)|^2 \cdot \det L_{\varphi}(z) \cdot \Psi(\zeta, z)^{-(n+1+m)} + E(\zeta, z)$$

where $E \in C^{\infty}(\overline{\Omega} \times \overline{\Omega} - \Delta)$, Δ is the diagonal of $\partial \Omega \times \partial \Omega$, and E satisfies the estimate

$$|E(\zeta,z)| \le c'_{\Omega} |\Psi(\zeta,z)|^{-(n+1+m)+1/2} \cdot |\log|\Psi(\zeta,z)||.$$

This extends C. Fefferman's asymptotic expansion formula for the Bergman kernel of a strictly pseudoconvex domain (cf. [4] for m = 0) to the case of $|\varphi|^m$ -Bergman kernels, $m \in \{1, 2, ...\}$ (cf. Lemma 2.2 in [18], p. 229). Part of the proof (relating $K_m(\zeta, z)$ to the ordinary Bergman kernel of the domain $\{(z, \xi) \in \mathbb{C}^n \times \mathbb{C}^m : \varphi(z) + |\xi|^2 < 0\}$) actually works for an arbitrary (admissible) weight. Indeed, one has the following

LEMMA 1. Let $m \in \{1, 2, ...\}$ and $\gamma \in AW(\Omega)$. Let $K_{\Omega_m}((z, \xi), (w, \eta))$ be the Bergman kernel of the domain $\Omega_m = \{(z, \xi) \in \Omega \times \mathbb{C}^m : |\xi|^{2m} < \gamma(z)\}$. Then

(3)
$$K_{\gamma}(z,w) = \frac{\omega_{2m-1}}{2m} K_{\Omega_m}((z,0),(w,0)).$$

Proof. For simplicity set $K(z, w) = K_{\Omega_m}((z, 0), (w, 0))$. Also, for fixed $z, w \in \Omega$, we set $u(\eta) = K_{\Omega_m}((z, 0), (w, \eta))$. As K_{Ω_m} is anti-holomorphic in η , u is

¹We learned Theorem 1 from [18]. However, M. M. Peloso claims Theorem 1 is implicit in [14], while E. Ligocka employs an older idea by F Forelli and W. Rudin [6].

harmonic. Hence

$$u(0) = \frac{2m}{\omega_{2m-1}} \gamma(w)^{-1} \int_{B(0,\gamma(w)^{1/(2m)})} u(\eta) \, d\mu(\eta),$$

where ω_s is the 'area' of the sphere $S^s \subset \mathbb{R}^{s+1}$ $((w,\eta) \in \Omega_m$ yields $\eta \in B(0, \gamma(w)^{1/(2m)}))$. Therefore

(4)
$$K(z,w)\gamma(w) = \frac{2m}{\omega_{2m-1}} \int_{|\eta|^{2m} < \gamma(w)} K_{\Omega_m}((z,0),(w,\eta)) \, d\mu(\eta).$$

For each $f \in L^2H(\Omega, \gamma)$ set $\tilde{f}(z, \xi) = f(z)$. Clearly \tilde{f} is holomorphic in Ω_m . Also

$$\begin{split} \|\tilde{f}\|_{L^{2}(\Omega_{m})}^{2} &= \int_{\Omega_{m}} |\tilde{f}(z,\xi)|^{2} d\mu(z,\xi) \\ &= \int_{\Omega} |f(z)|^{2} \left(\int_{|\xi|^{2m} < \gamma(z)} d\mu(\xi) \right) d\mu(z) \\ &= \frac{\omega_{2m-1}}{2m} \int_{\Omega} |f(z)|^{2} \gamma(z) d\mu(z) = \frac{\omega_{2m-1}}{2m} \|f\|_{\gamma}^{2} < \infty \end{split}$$

i.e. $\tilde{f} \in L^2(\Omega_m)$. As K_{Ω_m} reproduces the L^2 holomorphic functions on Ω_m , one has (by (4))

$$f(z) = \tilde{f}(z,0) = \int_{\Omega_m} K_{\Omega_m}((z,0), (w,\eta)) \tilde{f}(w,\eta) d\mu(w,\eta)$$
$$= \int_{\Omega} f(w) \left(\int_{|\eta|^2 < \gamma(w)} K_{\Omega_m}((z,0), (w,\eta)) d\mu(\eta) \right) d\mu(w)$$
$$= \frac{\omega_{2m-1}}{2m} \int_{\Omega} f(w) K(z,w) \gamma(w) d\mu(w),$$

i.e. $(\omega_{2m-1}/2m)K(z,w)$ reproduces the functions in $L^2H(\Omega,\gamma)$. As *u* is antiholomorphic, $|u|^2$ is subharmonic. Hence

$$|u(0)|^{2} \leq \frac{1}{\operatorname{Vol}(B(0,\gamma(w)^{1/(2m)}))} \int_{B(0,\gamma(w)^{1/(2m)})} |u(\eta)|^{2} d\mu(\eta)$$

or

$$|K(z,w)|^{2} \leq \frac{2m}{\omega_{2m-1}} \gamma(w)^{-1} \int_{|\eta|^{2} < \gamma(w)^{1/(2m)}} |K_{\Omega_{m}}((z,0),(w,\eta))|^{2} d\mu(\eta).$$

Finally, we may integrate against $w \in \Omega$ so that to get

$$\int_{\Omega} |K(z,w)|^2 \gamma(w) \, d\mu(w)$$

$$\leq \frac{2m}{\omega_{2m-1}} \int_{\Omega_m} |K_{\Omega_m}((z,0),(w,\eta))|^2 d\mu(w,\eta) < \infty$$

i.e. $K(z, \cdot) \in L^2(\Omega, \gamma)$. Then (3) follows from the uniqueness statement in the Riesz representation theorem.

When $\gamma = |\varphi|^m$, $m \in \{1, 2, ...\}$, the domain Ω_m is strictly pseudoconvex and (2) follows from Lemma 1 and from Fefferman's asymptotic expansion formula for K_{Ω_m} , i.e.

 $K_{\Omega_m}((z,\xi),(w,\eta))$

 $= \operatorname{const.} |\nabla \varphi_1(w, \eta)| \cdot \det L_{\varphi_1}(w, \eta) \cdot \Psi((z, \xi), (w, \eta))^{-(n+m+1)} + E((z, \xi), (w, \eta)),$

for some $E \in C^{\infty}(\overline{\Omega}_m \times \overline{\Omega}_m - \Delta_1)$ satisfying the estimate

 $|E((z,\xi),(w,\eta))| \le \text{const.}|\Psi((z,\xi),(w,\eta))|^{-(n+m+1)+1/2} \cdot |\log|\Psi((z,\xi),(w,\eta))||$

where Ψ is defined as in (1), with the obvious modifications, while $\varphi_1(z,\xi) = \varphi(z) + |\xi|^2$ and Δ_1 is the diagonal of $\partial \Omega_m \times \partial \Omega_m$ (as $\partial \Omega \times \{0\} \subset \partial \Omega_m$, Δ imbeds in Δ_1).

Let $L_{\mathbb{R}}^{\infty}(\Omega)$ be the Banach space (algebra) of all real valued Lebesgue measurable, essentially bounded functions on $\Omega = \{\varphi < 0\}$, with the norm $\|g\|_{\infty} = \operatorname{esssup}_{z \in \Omega} |g(z)|, g \in L_{\mathbb{R}}^{\infty}(\Omega)$. By a result of Z. Pasternak-Winiarski (cf. Proposition 2.3 in [16], p. 116) $W(\Omega)$ is a Banach manifold modelled on $L_{\mathbb{R}}^{\infty}(\Omega)$, and $AW(\Omega)$ is an open subset of $W(\Omega)$. Note that the Fefferman like asymptotic expansion of a weighted Bergman kernel is known (cf. Theorem 1 above) only for the points of the curve $C: (-1, \infty) \to W(\Omega), C(\alpha) = |\varphi|^{\alpha} \in AW(\Omega), \alpha > -1$, corresponding to the integer values of the parameter. Of course, it is desirable to extend Theorem 1 to all $\gamma \in AW(\Omega)$. As a measure of the amount of job left unsolved we may state the following

THEOREM 2. Let $\Omega = \{\varphi < 0\}$ be a domain in \mathbb{C}^n . The curve $C : (-1, \infty) \to W(\Omega)$, $C(\alpha) = |\varphi|^{\alpha}$, $\alpha > -1$, is discontinuous and each point of C is an isolated point.

Set

 $U(\Omega) = \{g \in L^{\infty}_{\mathbf{R}}(\Omega) : \operatorname{essinf}_{z \in \Omega} g(z) > 0\}$

(an open subset of $L^{\infty}_{\mathcal{R}}(\Omega)$). Given $\mu \in W(\Omega)$ let $\Phi_{\mu} : U(\Omega) \to W(\Omega)$ be defined by $(\Phi_{\mu}g)(z) = g(z)\mu(z), g \in U(\Omega), z \in \Omega$, and set $U(\Omega, \mu) = \Phi_{\mu}(U(\Omega))$. By Proposition 2.3 in [16], p. 116, the family

$$\{\Phi_{\mu}(A): \mu \in W(\Omega), A \subseteq U(\Omega), A \text{ open}\}$$

is a basis of open sets for the topology of $W(\Omega)$. At this point, we may prove Theorem 2. Given $\alpha_0 > -1$, C is continuous in α_0 if and only if for any open subset $A \subseteq U(\Omega)$ with $1 \in A$, there is $\delta_A > 0$ so that $|\varphi|^{\alpha - \alpha_0} \in A$ for any $|\alpha - \alpha_0| < \delta_A$. Note that for each $u : \overline{\Omega} \to [0, \infty)$, if $u \in C^0(\overline{\Omega})$ and $u|_{\partial\Omega} = 0$ then $\operatorname{essinf}_{\Omega} u \leq 0$ (indeed, if $\operatorname{essinf}_{\Omega} u > 0$ then

$$(5) u(z) \ge L$$

for some L > 0. A priori (5) holds a.e. in Ω , yet $\{u < L\}$ is open, hence empty. Therefore (5) holds everywhere in Ω and, for $z \to \partial \Omega$, it gives $L \le 0$, a contradiction).

LEMMA 2. Let $\alpha_0 > -1$, $\delta > 0$ and A an open subset of $U(\Omega)$ with $1 \in A$. Then $|\varphi|^{\alpha - \alpha_0} \in A$ if and only if $\alpha = \alpha_0$.

Proof. If $\alpha > \alpha_0$ then (by the observation above) $|\varphi|^{\alpha-\alpha_0}|_{\partial\Omega} = 0$ yields $|\varphi|^{\alpha-\alpha_0} \notin U(\Omega)$. If in turn $\alpha < \alpha_0$ then $\lim_{z \to \partial\Omega} |\varphi(z)|^{\alpha-\alpha_0} = \infty$ hence $|\varphi|^{\alpha-\alpha_0} \notin L^{\infty}_{R}(\Omega)$, just by observing that, for each $v : \Omega \to [0, \infty)$, if $v \in C^{0}(\Omega)$ and $\lim_{z \to \partial\Omega} v(z) = \infty$ then $\operatorname{esssup}_{\Omega} v = \infty$.

Finally $U(\Omega, |\varphi|^{\alpha_0})$ is an open neighborhood of $|\varphi|^{\alpha_0}$ yet (by Lemma 2) it contains no other point of C.

2. Symplectomorphisms of y-Kobayashi domains

Let $\Omega = \{\varphi < 0\}$ be a domain and $\gamma \in AW(\Omega)$ and admissible weight. By a result in [17] one has the representation

$$K_{\gamma}(\zeta,z) = \sum_k \phi_k(\zeta) \overline{\phi_k(z)}$$

for any complete orthonormal system $\{\phi_k\}$ in $L^2H(\Omega, \gamma)$. Hence $K_{\gamma}(z, z) > 0$ for any $z \in \Omega$, provided that A) for each $z \in \Omega$ there is $f \in L^2H(\Omega, \gamma)$ with $f(z) \neq 0$. If the weight $\gamma = (1+h)|\varphi|^m$ (with $h \in L^{\infty}_R(\Omega)$, $||h||_{\infty} < 1/2$, $m \in \{1, 2, ...\}$) satisfies condition A) then it makes sense to consider the function

$$\rho_{h,m}(z) = K_{(1+h)|\varphi|^m}(z,z)^{-1/(n+1+m)}, \quad z \in \Omega,$$

and (by Theorem 4)

$$\begin{split} \rho_{h,m}(z) \\ \leq |\varphi(z)| \{ \Phi(z) + C[|\varphi(z)|^{1/2} |\log|\varphi(z)|| + (1+F(z))^2] \}^{-1/(n+1+m)} \end{split}$$

for some $\Phi \in C^{\infty}(\overline{\Omega})$ so that $\Phi(z) \neq 0$ near $\partial\Omega$. Hence $\rho_{h,m}(z) \to 0$ as $z \to \partial\Omega$. As the boundary behaviour of $[K_{1,|\varphi|}^{(k)} h^{(k)}](z,w), k \geq 1$ (cf. notations in section 3) is not known, one may not conclude that $\rho_{h,m}(z)$ is a defining function for Ω . However, as a corollary of Theorem 1 one has

$$K_m(z,z) = \Phi(z)|\varphi(z)|^{-(n+1+m)} + \tilde{\Phi}(z)\log|\varphi(z)|,$$

for some Φ , $\tilde{\Phi} \in C^{\infty}(\bar{\Omega})$, $\Phi(z) \neq 0$ near $\partial \Omega$, hence $\rho_m = \rho_{0,m} \in C^{\infty}(\bar{\Omega})$ and $\nabla \rho_m \neq 0$ on $\partial \Omega$, i.e. ρ_m can be used as a defining function for Ω ($\Omega = \{\rho_m > 0\}$).

Let $\Omega_n = \{\zeta \in \mathbb{C}^n : \varphi_n(\zeta) < 0\}$ be the Siegel domain, where $\varphi_n(\zeta) = |\zeta'|^2 - \text{Im}(\zeta_1)$, and for each $\zeta = (\zeta_1, \ldots, \zeta_n)$ one sets $\zeta' = (\zeta_2, \ldots, \zeta_n)$. Let $K_{\alpha}(\zeta, z)$ be

the $|\varphi_n|^{\alpha}$ -Bergman kernel for $L^2 H(\Omega_n, |\varphi_n|^{\alpha})$, $\alpha > -1$. As Ω_n is unbounded and α not necessarily an integer, neither Theorem 1 nor its proof apply, yet $\rho_{\alpha}(\zeta) = K_{\alpha}(\zeta, \zeta)^{-1/(n+1+\alpha)}$ is a (well defined) defining function for Ω_n . Indeed (cf. [1]) K_{α} may be explicitly computed as

$$K_{\alpha}(\zeta, z) = \frac{2^{n-1+\alpha}c_{n,\alpha}}{\left[i(\bar{z}_1 - \zeta_1) - 2\langle\zeta', z'\rangle\right]^{n+1+\alpha}}$$
$$c_{n,\alpha} = \pi^{-n}(\alpha+1)\cdots(\alpha+n)$$

hence $\rho_{\alpha}(\zeta) = C \varphi_n(\zeta)$, for some constant C depending only on n and α .

Let $\Omega \subset \mathbb{C}^n$ be a domain and $\gamma \in AW(\Omega)$. In general g_{γ} is not definite, or even nondegenerate. For instance, if Ω is bounded and $\gamma \in L^1(\Omega)$ then g_{γ} is a Kählerian metric on Ω (cf. [3]) yet the arguments in [3] break down for the case of an unbounded domain. We call Ω a γ -Kobayashi domain if (Ω, γ) satisfies condition A) and additionally B) for any $z \in \Omega$ and any $Z \in T^{1,0}(\Omega)_z$, $Z \neq 0$, there is $f \in L^2H(\Omega, \gamma)$ so that f(z) = 0 and $Z(f) \neq 0$ (our A)-B) correspond to the conditions (A.1)-(A.2) in [8], pp. 271-272, hence the adopted terminology). Here $T^{1,0}(\Omega)$ is the holomorphic tangent bundle over Ω . The unit ball in \mathbb{C}^n is a 1-Kobayashi domain. The Siegel domain Ω_n is an (unbounded) $|\varphi_n|^{\alpha}$ -Kobayashi domain for any $\alpha > -1$ (cf. Lemmae 4 and 5 in [1]). By a result in [15], A)-B) imply that g_{γ} is a Kählerian metric on Ω , hence $(\Omega, \omega_{\gamma})$ is a symplectic manifold.

From now on, it is understood that Ω is a strictly pseudoconvex domain satisfying all hypothesis of Theorem 1. We may state:

THEOREM 3. Let $m \in \{0, 1, 2, ...\}$ and $\Omega = \{\varphi < 0\}$ a $|\varphi|^m$ -Kobayashi domain. Let F be a symplectomorphism of (Ω, ω_m) , i.e. a C^{∞} diffeomorphism F : $\Omega \to \Omega$ with $F^*\omega_m = \omega_m$. If F is smooth up to the boundary then $F : \partial\Omega \to \partial\Omega$ is a contact transformation.

Here ω_m is short for $\omega_{|\varphi|^m}$. For $\gamma = 1$ and m = 0 Theorem 3 is the result by A. Korányi and H. M. Reimann quoted in the introduction. The proof is imitative of that of Proposition 1 in [11], p. 1121. We need some notation. Let \mathscr{F} be the foliation of U (a one-sided neighborhood of the boundary of Ω) by level sets of ρ_m (so that $\rho_m^{-1}(0) = \partial \Omega$). Each leaf $M_c = \rho_m^{-1}(c)$ is a strictly pseudoconvex CR manifold with the CR structure $T_{1,0}(M_c) = [T(M_c) \otimes C] \cap$ $T^{1,0}(U)$. Let $T_{1,0}(\mathscr{F})$ be the subbundle of $T(U) \otimes C$ whose portion over M_c is $T_{1,0}(M_c)$. As Ω is strictly pseudoconvex, there is a uniquely defined complex vector field ξ of type (1,0) on U which is orthogonal to $T_{1,0}(\mathscr{F})$ with respect to $\partial \bar{\partial} \rho_m$ and for which $\partial \rho_m(\xi) = 1$ (cf. e.g. [13], p. 163). Define $r: U \to \mathbb{R}$ by setting $r = 2(\partial \bar{\partial} \rho_m)(\xi, \bar{\xi})$ so that ξ and r are characterized by

(6)
$$\xi \rfloor \partial \bar{\partial} \rho_m = r \bar{\partial} \rho_m, \quad \partial \rho_m(\xi) = 1.$$

Let $\theta_m = i(\overline{\partial} - \partial)\rho_m/2$ and $N = 2\operatorname{Re}(\xi)$. Then $(d\rho_m)N = 2$ and $\theta_m(N) = 0$.

Note that

(7)
$$\omega_m = i(n+1+m) \left(\frac{\partial \bar{\partial} \rho_m}{\rho_m} - \frac{\partial \rho_m \wedge \bar{\partial} \rho_m}{\rho_m^2} \right).$$

Set $H(\mathscr{F}) = \operatorname{Re}\{T_{1,0}(\mathscr{F}) \oplus \overline{T_{1,0}(\mathscr{F})}\}\$ (so that the portion of $H(\mathscr{F})$ over a leaf M_c is the maximally complex, or Levi, distribution of M_c). Then (by (7))

$$\omega_m(X,N)=0,$$

for any $X \in H(\mathscr{F})$. On the other hand, we may write (7) as

$$\omega_m = (n+1+m) \left(\frac{d\theta_m}{\rho_m} - \frac{d\rho m \wedge \theta_m}{\rho_m^2} \right)$$

hence (by $F^*\omega_m = \omega_m$)

$$0 = \omega_m((dF)X, (dF)N) = (n+1+m)\rho_m^{-1}d\theta_m((dF)X, (dF)N) - (n+1+m)\rho_m^{-2}(d\rho_m \wedge \theta_m)((dF)X, (dF)N)$$

for any $X \in H(\mathscr{F})$. As F is smooth up to the boundary,

$$(d\theta_m)((dF)X, (dF)N)$$

stays finite near $\partial \Omega$. Hence, in the limit

$$(d\rho_m)((dF)X)\theta_m((dF)N) - (d\rho_m)((dF)N)\theta_m((dF)X)$$

vanishes on $\partial\Omega$. If X lies in $H(\partial\Omega)$, the maximal complex distribution of $\partial\Omega$ as a CR manifold, then $(dF)X \in T(\partial\Omega)$ hence $(d\rho_m)((dF)X) = 0$. Finally $(d\rho_m)$ $((dF)N) \neq 0$ (as F is a diffeomorphism and $d\rho_m \neq 0$ on $\partial\Omega$) hence $\theta_m((dF)X) =$ 0 for any $X \in H(\partial\Omega)$. q.e.d.

Let ω_{α} be short for $\omega_{|\varphi_n|^{\alpha}}$, $\alpha > -1$. Although Ω_n is unbounded and α not necessarily an integer, Theorem 3 remains true for a symplectomorphism F of $(\Omega_n, \omega_{\alpha})$, i.e. if F is smooth up to $\partial \Omega_n$ then the restriction of F to $\partial \Omega_n$ is a contact transformation (the proof is a verbatim transcription of the proof of Theorem 3, where ρ_m is replaced by ρ_{α}).

3. The effect of the analytic behaviour of weighted Bergman kernels

Let U be an open subset of a normed space \mathscr{X} and let \mathscr{Y} be a topological vector space. Together with [16], one says that a map $f: U \to \mathscr{Y}$ is *analytic* on U if for any $x \in U$ there is a ball $B \subset \mathscr{X}$ of center $0 \in \mathscr{X}$ so that $x + B \subset U$ and

(8)
$$f(x+h) = f(x) + \sum_{k=1}^{\infty} a_k(h, \dots, h)$$

for any $h \in B$, where $a_k : \mathscr{X}^k \to \mathscr{Y}$ is a continuous k-linear function, $k \in \{1, 2, ...\}$, and the series in (8) converges uniformly on B.

Let $HA(\Omega)$ be the vector space of all real analytic functions $F : \Omega \times \Omega \to C$ which are holomorphic with respect to the first *n* variables and anti-holomorphic with respect to the last *n* variables. Set

$$\|F\|_X = \sup_{(z,\zeta) \in X^2} |F(z,\zeta)|$$

for $F \in HA(\Omega)$, $X \subset \Omega$. The family of seminorms

$$\{\|\cdot\|_X : X \subset \Omega, X \text{ compact}\}$$

makes $HA(\Omega)$ into a Fréchet space. By a result of Z. Pasternak-Winiarski (cf. Theorem 5.1 in [16], p. 131) the map $U(\Omega) \to HA(\Omega)$, $g \mapsto K_{g\gamma}$, is analytic on $U(\Omega)$ for any $\gamma \in AW(\Omega)$.

THEOREM 4. Let $\Omega = \{\varphi < 0\}$ be a smoothly bounded strictly pseudoconvex domain in \mathbb{C}^n so that $L_{\varphi}(w)\xi \ge \text{const.}|\xi|^2$, $\xi \in \mathbb{C}^n$, for $\varphi(w) < \delta_0$, $\delta_0 > 0$. Then for any $h \in B(0, 1/2) \subset L^{\infty}_{\mathbb{R}}(\Omega)$ there is $E_h \in C^{\infty}(\Omega \times \Omega)$ so that

(9)
$$K_{(1+h)|\varphi|^m}(z,w) = c_{\Omega} |\nabla \varphi(w)|^2 \cdot \det L_{\varphi}(w) \cdot \Psi(z,w)^{-(n+1+m)} + E_h(z,w)$$

and E_h satisfies the estimate

(10)
$$(E_h(z,w)| \le C \cdot \{|\Psi(z,w)|^{-(n+1+m)+1/2} |\log|\Psi(z,w)|| + |\varphi(z)|^{-(n+1+m)/2} |\varphi(w)|^{-(n+1+m)/2} (1 + F(z) + F(w) + F(z)F(w))\}$$

where $F(z) = |\varphi(z)|^{3/2} + |\varphi(z)|^{1/2} |\log|\varphi(z)||$ and C is a constant depending only on Ω and $m \ge 1$, m > n - 1.

The proof of Theorem 4 relies on (2) and on the analyticity of the weighted Bergman kernel as a map $AW(\Omega) \to HA(\Omega), \ \gamma \mapsto K_{\gamma}$. Set

$$[K_{g,\gamma}^{(k)}(h_1,\ldots,h_k)](z,w)$$

$$= \int_{\Omega} K_{g\gamma}(u_1,w)h_1(u_1)\gamma(u_1) d\mu(u_1)$$

$$\cdot \int_{\Omega} K_{g\gamma}(u_2,u_1)h_2(u_2)\gamma(u_2) d\mu(u_2)\ldots$$

$$\cdot \int_{\Omega} K_{g\gamma}(u_k,u_{k-1})h_k(u_k)K_{g\gamma}(z,u_k)\gamma(u_k) d\mu(u_k)$$
for $\gamma \in AW(\Omega), \ g \in U(\Omega), \ h_1,\ldots,h_k \in L^{\infty}_{R}(\Omega), \ k \ge 1.$ Then

 $K_{q,\gamma}^{(k)}(h_1,\ldots,h_k)\in HA(\Omega)$

(cf. Lemma 5.1 in [16], p. 129). By (2) and by (5.5) in Theorem 5.1 of [16], p. 131, it follows that (9) holds good with

$$E_{h} = E + \sum_{k=1}^{\infty} (-1)^{k} K_{1,|\varphi|^{m}}^{(k)} h^{(k)}$$

where $h^{(k)} = (h, \ldots, h)$ (k components), $E \in C^{\infty}(\overline{\Omega} \times \overline{\Omega} - \Delta)$ satisfies the estimate in Theorem 1, and the series is uniformly convergent on $B(0, 1/2) = \{h \in L^{\infty}_{\mathbb{R}}(\Omega) : \|h\|_{\infty} < 1/2\}$ with respect to any seminorm $\|\cdot\|_{X}$ on $HA(\Omega)$, with X an arbitrary compact subset of Ω . It remains that we prove the estimate (10). Let $k \ge 3$ (the cases k = 1 and k = 2 are looked at later on). Then (by (2))

$$\begin{split} [K_{1,|\varphi|^{m}}^{(k)}h^{(k)}](z,w) \\ &= \int \{c_{\Omega}|\nabla\varphi(u_{1})|^{2} \cdot \det L_{\varphi}(u_{1}) \cdot \overline{\Psi(w,u_{1})}^{-(n+1+m)} + \overline{E(w,u_{1})}\} \\ &\cdot \{c_{\Omega}|\nabla\varphi(u_{k})|^{2} \cdot \det L_{\varphi}(u_{k}) \cdot \Psi(z,u_{k})^{-(n+1+m)} + E(z,u_{k})\} \\ &\cdot h(u_{1})h(u_{k})[K_{1,|\varphi|^{m}}^{(k-2)}h^{(k-2)}](u_{k},u_{1})|\varphi(u_{1})|^{m}|\varphi(u_{k})|^{m} d\mu(u_{1}) d\mu(u_{k}) \end{split}$$

hence

$$[K_{1,|\varphi|^{m}}^{(k)}h^{(k)}](z,w)$$

= $c_{\Omega}^{2}I_{1}(z,w) + c_{\Omega}(I_{2}(z,w) + I_{3}(z,w)) + I_{4}(z,w),$

where

$$I_{j}(z,w) = \int_{\Omega} G_{j}(u_{1},w) \left(\int_{\Omega} [K_{1,|\varphi|^{m}}^{(k-2)} h^{(k-2)}](u_{k},u_{1}) H_{j}(z,u_{k}) |\varphi(u_{k})|^{m} d\mu(u_{k}) \right)$$
$$\cdot |\varphi(u_{1})|^{m} d\mu(u_{1}),$$

for $1 \le j \le 4$ and G_j , H_j are given by

$$G_{1}(u_{1},w) = G_{2}(u_{1},w) = |\nabla\varphi(u_{1})|^{2} \cdot \det L_{\varphi}(u_{1}) \cdot \overline{\Psi(w,u_{1})}^{-(n+1+m)}h(u_{1})$$

$$G_{3}(u_{1},w) = G_{4}(u_{1},w) = \overline{E(w,u_{1})}h(u_{1})$$

$$H_{1}(z,u_{k}) = H_{3}(z,u_{k}) = |\nabla\varphi(u_{k})|^{2} \cdot \det L_{\varphi}(u_{k}) \cdot \Psi(z,u_{k})^{-(n+1+m)}h(u_{k})$$

$$H_{2}(z,u_{k}) = H_{4}(z,u_{k}) = E(z,u_{k})h(u_{k}).$$

By a result in [16], p. 131, we have

$$\|[K_{1,|\varphi|^m}^{(k-2)}h^{(k-2)}](\cdot,u_1)\|_m \le \|h\|_{\infty}^{k-2}\|K_m(\cdot,u_1)\|_m$$

where $\|\cdot\|_m$ is short for $\|\cdot\|_{|\varphi|^m}$. Then we may perform the estimates

$$\begin{split} |I_{j}(z,w)| &\leq \int_{\Omega} |G_{j}(u_{1},w)| \\ &\cdot \left(\int_{\Omega} |[K_{1,|\varphi|^{m}}^{(k-2)}h^{(k-2)}](u_{k},u_{1})|^{2}|\varphi(u_{k})|^{m} d\mu(u_{k}) \right)^{1/2} \\ &\cdot \left(\int_{\Omega} |H_{j}(z,u_{k})|^{2} \cdot |\varphi(u_{k})|^{m} d\mu(u_{k}) \right)^{1/2} |\varphi(u_{1})|^{m} d\mu(u_{1}) \\ &= \int_{\Omega} |G_{j}(u_{1},w)| \cdot \|[K_{1,|\varphi|^{m}}^{(k-2)}h^{(k-2)}](\cdot,u_{1})\|_{m} \cdot \|H_{j}(z,\cdot)\|_{m} |\varphi(u_{1})|^{m} d\mu(u_{1}) \\ &\leq \|h\|_{\infty}^{k-2} \|H_{j}(z,\cdot)\|_{m} \cdot \int_{\Omega} |G_{j}(u_{1},w)| \cdot \|K_{m}(\cdot,u_{1})\|_{m} |\varphi(u_{1})|^{m} d\mu(u_{1}). \end{split}$$

Yet

$$\|K_m(\cdot, u_1)\|_m \le \text{const.}|\varphi(u_1)|^{-(n+1+m)/2}$$

by Lemma 2.8 in [18], p. 233. Hence

(11)
$$|I_{j}(z,w)| \leq \text{const.} ||h||_{\infty}^{k-2} ||H_{j}(z,\cdot)||_{m} \\ \cdot \int_{\Omega} |G_{j}(u_{1},w)| \cdot |\varphi(u_{1})|^{-(n+1-m)/2} d\mu(u_{1}).$$

We look at the case j = 1. To this end, set

$$J_{\nu,a}(z) = \int_{\Omega} \frac{\left|\varphi(w)\right|^{\nu} d\mu(w)}{\left|\Psi(z,w)\right|^{n+1+\nu+a}}$$

for v > -1 and $a \in \mathbf{R}$. By Lemma 2.7 in [18], p. 232, one has

$$J_{\nu,a}(z) \leq \begin{cases} \text{const.} & \text{if } a < 0\\ |\log|\varphi(z)|| & \text{if } a = 0\\ |\varphi(z)|^{-a} & \text{if } a > 0. \end{cases}$$

Then

$$\|H_{1}(z,\cdot)\|_{m}^{2} = \int_{\Omega} |H_{1}(z,u_{k})|^{2} |\varphi(u_{k})|^{m} d\mu(u_{k})$$

$$\leq \text{const.} \|h\|_{\infty}^{2} \int_{\Omega} |\Psi(z,u_{k})|^{-2(n+1+m)} |\varphi(u_{k})^{m}| d\mu(u_{k})$$

$$= \text{const.} \|h\|_{\infty}^{2} J_{m,n+1+m}(z)$$

so that

$$||H_1(z,\cdot)||_m \le \text{const.} ||h||_{\infty} |\varphi(z)|^{-(n+1+m)/2}.$$

Then (by (11))

$$\begin{aligned} |I_1(z,w)| &\leq \text{const.} \|h\|_{\infty}^{k-1} |\varphi(z)|^{-(n+1+m)/2} \\ &\cdot \int_{\Omega} |G_1(u_1,w)| \, |\varphi(u_1)|^{-(n+1+m)/2} \, d\mu(u_1) \\ &\leq \text{const.} \|h\|_{\infty}^k |\varphi(z)|^{-(n+1+m)/2} \int_{\Omega} \frac{|\varphi(u_1)|^{-(n+1-m)/2} \, d\mu(u_1)}{|\Psi(w,u_1)|^{n+1+m}} \\ &= \text{const.} \|h\|_{\infty}^k |\varphi(z)|^{-(n+1+m)/2} J_{-(n+1-m)/2,(n+1+m)/2}(w). \end{aligned}$$

We may conclude that

(12)
$$|I_1(z,w)| \le \text{const.} ||h||_{\infty}^k |\varphi(z)|^{-(n+1+m)/2} |\varphi(w)|^{-(n+1+m)/2}$$

Next (for j = 2)

$$\begin{aligned} \|H_2(z,\cdot)\|_m^2 &= \int_{\Omega} |E(z,u_k)|^2 |h(u_k)|^2 |\varphi(u_k)|^m \, d\mu(u_k) \\ &\leq \text{const.} \|h\|_{\infty}^2 \int_{\Omega} |\Psi(z,u_k)|^{-2(n+1+m)+1} |\log|\Psi(z,u_k)|^2 |\varphi(u_k)|^m \, d\mu(u_k). \end{aligned}$$

This integral may be written as a sum $\int_{\{|\Psi(z,u_k)| \ge 1\}} + \int_{\{|\Psi(z,u_k)| < 1\}}$. In the first integral $\log|\Psi(z,u_k)| \le |\Psi(z,u_k)|$ while for the second (cf. [18], p. 229)

$$\begin{aligned} |\Psi(z, u_k)| &\geq \text{const.}(|\varphi(z)| + |\varphi(u_k)| + |z - u_k|^2 + |\text{Im }\Psi(z, u_k)|) \\ &\geq \text{const.}|\varphi(z)| \end{aligned}$$

yields $|\log|\Psi(z, u_k)|| \le \text{const.} |\log|\varphi(z)||$. Hence

$$\begin{split} \|H_{2}(z,\cdot)\|_{m}^{2} &\leq \text{const.} \|h\|_{\infty}^{2} \\ &\quad \cdot \left(\int_{\Omega} |\Psi(z,u_{k})|^{-2(n+m)+1} |\varphi(u_{k})|^{m} \, d\mu(u_{k}) \right. \\ &\quad + \text{const.} |\log|\varphi(z)||^{2} \int_{\Omega} |\Psi(z,u_{k})|^{-2(n+m)-1} |\varphi(u_{k})|^{m} \, d\mu(u_{k}) \right) \\ &= \text{const.} \|h\|_{\infty}^{2} (J_{m,n-2+m}(z) + |\log|\varphi(z))\|^{2} J_{m,n+m}(z)) \end{split}$$

i.e.

$$||H_2(z,\cdot)||_m \le \text{const.} ||h||_{\infty} |\varphi(z)|^{-(n+m)/2} (|\varphi(z)| + |\log|\varphi(z)||).$$

Then (by (11))

BOUNDARY BEHAVIOUR

$$\begin{split} |I_{2}(z,w)| &\leq \operatorname{const.} \|h\|_{\infty}^{k-1} |\varphi(z)|^{-(n+m)/2} (|\varphi(z)| + |\log|\varphi(z)||) \\ & \cdot \int_{\Omega} |G_{2}(u_{1},w)| |\varphi(u_{1})|^{-(n+1-m)/2} d\mu(u_{1}) \\ &\leq \operatorname{const.} \|h\|_{\infty}^{k} |\varphi(z)|^{-(n+m)/2} (|\varphi(z)| \\ & + |\log|\varphi(z)||) \int_{\Omega} \frac{|\varphi(u_{1})|^{-(n+1-m)/2} d\mu(u_{1})}{|\Psi(w,u_{1})|^{n+1+m}} \\ &= \operatorname{const.} \|h\|_{\infty}^{k} |\varphi(z)|^{-(n+m)/2} (|\varphi(z) + |\log|\varphi(z)||) J_{-(n+1-m)/2, (n+1+m)/2}(w) \end{split}$$

i.e.

(13)
$$|I_2(z,w)| \le \text{const.} ||h||_{\infty}^k |\varphi(z)|^{-(n+1+m)/2} |\varphi(w)|^{-(n+1+m)/2} F(z).$$

Next (as $H_1 = H_3$)

$$\begin{aligned} |I_{3}(z,w)| &\leq \text{const.} ||h||_{\infty}^{k} |\varphi(z)|^{-(n+1+m)/2} \\ &\cdot \int_{\Omega} |E(w,u_{1})| \cdot |\varphi(u_{1})|^{-(n+1-m)/2} d\mu(u_{1}) \\ &\leq \text{const.} ||h||_{\infty}^{k} |\varphi(z)|^{-(n+1+m)/2} \int_{\Omega} |\Psi(w,u_{1})|^{-(n+1+m)+1/2} \\ &\cdot |\log|\Psi(w,u_{1})| \cdot |\varphi(u_{1})|^{-(n+1-m)/2} d\mu(u_{1}) \\ &\leq \text{const.} ||h||_{\infty}^{k} |\varphi(z)|^{-(n+1+m)/2} \\ &\cdot \left\{ \int_{\Omega} |\Psi(w,u_{1})|^{-(n+m)+1/2} \cdot |\varphi(u_{1})|^{-(n+1-m)/2} d\mu(u_{1}) \right. \\ &+ \text{const.} |\log|\varphi(w)|| \int_{\Omega} |\Psi(w,u_{1})|^{-(n+m)-1/2} |\varphi(u_{1})|^{-(n+1-m)/2} d\mu(u_{1}) \right\} \\ &= \text{const.} ||h||_{\infty}^{k} |\varphi(z)|^{-(n+1+m)/2} \\ &\cdot \left\{ J_{-(n+1-m)/2, (n-2+m)/2}(w) + |\log|\varphi(w)|| J_{-(n+1-m)/2, (n+m)/2}(w) \right\} \\ &\leq \text{const.} ||h||_{\infty}^{k} |\varphi(z)|^{-(n+1+m)/2} \\ &\cdot \left\{ |\varphi(w)|^{-(n-2+m)/2} + |\log|\varphi(w)|| \cdot |\varphi(w)|^{-(n+m)/2} \right\} \end{aligned}$$

i.e.

(14)
$$|I_3(z,w)| \le \text{const.} ||h||_{\infty}^k |\varphi(z)|^{-(n+1+m)/2} |\varphi(w)|^{-(n+1+m)/2} F(w).$$

Finally (as $H_2 = H_4$ and $G_3 = G_4$)

(15)
$$|I_4(z,w)| \le \text{const.} ||h||_{\infty}^k |\varphi(z)|^{-(n+1+m)/2} |\varphi(w)|^{-(n+1+m)/2} F(z)F(w).$$

The estimates (12)-(15) lead to

(16)
$$|[K_{1,|\varphi|^m}^{(k)}h^{(k)}](z,w)| \le \text{const.} ||h||_{\infty}^k |\varphi(z)|^{-(n+1+m)/2} \cdot |\varphi(w)|^{-(n+1+m)/2} (1+F(z)+F(w)+F(z)F(w)).$$

To deal with $K_{1,|\varphi|^m}^{(1)}$ we firstly note that

$$[K_{1,|\varphi|^m}^{(1)}h^{(1)}](z,w) = c_{\Omega}^2 J_1(z,w) + c_{\Omega}(J_2(z,w) + J_3(z,w)) + J_4(z,w)$$

where

$$J_{1}(z,w) = \int_{\Omega} |\nabla\varphi(u_{1})|^{4} |\det L_{\varphi}(u_{1})|^{2} \Psi(z,u_{1})^{-(n+1+m)}$$

$$\cdot \overline{\Psi(w,u_{1})}^{-(n+1+m)} h(u_{1}) |\varphi(u_{1})|^{m} d\mu(u_{1})$$

$$J_{2}(z,w) = \int_{\Omega} |\nabla\varphi(u_{1})|^{2} \cdot \overline{\det L_{\varphi}(u_{1})} \cdot E(z,u_{1})$$

$$\cdot \overline{\Psi(w,u_{1})}^{-(n+1+m)} h(u_{1}) |\varphi(u_{1})|^{m} d\mu(u_{1})$$

$$J_{3}(z,w) = \int_{\Omega} |\nabla\varphi(u_{1})|^{2} \cdot \det L_{\varphi}(u_{1}) \cdot \Psi(z,u_{1})^{-(n+1+m)}$$

$$\cdot \overline{E(w,u_{1})} h(u_{1}) |\varphi(u_{1})|^{m} d\mu(u_{1})$$

$$J_{4}(z,w) = \int_{\Omega} E(z,u_{1}) \overline{E(w,u_{1})} h(u_{1}) |\varphi(u_{1})|^{m} d\mu(u_{1}).$$

Then

$$\begin{split} |J_{1}(z,w)| \\ &\leq \text{const.} \|h\|_{\infty} \int_{\Omega} |\Psi(z,u_{1})|^{-(n+1+m)} |\Psi(w,u_{1})|^{-(n+1+m)} |\varphi(u_{1})| \, d\mu(u_{1}) \\ &\leq \text{const.} \|h\|_{\infty} \cdot \left(\int_{\Omega} |\Psi(z,u_{1})|^{-2(n+1+m)} |\varphi(u_{1})|^{m} \, d\mu(u_{1}) \right)^{1/2} \\ &\quad \cdot \left(\int_{\Omega} |\Psi(w,u_{1})|^{-2(n+1+m)} |\varphi(u_{1})|^{m} \, d\mu(u_{1}) \right)^{1/2} \\ &= \text{const.} \|h\|_{\infty} J_{m,n+1+m}(z)^{1/2} J_{m,n+1+m}(w)^{1/2} \end{split}$$

i.e.

(17)
$$|J_1(z,w)| \le \text{const.} ||h||_{\infty} |\varphi(z)|^{-(n+1+m)/2} |\varphi(w)|^{-(n+1+m)/2}$$

Next

$$\begin{aligned} |J_{2}(z,w)| \\ &\leq \text{const.} \|h\|_{\infty} \int_{\Omega} |E(z,u_{1})| \cdot |\Psi(w,u_{1})|^{-(n+1+m)} |\varphi(u_{1})|^{m} d\mu(u_{1}) \\ &\leq \text{const.} \|h\|_{\infty} \left(\int_{\Omega} |E(z,u_{1})|^{2} |\varphi(u_{1})|^{m} d\mu(u_{1}) \right)^{1/2} \\ &\quad \cdot \left(\int_{\Omega} |\Psi(w,u_{1})|^{-2(n+1+m)} |\varphi(u_{1})|^{m} d\mu(u_{1}) \right)^{1/2} \\ &= \text{const.} \|h\|_{\infty} \cdot \|E(z,\cdot)\|_{m} J_{m,n+1+m}(w)^{1/2} \\ &\leq \text{const.} \|h\|_{\infty} \cdot \|E(z,\cdot)\|_{m} |\varphi(w)|^{-(n+1+m)/2}. \end{aligned}$$

On the other hand

$$\begin{split} |E(z,\cdot)||_{m}^{2} \\ &\leq \mathrm{const.} \int_{\Omega} |\Psi(z,u_{1})|^{-2(n+1+m)+1} \cdot |\log|\Psi(z,u_{1})||^{2} |\varphi(u_{1})|^{m} d\mu(u_{1}) \\ &\leq \mathrm{const.} \left(\int_{\Omega} |\Psi(z,u_{1})|^{-2(n+1+m)+3} |\varphi(u_{1})|^{m} d\mu(u_{1}) \\ &+ |\log|\varphi(z)||^{2} \int_{\Omega} |\Psi(z,u_{1})|^{-2(n+1+m)+1} |\varphi(u_{1})|^{m} d\mu(u_{1}) \right) \\ &= \mathrm{const.} (J_{m,n-2+m}(z) + |\log|\varphi(z)||^{2} J_{n,n+m}(z)) \\ &\leq \mathrm{const.} |\varphi(z)|^{-(n+m)} (|\varphi(z)|^{2} + |\log|\varphi(z)||^{2}) \end{split}$$

i.e.

$$||E(z,\cdot)||_m \le |\varphi(z)|^{-(n+1+m)/2}F(z).$$

We conclude that

(18)
$$|J_2(z,w)| \le \text{const.} ||h||_{\infty} |\varphi(z)|^{-(n+1+m)/2} |\varphi(w)|^{-(n+1+m)/2} F(z).$$

Similarly

(19)
$$|J_3(z,w)| \le \text{const.} ||h||_{\infty} |\varphi(z)|^{-(n+1+m)/2} |\varphi(w)|^{-(n+1+m)/2} F(w).$$

Finally

$$|J_4(z,w)| \le \text{const.} \|h\|_{\infty} \|E(z,\cdot)\|_m \cdot \|E(w,\cdot)\|_m$$

i.e.

(20)
$$|J_4(z,w)| \le \text{const.} ||h||_{\infty} |\varphi(z)|^{-(n+1+m)/2} |\varphi(w)|^{-(n+1+m)/2} F(z)F(w).$$

By taking into account the estimates (17)–(20) it follows that (16) holds good for

k = 1 as well. To deal with $K_{1,|\varphi|}^{(2)}h^{(2)}$ one firstly uses the Schwarz inequality and Lemma 2.8 in [18], p. 233, so that to obtain

$$|[K_{1,|\varphi|^{m}}^{(2)}h^{(2)}](z,w)| \le \text{const.} ||h||_{\infty}^{2} |\varphi(z)|^{-(n+1+m)/2} \int_{\Omega} |K_{m}(u_{1},w)| \cdot |\varphi(u_{1})|^{-(n+1-m)/2} d\mu(u_{1}).$$

On the other hand

$$\begin{split} & \sum_{\Omega} |K_m(u_1, w)| \cdot |\varphi(u_1)|^{-(n+1-m)/2} d\mu(u_1) \\ & \leq \operatorname{const.} \left(\int_{\Omega} |\Psi(w, u_1)|^{-(n+1+m)} |\varphi(u_1)|^{-(n+1-m)/2} d\mu(u_1) \\ & + \int_{\Omega} |\Psi(w, u_1)|^{-(n+1+m)+1/2} |\log|\Psi(w, u_1)|| \cdot |\varphi(u_1)|^{-(n+1-m)/2} d\mu(u_1) \right) \\ & = \operatorname{const.} (J_{-(n+1-m)/2, (n+1+m)/2}(w) + J_{-(n+1-m)/2, (n-2+m)/2}(w) \\ & + |\log|\varphi(w)||J_{-(n+1-m)/2, (n+m)/2}(w)) \\ & \leq \operatorname{const.} (|\varphi(w)|^{-(n+1+m)/2} + |\varphi(w)|^{-(n-2+m)/2} \\ & + |\log|\varphi(w)|| \cdot |\varphi(w)|^{-(n+m)/2}) = \operatorname{const.} |\varphi(w)|^{-(n+1+m)/2} (1 + F(w)) \end{split}$$

hence we may conclude that (16) holds for k = 2 as well. At this point (16) furnishes

$$\sum_{k=1}^{\infty} |[K_{1,|\varphi|^{m}}^{(k)}h^{(k)}](z,w)|$$

$$\leq \text{const.} \frac{1}{1-\|h\|_{\infty}} |\varphi(z)|^{-(n+1+m)/2} |\varphi(w)|^{-(n+1+m)/2}$$

$$\cdot (1+F(z)+F(w)+F(z)F(w))$$

which, together with the estimate in Theorem 1, yields (10).

4. The complex dilatation of a symplectomorphism and the Beltrami equations

Let $\Omega \subset \mathbb{C}^n$ be a γ -Kobayashi domain, for some $\gamma \in AW(\Omega)$. Let F be a symplectomorphism of $(\Omega, \omega_{\gamma})$ in itself. We have

LEMMA 3. For any
$$z \in \Omega$$
 and any $Z \in T^{1,0}(\Omega)_z$, $Z \neq 0$, one has $(d_z F)\overline{Z} \notin T^{1,0}(\Omega)_{F(z)}$.

The proof is by contradiction. Assume that $(d_z F)\overline{Z} \in T^{1,0}(\Omega)_{F(z)}$ for some $Z \in T^{1,0}(\Omega)_z$, $Z \neq 0$, and some $z \in \Omega$. As F is a diffeomorphism $(d_z F)\overline{Z} \neq 0$. Hence

$$egin{aligned} 0 < \|(d_z F)ar{Z}\|^2 &= g_{\gamma,F(z)}((d_z F)ar{Z},(d_z F)Z) \ &= -i\omega_{\gamma,z}(ar{Z},Z) = -\|Z\|^2, \end{aligned}$$

a contradiction.

Let $T^{1,0}(\Omega)_F$ consist of all $Z \in T(\Omega) \otimes C$ with $(dF)Z \in T^{1,0}(\Omega)$.

LEMMA 4. For any symplectomorphism F of $(\Omega, \omega_{\gamma})$ there is a C-antilinear bundle map dil $(F) : T^{1,0}(\Omega) \to T^{1,0}(\Omega)$ so that

$$T^{1,0}(\Omega)_F = \{ Z - \overline{\operatorname{dil}(F)Z} : Z \in T^{1,0}(\Omega) \}.$$

To prove Lemma 4, let $\pi_{0,1}: T(\Omega) \otimes C \to T^{0,1}(\Omega)$ be the natural projection. Then

$$T^{1,0}(\mathbf{\Omega})_F = \operatorname{Ker}(\pi_{0,1} \circ (dF)).$$

Let (z^1, \ldots, z^n) be the natural complex coordinates on C^n . Set

$$F_k^J = \frac{\partial F^J}{\partial z^k}, \quad F_{\overline{k}}^J = \frac{\partial F^J}{\partial \overline{z}^k},$$

etc.. Then $\det(F_j^{\overline{k}}) \neq 0$ everywhere on Ω . Indeed, if $\det(F_j^{\overline{k}}(z_0)) = 0$ at some $z_0 \in \Omega$ then $\sum_k F_{\overline{k}}^{\overline{j}}(z_0)\overline{\zeta^k} = 0$, $1 \le j \le n$, for some $(\zeta^1, \ldots, \zeta^n) \in \mathbb{C}^n - \{0\}$. Set $Z = \sum_j \zeta_j (\partial/\partial z^j)_{z_0} \in T^{1,0}(\Omega)_{z_0}$. Then $Z \ne 0$ and

$$(d_{z_0}F)\overline{Z} = \sum_{J,k} \overline{\zeta^k} F^J_{\overline{k}}(z_0) \left(\frac{\partial}{\partial z^J}\right)_{F(z_0)} \in T^{1,0}(\mathbf{\Omega})_{F(z_0)}$$

a contradiction (by Lemma 3). Let $\operatorname{dil}(F): T^{1,0}(\Omega) \to T^{1,0}(\Omega)$ be given by $\operatorname{dil}(F)(\partial/\partial z^{j}) = \sum_{k} \operatorname{dil}(F)_{j}^{k} \partial/\partial z^{k}$ (followed by *C*-antilinear extension) where

(21)
$$F_j^{\ell} = \sum_k \operatorname{dil}(F)_j^k F_k^{\ell}.$$

Finally, note that $\partial/\partial z^j - \overline{\operatorname{dil}(F)} \partial/\partial z^j \in \operatorname{Ker}(\pi_{0,1} \circ (dF)).$ q.e.d.

The bundle map dil(F) is referred to as the *complex dilatation* (of the symplectomorphism F).

PROPOSITION 1. Let F be a symplectomorphism of $(\Omega, \omega_{\gamma})$ and dil(F) its complex dilatation. Then

$$\omega_{\gamma}(Z,\overline{\operatorname{dil}(F)W}) + \omega_{\gamma}(\overline{\operatorname{dil}(F)Z},W) = 0,$$

for any $Z, W \in T^{1,0}(\Omega)$. Also, dil(F) = 0 if and only if F is holomorphic.

Indeed, if $Z \in T^{1,0}(\Omega)$ then $(dF)(Z - \overline{\operatorname{dil}(F)Z}) \in T^{1,0}(\Omega)$. Therefore, as ω_{γ} vanishes on complex vector of the same type,

$$0 = \omega_{\gamma}((dF)(Z - \overline{\operatorname{dil}(F)Z}), (dF)(W - \overline{\operatorname{dil}(F)W}))$$

= $\omega_{\gamma}(Z - \overline{\operatorname{dil}(F)Z}, W - \overline{\operatorname{dil}(F)W}) = -\omega_{\gamma}(Z, \overline{\operatorname{dil}(F)W}) - \omega_{\gamma}(\overline{\operatorname{dil}(F)Z}, W)$

for any $Z, W \in T^{1,0}(\Omega)$.

By (21), each component F^{j} of the symplectomorphism F satisfies the first order PDE (with variable coefficients)

(22)
$$\frac{\partial f}{\partial \bar{z}^{J}} = \sum_{k} d_{\bar{j}}^{k} \frac{\partial f}{\partial z^{k}}$$

where $d_{\bar{j}}^k = \operatorname{dil}(F)_{\bar{j}}^k$. We refer to (22) as the *Beltrami equations* (cf. e.g. [20]). On the other hand, with any contact transformation $F: M \to N$ between two strictly pseudoconvex CR manifolds M and N one may associate (cf. [10], p. 61) a complex dilatation $\mu: T_{1,0}(M) \to T_{1,0}(M)$ and whenever $M = H_{n-1}$ (the Heisenberg group) and N is a real hypersurface in \mathbb{C}^n (carrying the standard CR structure induced from the complex structure of \mathbb{C}^n), the components F^j of F satisfy the PDE

(23)
$$L_{\tilde{\alpha}}f = \sum_{\beta=1}^{n-1} \mu_{\tilde{\alpha}}^{\beta} L_{\beta}f$$

where $L_{\bar{\alpha}} = \partial/\partial \bar{z}^{\alpha} - iz^{\alpha}\partial/\partial t$ are the *Lewy operators* (cf. e.g. [5], p. 435–436) on H_{n-1} , and $\mu L_{\alpha} = \sum_{\beta} \mu_{\bar{\alpha}}^{\beta} L_{\beta}$. We refer to (23) as the *tangential Beltrami equations*.

Consider the Siegel domain $\Omega_n = \{\varphi_n < 0\}$ and let $F = (F^1, \ldots, F^n)$ be a symplectomorphism of $(\Omega_n, \omega_\alpha)$ in itself. Let \mathscr{F}_n be the foliation of \mathbb{C}^n by level sets of φ_n . If F is smooth up to $\partial\Omega_n$ then μ (the complex dilatation of F) restricted to $T_{1,0}(\mathscr{F}_n)$ converges to the complex dilatation of the boundary contact transformation (the proof is a word by word repetition of the proof of Proposition 2 in [11], p. 1122). Also, if $\phi : H_{n-1} \to \partial\Omega_n$ is the CR isomorphism $\phi(z, t) = (t + i|z|^2, z)$, then each $F^j \circ \phi$ satisfies the tangential Beltrami equations (23) (this follows from the remark at the end of section 2 and by a result in [10], p. 62).

Let d_j^k be smooth functions defined on some neighborhood of $\overline{\Omega}_n$. The complex vector fields $\partial/\partial \overline{\zeta}^J - \sum_k d_j^k \partial/\partial \zeta^k$ span a rank *n* complex vector subbundle $B \subset T(\Omega_n) \otimes C$. For the Siegel domain Ω_n , the vector field ξ (determined by (6)) is given by $\xi = 2i\partial/\partial \zeta^1$. The CR isomorphism $\phi : H_{n-1} \approx \partial \Omega_n$ maps the Lewy operators $L_{\overline{\alpha}}$ into $Z_{\overline{\alpha}} = \partial/\partial \overline{\zeta}^{\alpha} + \zeta^{\alpha} \overline{\xi}$, $2 \leq \alpha \leq n$. We establish the following

PROPOSITION 2. Let D be an open neighborhood of $\overline{\Omega}_n$ and $\mu: T^{1,0}(D) \to T^{1,0}(D)$ a fibrewise C-antilinear bundle morphism which maps $T_{1,0}(\partial \Omega_n)$ into itself. Let $B_b \subset T(\partial \Omega_n) \otimes C$ be the rank n-1 complex subbundle spanned

by $Z_{\bar{\alpha}} - \mu_{\bar{\alpha}}^{\beta} Z_{\beta}$, $2 \le \alpha \le n$, where $\mu_{\bar{\alpha}}^{\beta}$ are given by $\mu(Z_{\alpha}) = \mu_{\bar{\alpha}}^{\beta} Z_{\beta}$. Let $d_{\bar{j}}^{k}$ be given by $\mu(\partial/\partial\zeta^{j}) = d_{\bar{j}}^{k} \partial/\partial\zeta^{k}$ and set $h(\zeta) = 2i \sum_{\beta} d_{\bar{1}}^{\beta} \zeta_{\beta} - d_{\bar{1}}^{1} - 1$. Then $B_{b} = [T(\partial\Omega_{n}) \otimes C] \cap B$

on $\partial \Omega_n \cap \{\zeta : h(\zeta) \neq 0\}$. In particular, the trace on $\partial \Omega_n$ of any solution $f \in C^{\infty}(\overline{\Omega}_n)$ of the Beltrami equations (22) satisfies the tangential Beltrami equations $Z_{\overline{\alpha}}f = \mu_{\overline{\alpha}}^{\beta}Z_{\beta}f$ on the open set $\{\zeta \in \partial \Omega_n : h(\zeta) \neq 0\}$.

Indeed, as $\mu(T_{1,0}(\partial \Omega_n)) \subseteq T_{1,0}(\partial \Omega_n)$,

$$\mu^{eta}_{ar{lpha}} = d^{eta}_{ar{lpha}} - 2i\zeta_{lpha}d^{eta}_{ar{ar{l}}},$$
 $2i\mu^{eta}_{ar{lpha}}ar{\zeta}_{eta} = d^1_{ar{lpha}} - 2i\zeta_{lpha}d^1_{ar{ar{l}}},$

where $\zeta_{\alpha} = \zeta^{\alpha}$. Consequently $Z = a^{j} (\partial/\partial \bar{\zeta}^{j} - d_{\bar{j}}^{k} \partial/\partial \zeta^{k})$ is tangent to $\partial \Omega_{n} \cap \{h \neq 0\}$ if and only if $a^{1} = -2i\zeta_{\alpha}a^{\alpha}$, i.e. $Z \in \Gamma^{\infty}(B_{b})$. q.e.d.

PROPOSITION 3. Let $F : \Omega_n \to \Omega_n$ be a C^{∞} diffeomorphism, smooth up to the boundary, each of whose components F^j satisfies the PDE

$$Z_{ ilde{lpha}}F^{\jmath}=\mu^{eta}_{ ilde{lpha}}Z_{eta}F^{\jmath}$$

in Ω_n , for some C^{∞} functions $\mu_{\bar{\alpha}}^{\beta}: \Omega_n \to C$. If F is a foliated map, i.e. it preserves the foliation \mathscr{F}_n , then for any $\alpha > -1$ there is $f_{\alpha} \in C^2(\Omega_n)$, $f_{\alpha} \neq 0$ everywhere, so that

$$F^*\omega_{\alpha} \equiv f_{\alpha}\omega_{\alpha}, \, \operatorname{mod} \theta_{\alpha}, \, d\rho_{\alpha}.$$

Proof. Set $V_{\alpha} = Z_{\alpha}(F^{j})\partial/\partial\zeta^{j}$ and $W_{\alpha} = Z_{\bar{\alpha}}(F^{j})\partial/\partial\zeta^{j}$. As $(dF)T(\mathscr{F}_{n}) = T(\mathscr{F}_{n}),$ $Z_{\alpha} - \mu_{\alpha}^{\bar{\beta}}Z_{\bar{\beta}} \in T(\mathscr{F}_{n}) \otimes C,$ $W_{\alpha} = \mu_{\bar{\alpha}}^{\beta}V_{\beta},$

(where $\mu_{\alpha}^{\hat{\beta}} = \overline{\mu_{\hat{\alpha}}^{\beta}}$) one has

$$(dF)(Z_{\alpha}-\mu_{\alpha}^{\beta}Z_{\bar{\beta}})=V_{\alpha}-\mu_{\alpha}^{\beta}W_{\beta}\in T_{1,0}(\mathscr{F}_{n}).$$

Note that

$$H(\mathscr{F}_n)\otimes C=\operatorname{Re}\{B_b\oplus\overline{B_b}\}$$

and

$$(F^*\theta_{\alpha})\overline{B}_b \subseteq \theta_{\alpha}(T_{1,0}(\mathscr{F}_n)) = 0$$

hence

$$F^*\theta_{\alpha} = a\theta_{\alpha} + bd\rho_{\alpha}$$

for some C^{∞} functions $a, b: \Omega_n \to \mathbb{R}$. Here $\theta_{\alpha} = (i/2)(\bar{\partial} - \partial)\rho_{\alpha}$. Also $\rho_{\alpha} \circ F = \lambda \rho_{\alpha}$ for some $\lambda \in C^2(\bar{\Omega}_n), \ \lambda > 0$ everywhere. Next, one may use

$$\omega_{\alpha} = (n+1+\alpha) \left\{ \frac{d\theta_{\alpha}}{\rho_{\alpha}} - \frac{d\rho_{\alpha} \wedge \theta_{\alpha}}{\rho_{\alpha}^2} \right\}$$

to conclude that

$$F^*\omega_{\alpha} = \frac{a}{\lambda}\omega_{\alpha} + \frac{n+1+\alpha}{\lambda\rho_{\alpha}}((da - ad\log\lambda) \wedge \theta_{\alpha} + (db - bd\log\lambda) \wedge d\rho_{\alpha}).$$

Finally $a \neq 0$ everywhere (for if $a(z_0) = 0$ at some $z_0 \in \Omega_n$ then

$$heta_{lpha,F(z_0)}(d_{z_0}F)=b(z_0)\,d_{z_0}
ho_{lpha},$$

i.e. $(d_{z_0}F)T(\mathscr{F}_n)_{z_0} \subseteq H(\mathscr{F}_n)_{F(z_0)}$, a contradiction).

References

- E. BARLETTA AND S. DRAGOMIR, On the Djrbashian kernel of a Siegel domain, Studia Math., 127 (1998), 47–63.
- [2] S. BERGMAN, The Kernel Function and Conformal Mapping, Math. Surveys, 5, Amer. Math. Soc., New York, 1950.
- [3] S. DRAGOMIR, On weighted Bergman kernels of bounded domains, Studia Math., 107 (1994), 149–157
- [4] C. FEFERMAN, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., 26 (1974), 1-65.
- [5] G. B. FOLLAND AND E. M. STEIN, Estimates for the $\bar{\partial}_b$ -complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429–522.
- [6] F FORELLI AND W RUDIN, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J., 24 (1974), 593-602.
- [7] S. HELGASON, Differential geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978, 352–373.
- [8] S. KOBAYASHI, Geometry of bounded domains, Trans. Amer. Math. Soc., 92 (1959), 267-290.
- [9] A. KORÁNYI AND H. M. REIMANN, Quasiconformal mappings on the Heisenberg group, Invent. Math., 80 (1985), 309-338.
- [10] A. KORÁNYI AND H. M. REIMANN, Quasiconformal mappings on CR manifolds, Lecture Notes in Math., 1422, Springer-Verlag, Berlin-Heidelberg-New York, 1988, 59–75.
- [11] A. KORÁNYI AND H. M. REIMANN, Contact transformations as limits of symplectomorphisms, C.R. Acad. Sci. Paris, 318 (1994), 1119-1124.
- [12] A. KORÁNYI AND H. M. REIMANN, Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. Math., 111 (1995), 1–87
- [13] J. M. LEE and R. MELROSE, Boundary behaviour of the complex Monge-Ampère equation, Acta Math., 148 (1982), 159-192.
- [14] E. LIGOCKA, On the Forelli-Rudin construction and weighted Bergman projections, Studia Math., 94 (1989), 257-272.
- [15] T. MAZUR, On complex manifolds of Bergman type, Classical Analysis, World Scientific, River Edge, 1992, 132–138.
- [16] Z. PASTERNAK-WINIARSKI, On the dependence of the reproducing kernel on the weight of integration, J. Funct. Anal., 94 (1990), 110-134.

- [17] Z. PASTERNAK-WINIARSKI, On weights which admit the reproducing kernel of Bergman type, Internat. J. Math. Math. Sci., 15 (1992), 1–14.
- [18] M. M. PELOSO, Hankel operators on weighted Bergman spaces on strongly pseudoconvex domains, Illinois J. Math., 38 (1994), 223-249.
- [19] M. M. PELOSO, Sobolev regularity of the weighted Bergman projections and estimates for minimal solutions to the $\bar{\partial}$ -equation, Complex Variables Theory Appl., **27** (1995), 339–363.
- [20] L. WANG, The globally homeomorphic solutions to Beltrami system in Cⁿ, Math. Z., 216 (1994), 371–377

UNIVERSITÀ DEGLI STUDI DELLA BASILICATA DIPARTIMENTO DI MATEMATICA VIA N. SAURO 85 85100 POTENZA ITALY e-mail: barletta@unibas.it e-mail: dragomir@unibas.it