ON BOUNDARY BEHAVIOUR OF SYMPLECTOMORPHISMS

Elisabetta Barletta and Sorin Dragomir

Let $\Omega \subset C^{n}$ be a strictly pseudoconvex domain, γ an admissible weight, and $K_{\gamma}(z, \zeta)$ the reproducing (or γ-Bergman) kernel for $L^{2} H(\Omega, \gamma)$, the space of square integrable functions, with respect to the measure $\gamma d \mu$, which are holomorphic in $\Omega\left(d \mu\right.$ is the Lebesgue measure in $\left.\boldsymbol{R}^{2 n}\right)$, cf. e.g. Z. Pasternak-Winiarski [17]. Consider the complex tensor field:

$$
H_{\gamma}=\sum_{1 \leq i, j \leq n}\left(\frac{\partial^{2}}{\partial z_{i} \partial \bar{z}_{J}} \log K_{\gamma}(z, z)\right) d z_{l} \otimes d \bar{z}_{J}
$$

and the corresponding real tangent $(0,2)$-tensor field g_{γ} given by:

$$
g_{\gamma}=\operatorname{Re}\left\{\left.H_{\gamma}\right|_{\chi(\Omega) \times \chi(\Omega)}\right\},
$$

where $\chi(\Omega)$ is the $C^{\infty}(\Omega)$-module of all real tangent vector fields on Ω. Under suitable conditions (cf. section 2) g_{γ} is a Kählerian metric on Ω, hence $\omega_{\gamma}=$ $-i \partial \bar{\partial} \log K_{\gamma}(z, z)$ is a symplectic structure (the Kähler 2-form of $\left.g_{\gamma}\right)$. One of the problems we take up in the present paper may be stated as follows. Let F : $\Omega \rightarrow \boldsymbol{\Omega}$ be a symplectomorphism of $\left(\Omega, \omega_{\gamma}\right)$ in itself, smooth up to the boundary. Does $F: \partial \Omega \rightarrow \partial \Omega$ preserve the contact structure of the boundary?

Our interest may be motivated as follows. If $F: \Omega \rightarrow \Omega$ is a biholomorphism then, by a celebrated result of C. Fefferman (cf. Theorem 1 in [4], p. 2) F is smooth up to the boundary, hence $F: \partial \Omega \rightarrow \partial \Omega$ is a CR diffeomorphism, and in particular a contact transformation. Also biholomorphisms are known to be isometries of the Bergman metric g_{1} (cf. e.g. [7], p. 370) hence symplectomorphisms of $\left(\Omega, \omega_{1}\right)$. On the other hand, one may weaken the assumption on F by requesting only that F be a C^{∞} diffeomorphism and $F^{*} \omega_{1}=\omega_{1}$. Then, by a result of A. Korányi and H. M. Reimann [11], if F is smooth up to the boundary then $F: \partial \Omega \rightarrow \partial \Omega$ is a contact transformation.

The main ingredient in the proof of A. Korányi and H. M. Reimann's result is the fact that, when $\gamma \equiv 1$, a certain negative power of the Bergman kernel $(\rho(z)=$ $K_{1}(z, z)^{-1 /(n+1)}$) is a defining function of Ω (allowing one to relate the symplectic structure of Ω to the contact structure of its boundary). In turn, this is a consequence of C. Fefferman's asymptotic expansion of $K_{1}(z, \zeta)$ (cf. Theorem 2 in
[4], p. 9). Therefore, should one extend A. Korányi and H. M. Reimann's ideas to weighted Bergman kernels and related structures, the first obstacle is whether a similar asymptotic expansion is known for $K_{\gamma}(z, \zeta)$. Indeed, this is available when $\Omega=\{\varphi<0\}$ is a smoothly bounded strictly pseudoconvex domain and $\gamma=$ $|\varphi|^{m}, m \in\{0,1,2, \ldots\}$, by a result of M. M. Peloso [18] (cf. Theorem 1). Cf. also [19] for a study of the boundary behaviour of $K_{\gamma}(z, \zeta)$ when $\gamma=|\varphi|^{\alpha}, \alpha>-1$ (not necessarily an integer). However, each point of the curve $\alpha \mapsto|\varphi|^{\alpha}$ (in the Banach manifold $W(\Omega)$ of all weights on Ω) is isolated (cf. Theorem 2) hence our present knowledge of the asymptoyic properties of $K_{\gamma}(z, \zeta)$, as γ runs over $W(\Omega)$, is rather limited.

We apply Theorem 1 to study the boundary behaviour of a symplectomorphism of $\left(\Omega, \omega_{|\varphi|^{m}}\right), m \in\{1,2, \ldots\}$ (cf. Theorem 3).

Using the analytic behaviour of $K_{\gamma}(z, \zeta)$ with respect to γ (cf. [16], p. 131) we prove an analogue of Fefferman's asymptotic formula for more general weights of the form: an essentially bounded function times a nonnegative integer power of the defining function (cf. Theorem 4).

In section 4 we show that the components of any symplectomorphism of a γ Kobayashi domain Ω satisfy a Beltrami system (in the sense of [20]). If Ω is the Siegel domain, the tangential equations induced (on $\partial \Omega$) by this system turn out to be (cf. Proposition 2) the equations introduced in [10] in connection with the study of quasiconformal maps of strictly pseudoconvex CR manifolds (cf. also [9], [12]).

1. The Forelli-Rudin-Ligocka-Peloso asymptotic expansion formula

Let $\Omega \subset C^{n}$ be an open set and $W(\Omega)$ the set of all weights on Ω (i.e. $\gamma \in$ $W(\Omega)$ is a Lebesgue measurable function $\gamma: \Omega \rightarrow(0, \infty))$. For each $\gamma \in W(\Omega)$ let $L^{2}(\Omega, \gamma)$ be the Hilbert space of all functions $f: \Omega \rightarrow C$ for which

$$
\|f\|_{\gamma}=\left(\int_{\Omega}|f|^{2} \gamma d \mu\right)^{1 / 2}<\infty
$$

Let $L^{2} H(\Omega, \gamma)$ be the set of all functions in $L^{2}(\Omega, \gamma)$ which are holomorphic in Ω. A weight $\gamma \in W(\Omega)$ is admissible (cf. [17]) if 1) $L^{2} H(\Omega, \gamma)$ is a closed subspace of $L^{2}(\Omega, \gamma)$, and 2) for any $z \in \Omega$ the evaluation functional δ_{z} : $L^{2} H(\Omega, \gamma) \rightarrow C, \delta_{z}(f)=f(z)$, is continuous. The set of all admissible weights on Ω is denoted by $A W(\Omega)$. If $\gamma \in A W(\Omega)$ then, by the Riesz representation theorem, there is a unique function $K_{\gamma}(z, \cdot)$ (called the weighted Bergman kernel of Ω, of weight γ, or the γ-Bergman kernel of Ω) so that $\overline{K_{\gamma}(z, \cdot)} \in L^{2} H(\Omega, \gamma)$ and

$$
f(z)=\int_{\Omega} f(\zeta) K_{\gamma}(z, \zeta) \gamma(\zeta) d \mu(\zeta)
$$

for any $f \in L^{2} H(\Omega, \gamma), z \in \Omega$. For $\gamma=1$ this is the ordinary Bergman kernel of Ω (cf. e.g. [2]).

Let Ω be a smoothly bounded strictly pseudoconvex domain $\Omega=\left\{z \in \boldsymbol{C}^{n}\right.$: $\varphi(z)<0\}$ where φ is such that the Levi form L_{φ} satisfies

$$
L_{\varphi}(w) \xi \geq C_{1}|\xi|^{2}, \quad \xi \in \boldsymbol{C}^{n}
$$

for $\varphi(w)<\delta_{0}, \delta_{0}>0$, and C_{1} depending only on Ω. Set

$$
\begin{equation*}
\Psi(\zeta, z)=(F(\zeta, z)-\varphi(z)) \chi(|\zeta-z|)+(1-\chi(|\zeta-z|))|\zeta-z|^{2} \tag{1}
\end{equation*}
$$

where

$$
F(\zeta, z)=-\sum_{J=1}^{n} \frac{\partial \varphi}{\partial z_{J}}(z)\left(\zeta_{J}-z_{J}\right)-\frac{1}{2} \sum_{J, k=1}^{n} \frac{\partial^{2} \varphi}{\partial z_{J} z_{k}}(z)\left(\zeta_{\jmath}-z_{J}\right)\left(\zeta_{k}-z_{k}\right)
$$

and χ is a C^{∞} cut-off function of the real variable t, with $\chi(t)=1$ for $|t|<\varepsilon_{0} / 2$ and $\chi(t)=0$ for $|t| \geq 3 \varepsilon_{0} / 4$. We may state the following

Theorem 1 (Forelli-Rudin-Ligocka-Peloso ${ }^{1}$). For any nonnegative integer $m \in\{0,1,2, \ldots\},|\varphi|^{m} \in A W(\Omega)$. Let $K_{m}(\zeta, z)$ be the $|\varphi|^{m}$-Bergman kernel for $L^{2} H\left(\Omega,|\varphi|^{m}\right) . \quad$ Then

$$
\begin{equation*}
K_{m}(\zeta, z)=c_{\Omega}|\nabla \varphi(z)|^{2} \cdot \operatorname{det} L_{\varphi}(z) \cdot \Psi(\zeta, z)^{-(n+1+m)}+E(\zeta, z) \tag{2}
\end{equation*}
$$

where $E \in C^{\infty}(\bar{\Omega} \times \bar{\Omega}-\Delta), \Delta$ is the diagonal of $\partial \Omega \times \partial \Omega$, and E satisfies the estimate

$$
|E(\zeta, z)| \leq c_{\Omega}^{\prime}|\Psi(\zeta, z)|^{-(n+1+m)+1 / 2} \cdot|\log | \Psi(\zeta, z)| | .
$$

This extends C. Fefferman's asymptotic expansion formula for the Bergman kernel of a strictly pseudoconvex domain (cf. [4] for $m=0$) to the case of $|\varphi|^{m}$ Bergman kernels, $m \in\{1,2, \ldots\}$ (cf. Lemma 2.2 in [18], p. 229). Part of the proof (relating $K_{m}(\zeta, z)$ to the ordinary Bergman kernel of the domain $\left.\left\{(z, \xi) \in \boldsymbol{C}^{n} \times \boldsymbol{C}^{m}: \varphi(z)+|\xi|^{2}<0\right\}\right)$ actually works for an arbitrary (admissible) weight. Indeed, one has the following

Lemma 1. Let $m \in\{1,2, \ldots\}$ and $\gamma \in A W(\Omega)$. Let $K_{\Omega_{m}}((z, \xi),(w, \eta))$ be the Bergman kernel of the domain $\Omega_{m}=\left\{(z, \xi) \in \boldsymbol{\Omega} \times \boldsymbol{C}^{m}:|\xi|^{2 m}<\gamma(z)\right\}$. Then

$$
\begin{equation*}
K_{\gamma}(z, w)=\frac{\omega_{2 m-1}}{2 m} K_{\Omega_{m}}((z, 0),(w, 0)) \tag{3}
\end{equation*}
$$

Proof. For simplicity set $K(z, w)=K_{\Omega_{m}}((z, 0),(w, 0))$. Also, for fixed $z, w \in$ Ω, we set $u(\eta)=K_{\Omega_{m}}((z, 0),(w, \eta))$. As $K_{\Omega_{m}}$ is anti-holomorphic in η, u is

[^0]harmonic. Hence
$$
u(0)=\frac{2 m}{\omega_{2 m-1}} \gamma(w)^{-1} \int_{B\left(0, \gamma(w)^{1 / 2 m)}\right)} u(\eta) d \mu(\eta)
$$
where ω_{s} is the 'area' of the sphere $S^{s} \subset \boldsymbol{R}^{s+1} \quad\left((w, \eta) \in \Omega_{m}\right.$ yields $\eta \in$ $\left.B\left(0, \gamma(w)^{1 /(2 m)}\right)\right)$. Therefore
\[

$$
\begin{equation*}
K(z, w) \gamma(w)=\frac{2 m}{\omega_{2 m-1}} \int_{|\eta|^{2 m}<\gamma(w)} K_{\Omega_{m}}((z, 0),(w, \eta)) d \mu(\eta) . \tag{4}
\end{equation*}
$$

\]

For each $f \in L^{2} H(\Omega, \gamma)$ set $\tilde{f}(z, \xi)=f(z)$. Clearly \tilde{f} is holomorphic in Ω_{m}. Also

$$
\begin{aligned}
\|\tilde{f}\|_{L^{2}\left(\Omega_{m}\right)}^{2} & =\int_{\Omega_{m}}|\tilde{f}(z, \xi)|^{2} d \mu(z, \xi) \\
& =\int_{\Omega}|f(z)|^{2}\left(\int_{|\xi|^{2 m}<\gamma(z)} d \mu(\xi)\right) d \mu(z) \\
& =\frac{\omega_{2 m-1}}{2 m} \int_{\Omega}|f(z)|^{2} \gamma(z) d \mu(z)=\frac{\omega_{2 m-1}}{2 m}\|f\|_{\gamma}^{2}<\infty
\end{aligned}
$$

i.e. $\tilde{f} \in L^{2}\left(\Omega_{m}\right)$. As $K_{\Omega_{m}}$ reproduces the L^{2} holomorphic functions on Ω_{m}, one has (by (4))

$$
\begin{aligned}
f(z) & =\tilde{f}(z, 0)=\int_{\Omega_{m}} K_{\Omega_{m}}((z, 0),(w, \eta)) \tilde{f}(w, \eta) d \mu(w, \eta) \\
& =\int_{\Omega} f(w)\left(\int_{|\eta|^{2}<\gamma(w)} K_{\Omega_{m}}((z, 0),(w, \eta)) d \mu(\eta)\right) d \mu(w) \\
& =\frac{\omega_{2 m-1}}{2 m} \int_{\Omega} f(w) K(z, w) \gamma(w) d \mu(w)
\end{aligned}
$$

i.e. $\left(\omega_{2 m-1} / 2 m\right) K(z, w)$ reproduces the functions in $L^{2} H(\Omega, \gamma)$. As u is antiholomorphic, $|u|^{2}$ is subharmonic. Hence

$$
|u(0)|^{2} \leq \frac{1}{\operatorname{Vol}\left(B\left(0, \gamma(w)^{1 /(2 m)}\right)\right)} \int_{B\left(0, \gamma(w)^{1 /(2 m)}\right)}|u(\eta)|^{2} d \mu(\eta)
$$

or

$$
|K(z, w)|^{2} \leq \frac{2 m}{\omega_{2 m-1}} \gamma(w)^{-1} \int_{|\eta|^{2}<\gamma(w)^{1 /(2 m)}}\left|K_{\Omega_{m}}((z, 0),(w, \eta))\right|^{2} d \mu(\eta) .
$$

Finally, we may integrate against $w \in \Omega$ so that to get

$$
\begin{aligned}
& \int_{\Omega}|K(z, w)|^{2} \gamma(w) d \mu(w) \\
& \quad \leq \frac{2 m}{\omega_{2 m-1}} \int_{\Omega_{m}}\left|K_{\Omega_{m}}((z, 0),(w, \eta))\right|^{2} d \mu(w, \eta)<\infty
\end{aligned}
$$

i.e. $K(z, \cdot) \in L^{2}(\Omega, \gamma)$. Then (3) follows from the uniqueness statement in the Riesz representation theorem.

When $\gamma=|\varphi|^{m}, m \in\{1,2, \ldots\}$, the domain Ω_{m} is strictly pseudoconvex and (2) follows from Lemma 1 and from Fefferman's asymptotic expansion formula for $K_{\Omega_{m}}$, i.e.

$$
\begin{aligned}
& K_{\Omega_{m}}((z, \xi),(w, \eta)) \\
& \quad=\text { const. }\left|\nabla \varphi_{1}(w, \eta)\right| \cdot \operatorname{det} L_{\varphi_{1}}(w, \eta) \cdot \Psi((z, \xi),(w, \eta))^{-(n+m+1)}+E((z, \xi),(w, \eta))
\end{aligned}
$$

for some $E \in C^{\infty}\left(\bar{\Omega}_{m} \times \bar{\Omega}_{m}-\Delta_{1}\right)$ satisfying the estimate

$$
|E((z, \xi),(w, \eta))| \leq \text { const. }|\Psi((z, \xi),(w, \eta))|^{-(n+m+1)+1 / 2} \cdot|\log | \Psi((z, \xi),(w, \eta))| |
$$

where Ψ is defined as in (1), with the obvious modifications, while $\varphi_{1}(z, \xi)=$ $\varphi(z)+|\xi|^{2}$ and Δ_{1} is the diagonal of $\partial \Omega_{m} \times \partial \Omega_{m}$ (as $\partial \Omega \times\{0\} \subset \partial \Omega_{m}, \Delta$ imbeds in Δ_{1}).

Let $L_{R}^{\infty}(\Omega)$ be the Banach space (algebra) of all real valued Lebesgue measurable, essentially bounded functions on $\Omega=\{\varphi<0\}$, with the norm $\|g\|_{\infty}=\operatorname{esssup}_{z \in \Omega}|g(z)|, g \in L_{R}^{\infty}(\Omega)$. By a result of Z. Pasternak-Winiarski (cf. Proposition 2.3 in [16], p. 116) $W(\Omega)$ is a Banach manifold modelled on $L_{\boldsymbol{R}}^{\infty}(\Omega)$, and $A W(\Omega)$ is an open subset of $W(\Omega)$. Note that the Fefferman like asymptotic expansion of a weighted Bergman kernel is known (cf. Theorem 1 above) only for the points of the curve $C:(-1, \infty) \rightarrow W(\Omega), C(\alpha)=$ $|\varphi|^{\alpha} \in A W(\Omega), \alpha>-1$, corresponding to the integer values of the parameter. Of course, it is desirable to extend Theorem 1 to all $\gamma \in A W(\Omega)$. As a measure of the amount of job left unsolved we may state the following

Theorem 2. Let $\Omega=\{\varphi<0\}$ be a domain in \boldsymbol{C}^{n}. The curve $C:(-1, \infty)$ $\rightarrow W(\Omega), C(\alpha)=|\varphi|^{\alpha}, \alpha>-1$, is discontinuous and each point of C is an isolated point.

Set

$$
U(\Omega)=\left\{g \in L_{\boldsymbol{R}}^{\infty}(\Omega): \operatorname{essinf}_{z \in \Omega} g(z)>0\right\}
$$

(an open subset of $L_{R}^{\infty}(\Omega)$). Given $\mu \in W(\Omega)$ let $\Phi_{\mu}: U(\Omega) \rightarrow W(\Omega)$ be defined by $\left(\Phi_{\mu} g\right)(z)=g(z) \mu(z), \quad g \in U(\Omega), \quad z \in \Omega$, and set $U(\Omega, \mu)=\Phi_{\mu}(U(\Omega))$. By Proposition 2.3 in [16], p. 116, the family

$$
\left\{\Phi_{\mu}(A): \mu \in W(\Omega), A \subseteq U(\Omega), A \text { open }\right\}
$$

is a basis of open sets for the topology of $W(\Omega)$. At this point, we may prove Theorem 2. Given $\alpha_{0}>-1, C$ is continuous in α_{0} if and only if for any open subset $A \subseteq U(\Omega)$ with $1 \in A$, there is $\delta_{A}>0$ so that $|\varphi|^{\alpha-\alpha_{0}} \in A$ for any $\left|\alpha-\alpha_{0}\right|<\delta_{A}$. Note that for each $u: \bar{\Omega} \rightarrow[0, \infty)$, if $u \in C^{0}(\bar{\Omega})$ and $\left.u\right|_{\partial \Omega}=0$ then $\operatorname{essinf}_{\Omega} u \leq 0$ (indeed, if $\operatorname{essinf}_{\Omega} u>0$ then

$$
\begin{equation*}
u(z) \geq L \tag{5}
\end{equation*}
$$

for some $L>0$. A priori (5) holds a.e. in Ω, yet $\{u<L\}$ is open, hence empty. Therefore (5) holds everywhere in Ω and, for $z \rightarrow \partial \Omega$, it gives $L \leq 0$, a contradiction).

Lemma 2. Let $\alpha_{0}>-1, \delta>0$ and A an open subset of $U(\Omega)$ with $1 \in A$. Then $|\varphi|^{\alpha-\alpha_{0}} \in A$ if and only if $\alpha=\alpha_{0}$.

Proof. If $\alpha>\alpha_{0}$ then (by the observation above) $\left.|\varphi|^{\alpha-\alpha_{0}}\right|_{\partial \Omega}=0$ yields $|\varphi|^{\alpha-\alpha_{0}} \notin U(\Omega)$. If in turn $\alpha<\alpha_{0}$ then $\lim _{z \rightarrow \partial \Omega}|\varphi(z)|^{\alpha-\alpha_{0}}=\infty$ hence $|\varphi|^{\alpha-\alpha_{0}} \notin$ $L_{\boldsymbol{R}}^{\infty}(\Omega)$, just by observing that, for each $v: \Omega \rightarrow[0, \infty)$, if $v \in C^{0}(\Omega)$ and $\lim _{z \rightarrow \partial \Omega} v(z)=\infty$ then $\operatorname{esssup}_{\Omega} v=\infty$.

Finally $U\left(\Omega,|\varphi|^{\alpha_{0}}\right)$ is an open neighborhood of $|\varphi|^{\alpha_{0}}$ yet (by Lemma 2) it contains no other point of C.

2. Symplectomorphisms of γ-Kobayashi domains

Let $\Omega=\{\varphi<0\}$ be a domain and $\gamma \in A W(\Omega)$ and admissible weight. By a result in [17] one has the representation

$$
K_{\gamma}(\zeta, z)=\sum_{k} \phi_{k}(\zeta) \overline{\phi_{k}(z)}
$$

for any complete orthonormal system $\left\{\phi_{k}\right\}$ in $L^{2} H(\Omega, \gamma)$. Hence $K_{\gamma}(z, z)>0$ for any $z \in \Omega$, provided that A) for each $z \in \Omega$ there is $f \in L^{2} H(\Omega, \gamma)$ with $f(z)$ $\neq 0$. If the weight $\gamma=(1+h)|\varphi|^{m}$ (with $\left.h \in L_{R}^{\infty}(\Omega),\|h\|_{\infty}<1 / 2, m \in\{1,2, \ldots\}\right)$ satisfies condition A) then it makes sense to consider the function

$$
\rho_{h, m}(z)=K_{(1+h)|\varphi|^{m}}(z, z)^{-1 /(n+1+m)}, \quad z \in \Omega
$$

and (by Theorem 4)

$$
\begin{aligned}
& \rho_{h, m}(z) \\
& \quad \leq|\varphi(z)|\left\{\Phi(z)+C\left[|\varphi(z)|^{1 / 2}|\log | \varphi(z)| |+(1+F(z))^{2}\right]\right\}^{-1 /(n+1+m)}
\end{aligned}
$$

for some $\Phi \in C^{\infty}(\bar{\Omega})$ so that $\Phi(z) \neq 0$ near $\partial \Omega$. Hence $\rho_{h, m}(z) \rightarrow 0$ as $z \rightarrow \partial \Omega$. As the boundary behaviour of $\left[K_{1,|\varphi|^{m}}^{(k)} h^{(k)}\right](z, w), k \geq 1$ (cf. notations in section 3) is not known, one may not conclude that $\rho_{h, m}(z)$ is a defining function for Ω. However, as a corollary of Theorem 1 one has

$$
K_{m}(z, z)=\Phi(z)|\varphi(z)|^{-(n+1+m)}+\tilde{\Phi}(z) \log |\varphi(z)|
$$

for some $\Phi, \tilde{\Phi} \in C^{\infty}(\bar{\Omega}), \Phi(z) \neq 0$ near $\partial \Omega$, hence $\rho_{m}=\rho_{0, m} \in C^{\infty}(\bar{\Omega})$ and $\nabla \rho_{m} \neq 0$ on $\partial \Omega$, i.e. ρ_{m} can be used as a defining function for $\Omega\left(\Omega=\left\{\rho_{m}>0\right\}\right)$.

Let $\Omega_{n}=\left\{\zeta \in C^{n}: \varphi_{n}(\zeta)<0\right\}$ be the Siegel domain, where $\varphi_{n}(\zeta)=\left|\zeta^{\prime}\right|^{2}-$ $\operatorname{Im}\left(\zeta_{1}\right)$, and for each $\zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ one sets $\zeta^{\prime}=\left(\zeta_{2}, \ldots, \zeta_{n}\right)$. Let $K_{\alpha}(\zeta, z)$ be
the $\left|\varphi_{n}\right|^{\alpha}$-Bergman kernel for $L^{2} H\left(\Omega_{n},\left|\varphi_{n}\right|^{\alpha}\right), \alpha>-1$. As Ω_{n} is unbounded and α not necessarily an integer, neither Theorem 1 nor its proof apply, yet $\rho_{\alpha}(\zeta)=$ $K_{\alpha}(\zeta, \zeta)^{-1 /(n+1+\alpha)}$ is a (well defined) defining function for Ω_{n}. Indeed (cf. [1]) K_{α} may be explicitely computed as

$$
\begin{aligned}
K_{\alpha}(\zeta, z) & =\frac{2^{n-1+\alpha} c_{n, \alpha}}{\left[i\left(\bar{z}_{1}-\zeta_{1}\right)-2\left\langle\zeta^{\prime}, z^{\prime}\right\rangle\right]^{n+1+\alpha}} \\
c_{n, \alpha} & =\pi^{-n}(\alpha+1) \cdots(\alpha+n)
\end{aligned}
$$

hence $\rho_{\alpha}(\zeta)=C \varphi_{n}(\zeta)$, for some constant C depending only on n and α.
Let $\Omega \subset C^{n}$ be a domain and $\gamma \in A W(\Omega)$. In general g_{γ} is not definite, or even nondegenerate. For instance, if Ω is bounded and $\gamma \in L^{1}(\Omega)$ then g_{γ} is a Kählerian metric on Ω (cf. [3]) yet the arguments in [3] break down for the case of an unbounded domain. We call Ω a γ-Kobayashi domain if (Ω, γ) satisfies condition A) and additionally B) for any $z \in \Omega$ and any $Z \in T^{1,0}(\Omega)_{z}, Z \neq 0$, there is $f \in L^{2} H(\Omega, \gamma)$ so that $f(z)=0$ and $Z(f) \neq 0$ (our A)-B) correspond to the conditions (A.1)-(A.2) in [8], pp. 271-272, hence the adopted terminology). Here $T^{1,0}(\Omega)$ is the holomorphic tangent bundle over Ω. The unit ball in C^{n} is a 1 -Kobayashi domain. The Siegel domain Ω_{n} is an (unbounded) $\left|\varphi_{n}\right|^{\alpha}$ Kobayashi domain for any $\alpha>-1$ (cf. Lemmae 4 and 5 in [1]). By a result in [15], A)-B) imply that g_{γ} is a Kählerian metric on Ω, hence $\left(\Omega, \omega_{\gamma}\right)$ is a symplectic manifold.

From now on, it is understood that Ω is a strictly pseudoconvex domain satisfying all hypothesis of Theorem 1. We may state:

Theorem 3. Let $m \in\{0,1,2, \ldots\}$ and $\Omega=\{\varphi<0\}$ a $|\varphi|^{m}$-Kobayashi domain. Let F be a symplectomorphism of $\left(\Omega, \omega_{m}\right)$, i.e. a C^{∞} diffeomorphism F : $\boldsymbol{\Omega} \rightarrow \boldsymbol{\Omega}$ with $F^{*} \omega_{m}=\omega_{m}$. If F is smooth up to the boundary then $F: \partial \boldsymbol{\Omega} \rightarrow \partial \boldsymbol{\Omega}$ is a contact transformation.

Here ω_{m} is short for $\omega_{|\varphi|^{m}}$. For $\gamma=1$ and $m=0$ Theorem 3 is the result by A. Korányi and H. M. Reimann quoted in the introduction. The proof is imitative of that of Proposition 1 in [11], p. 1121. We need some notation. Let \mathscr{F} be the foliation of U (a one-sided neighborhood of the boundary of Ω) by level sets of ρ_{m} (so that $\rho_{m}^{-1}(0)=\partial \Omega$). Each leaf $M_{c}=\rho_{m}^{-1}(c)$ is a strictly pseudoconvex CR manifold with the CR structure $T_{1,0}\left(M_{c}\right)=\left[T\left(M_{c}\right) \otimes C\right] \cap$ $T^{1,0}(U)$. Let $T_{1,0}(\mathscr{F})$ be the subbundle of $T(U) \otimes C$ whose portion over M_{c} is $T_{1,0}\left(M_{c}\right)$. As Ω is strictly pseudoconvex, there is a uniquely defined complex vector field ξ of type $(1,0)$ on U which is orthogonal to $T_{1,0}(\mathscr{F})$ with respect to $\partial \bar{\partial} \rho_{m}$ and for which $\partial \rho_{m}(\xi)=1$ (cf. e.g. [13], p. 163). Define $r: U \rightarrow \boldsymbol{R}$ by setting $r=2\left(\partial \bar{\partial} \rho_{m}\right)(\xi, \bar{\xi})$ so that ξ and r are characterized by

$$
\begin{equation*}
\xi\rfloor \partial \bar{\partial} \rho_{m}=r \bar{\partial} \rho_{m}, \quad \partial \rho_{m}(\xi)=1 \tag{6}
\end{equation*}
$$

Let $\theta_{m}=i(\bar{\partial}-\partial) \rho_{m} / 2$ and $N=2 \operatorname{Re}(\xi)$. Then $\left(d \rho_{m}\right) N=2$ and $\theta_{m}(N)=0$.

Note that

$$
\begin{equation*}
\omega_{m}=i(n+1+m)\left(\frac{\partial \bar{\partial} \rho_{m}}{\rho_{m}}-\frac{\partial \rho_{m} \wedge \bar{\partial} \rho_{m}}{\rho_{m}^{2}}\right) \tag{7}
\end{equation*}
$$

Set $H(\mathscr{F})=\operatorname{Re}\left\{T_{1,0}(\mathscr{F}) \oplus \overline{T_{1,0}(\mathscr{F})}\right\}$ (so that the portion of $H(\mathscr{F})$ over a leaf M_{c} is the maximally complex, or Levi, distribution of M_{c}). Then (by (7))

$$
\omega_{m}(X, N)=0
$$

for any $X \in H(\mathscr{F})$. On the other hand, we may write (7) as

$$
\omega_{m}=(n+1+m)\left(\frac{d \theta_{m}}{\rho_{m}}-\frac{d \rho m \wedge \theta_{m}}{\rho_{m}^{2}}\right)
$$

hence (by $F^{*} \omega_{m}=\omega_{m}$)

$$
\begin{aligned}
0= & \omega_{m}((d F) X,(d F) N)=(n+1+m) \rho_{m}^{-1} d \theta_{m}((d F) X,(d F) N) \\
& -(n+1+m) \rho_{m}^{-2}\left(d \rho_{m} \wedge \theta_{m}\right)((d F) X,(d F) N)
\end{aligned}
$$

for any $X \in H(\mathscr{F})$. As F is smooth up to the boundary,

$$
\left(d \theta_{m}\right)((d F) X,(d F) N)
$$

stays finite near $\partial \Omega$. Hence, in the limit

$$
\left(d \rho_{m}\right)((d F) X) \theta_{m}((d F) N)-\left(d \rho_{m}\right)((d F) N) \theta_{m}((d F) X)
$$

vanishes on $\partial \Omega$. If X lies in $H(\partial \Omega)$, the maximal complex distribution of $\partial \Omega$ as a CR manifold, then $(d F) X \in T(\partial \Omega)$ hence $\left(d \rho_{m}\right)((d F) X)=0$. Finally $\left(d \rho_{m}\right)$ $((d F) N) \neq 0$ (as F is a diffeomorphism and $d \rho_{m} \neq 0$ on $\left.\partial \Omega\right)$ hence $\theta_{m}((d F) X)=$ 0 for any $X \in H(\partial \Omega)$.

Let ω_{α} be short for $\omega_{\left|\varphi_{n}\right|^{\alpha}}, \alpha>-1$. Although Ω_{n} is unbounded and α not necessarily an integer, Theorem 3 remains true for a symplectomorphism F of $\left(\Omega_{n}, \omega_{\alpha}\right)$, i.e. if F is smooth up to $\partial \Omega_{n}$ then the restriction of F to $\partial \Omega_{n}$ is a contact transformation (the proof is a verbatim transcription of the proof of Theorem 3, where ρ_{m} is replaced by ρ_{α}).

3. The effect of the analytic behaviour of weighted Bergman kernels

Let U be an open subset of a normed space \mathscr{X} and let \mathscr{Y} be a topological vector space. Together with [16], one says that a map $f: U \rightarrow \mathscr{Y}$ is analytic on U if for any $x \in U$ there is a ball $B \subset \mathscr{X}$ of center $0 \in \mathscr{X}$ so that $x+B \subset U$ and

$$
\begin{equation*}
f(x+h)=f(x)+\sum_{k=1}^{\infty} a_{k}(h, \ldots, h) \tag{8}
\end{equation*}
$$

for any $h \in B$, where $a_{k}: \mathscr{X}^{k} \rightarrow \mathscr{Y}$ is a continuous k-linear function, $k \in\{1,2, \ldots\}$, and the series in (8) converges uniformly on B.

Let $H A(\Omega)$ be the vector space of all real analytic functions $F: \Omega \times \Omega \rightarrow C$ which are holomorphic with respect to the first n variables and anti-holomorphic with respect to the last n variables. Set

$$
\|F\|_{X}=\sup _{(z, \zeta) \in X^{2}}|F(z, \zeta)|
$$

for $F \in H A(\Omega), X \subset \Omega$. The family of seminorms

$$
\left\{\|\cdot\|_{X}: X \subset \Omega, X \text { compact }\right\}
$$

makes $H A(\Omega)$ into a Fréchet space. By a result of Z. Pasternak-Winiarski (cf. Theorem 5.1 in [16], p. 131) the map $U(\Omega) \rightarrow H A(\Omega), g \mapsto K_{g \gamma}$, is analytic on $U(\boldsymbol{\Omega})$ for any $\gamma \in A W(\boldsymbol{\Omega})$.

Theorem 4. Let $\Omega=\{\varphi<0\}$ be a smoothly bounded strictly pseudoconvex domain in \boldsymbol{C}^{n} so that $L_{\varphi}(w) \xi \geq$ const. $|\xi|^{2}, \xi \in \boldsymbol{C}^{n}$, for $\varphi(w)<\delta_{0}, \delta_{0}>0$. Then for any $h \in B(0,1 / 2) \subset L_{\boldsymbol{R}}^{\infty}(\Omega)$ there is $E_{h} \in C^{\infty}(\Omega \times \Omega)$ so that

$$
\begin{equation*}
K_{(1+h)|\varphi|^{m}}(z, w)=c_{\Omega}|\nabla \varphi(w)|^{2} \cdot \operatorname{det} L_{\varphi}(w) \cdot \Psi(z, w)^{-(n+1+m)}+E_{h}(z, w) \tag{9}
\end{equation*}
$$

and E_{h} satisfies the estimate

$$
\begin{align*}
\left(E_{h}(z, w) \mid \leq\right. & C \cdot\left\{|\Psi(z, w)|^{-(n+1+m)+1 / 2}|\log | \Psi(z, w) \|\right. \tag{10}\\
& \left.+|\varphi(z)|^{-(n+1+m) / 2}|\varphi(w)|^{-(n+1+m) / 2}(1+F(z)+F(w)+F(z) F(w))\right\}
\end{align*}
$$

where $F(z)=|\varphi(z)|^{3 / 2}+|\varphi(z)|^{1 / 2}|\log | \varphi(z) \|$ and C is a constant depending only on Ω and $m \geq 1, m>n-1$.

The proof of Theorem 4 relies on (2) and on the analyticity of the weighted Bergman kernel as a map $A W(\Omega) \rightarrow H A(\Omega), \gamma \mapsto K_{\gamma}$. Set

$$
\begin{aligned}
& {\left[K_{g, \gamma}^{(k)}\left(h_{1}, \ldots, h_{k}\right)\right](z, w) } \\
&= \int_{\Omega} K_{g \gamma}\left(u_{1}, w\right) h_{1}\left(u_{1}\right) \gamma\left(u_{1}\right) d \mu\left(u_{1}\right) \\
& \cdot \int_{\Omega} K_{g \gamma}\left(u_{2}, u_{1}\right) h_{2}\left(u_{2}\right) \gamma\left(u_{2}\right) d \mu\left(u_{2}\right) \ldots \\
& \cdot \int_{\Omega} K_{g \gamma}\left(u_{k}, u_{k-1}\right) h_{k}\left(u_{k}\right) K_{g \gamma}\left(z, u_{k}\right) \gamma\left(u_{k}\right) d \mu\left(u_{k}\right)
\end{aligned}
$$

for $\gamma \in A W(\Omega), g \in U(\Omega), h_{1}, \ldots, h_{k} \in L_{\boldsymbol{R}}^{\infty}(\Omega), k \geq 1$. Then

$$
K_{g, \gamma}^{(k)}\left(h_{1}, \ldots, h_{k}\right) \in H A(\Omega)
$$

(cf. Lemma 5.1 in [16], p. 129). By (2) and by (5.5) in Theorem 5.1 of [16], p. 131, it follows that (9) holds good with

$$
E_{h}=E+\sum_{k=1}^{\infty}(-1)^{k} K_{1,|\varphi|^{m}}^{(k)} h^{(k)}
$$

where $h^{(k)}=(h, \ldots, h)\left(k\right.$ components), $E \in C^{\infty}(\bar{\Omega} \times \bar{\Omega}-\Delta)$ satisfies the estimate in Theorem 1, and the series is uniformly convergent on $B(0,1 / 2)=\{h \in$ $\left.L_{R}^{\infty}(\Omega):\|h\|_{\infty}<1 / 2\right\}$ with respect to any seminorm $\|\cdot\|_{X}$ on $H A(\Omega)$, with X an arbitrary compact subset of Ω. It remains that we prove the estimate (10). Let $k \geq 3$ (the cases $k=1$ and $k=2$ are looked at later on). Then (by (2))

$$
\begin{aligned}
& {\left[K_{1,|\varphi|^{m}}^{(k)} h^{(k)}\right](z, w)} \\
& = \\
& =\left\{\left\{c_{\Omega}\left|\nabla \varphi\left(u_{1}\right)\right|^{2} \cdot \operatorname{det} L_{\varphi}\left(u_{1}\right) \cdot \overline{\Psi\left(w, u_{1}\right)}-(n+1+m)+\overline{E\left(w, u_{1}\right)}\right\}\right. \\
& \quad \cdot\left\{c_{\Omega}\left|\nabla \varphi\left(u_{k}\right)\right|^{2} \cdot \operatorname{det} L_{\varphi}\left(u_{k}\right) \cdot \Psi\left(z, u_{k}\right)^{-(n+1+m)}+E\left(z, u_{k}\right)\right\} \\
& \quad \cdot h\left(u_{1}\right) h\left(u_{k}\right)\left[K_{1,|\varphi|^{(k-2)}}^{\left(k h^{(k-2)}\right]\left(u_{k}, u_{1}\right)\left|\varphi\left(u_{1}\right)\right|^{m}\left|\varphi\left(u_{k}\right)\right|^{m} d \mu\left(u_{1}\right) d \mu\left(u_{k}\right)}\right.
\end{aligned}
$$

hence

$$
\begin{aligned}
& {\left[K_{1,|\varphi|^{m}}^{(k)} h^{(k)}\right](z, w)} \\
& \quad=c_{\Omega}^{2} I_{1}(z, w)+c_{\Omega}\left(I_{2}(z, w)+I_{3}(z, w)\right)+I_{4}(z, w)
\end{aligned}
$$

where

$$
\begin{aligned}
I_{j}(z, w)= & \int_{\Omega} G_{j}\left(u_{1}, w\right)\left(\int_{\Omega}\left[K_{1,|\varphi|^{m}}^{(k-2)} h^{(k-2)}\right]\left(u_{k}, u_{1}\right) H_{j}\left(z, u_{k}\right)\left|\varphi\left(u_{k}\right)\right|^{m} d \mu\left(u_{k}\right)\right) \\
& \cdot\left|\varphi\left(u_{1}\right)\right|^{m} d \mu\left(u_{1}\right)
\end{aligned}
$$

for $1 \leq j \leq 4$ and G_{j}, H_{J} are given by

$$
\begin{aligned}
& G_{1}\left(u_{1}, w\right)=G_{2}\left(u_{1}, w\right)=\left|\nabla \varphi\left(u_{1}\right)\right|^{2} \cdot \operatorname{det} L_{\varphi}\left(u_{1}\right) \cdot \overline{\Psi\left(w, u_{1}\right)} \\
& G_{3}\left(u_{1}, w\right)=G_{4}\left(u_{1}, w\right)=\overline{E\left(w, u_{1}\right)} h\left(u_{1}\right) \\
& H_{1}\left(z, u_{k}\right)=H_{3}\left(z, u_{k}\right)=\left|\nabla \varphi\left(u_{k}\right)\right|^{2} \cdot \operatorname{det} L_{\varphi}\left(u_{k}\right) \cdot \Psi\left(z, u_{k}\right)^{-(n+1+m)} h\left(u_{k}\right) \\
& H_{2}\left(z, u_{k}\right)=H_{4}\left(z, u_{k}\right)=E\left(z, u_{k}\right) h\left(u_{k}\right) .
\end{aligned}
$$

By a result in [16], p. 131, we have

$$
\left\|\left[K_{1,|\varphi|^{m}}^{(k-2)} h^{(k-2)}\right]\left(\cdot, u_{1}\right)\right\|_{m} \leq\|h\|_{\infty}^{k-2}\left\|K_{m}\left(\cdot, u_{1}\right)\right\|_{m}
$$

where $\|\cdot\|_{m}$ is short for $\|\cdot\|_{|\varphi|^{m}}$. Then we may perform the estimates

$$
\begin{aligned}
\left|I_{j}(z, w)\right| \leq & \int_{\Omega}\left|G_{j}\left(u_{1}, w\right)\right| \\
& \cdot\left(\int_{\Omega}\left|\left[K_{1,|\varphi|^{m}}^{(k-2)} h^{(k-2)}\right]\left(u_{k}, u_{1}\right)\right|^{2}\left|\varphi\left(u_{k}\right)\right|^{m} d \mu\left(u_{k}\right)\right)^{1 / 2} \\
& \cdot\left(\int_{\Omega}\left|H_{j}\left(z, u_{k}\right)\right|^{2} \cdot\left|\varphi\left(u_{k}\right)\right|^{m} d \mu\left(u_{k}\right)\right)^{1 / 2}\left|\varphi\left(u_{1}\right)\right|^{m} d \mu\left(u_{1}\right) \\
= & \int_{\Omega}\left|G_{j}\left(u_{1}, w\right)\right| \cdot \|\left[\left[K_{1,|\varphi|^{m}}^{(k-2)} h^{(k-2)}\right]\left(\cdot, u_{1}\right)\left\|_{m} \cdot\right\| H_{j}(z, \cdot) \|_{m}\left|\varphi\left(u_{1}\right)\right|^{m} d \mu\left(u_{1}\right)\right. \\
\leq & \|h\|_{\infty}^{k-2}\left\|H_{j}(z, \cdot)\right\|_{m} \cdot \int_{\Omega}\left|G_{j}\left(u_{1}, w\right)\right| \cdot\left\|K_{m}\left(\cdot, u_{1}\right)\right\|_{m}\left|\varphi\left(u_{1}\right)\right|^{m} d \mu\left(u_{1}\right)
\end{aligned}
$$

Yet

$$
\left\|K_{m}\left(\cdot, u_{1}\right)\right\|_{m} \leq \text { const. }\left|\varphi\left(u_{1}\right)\right|^{-(n+1+m) / 2}
$$

by Lemma 2.8 in [18], p. 233. Hence

$$
\begin{align*}
\left|I_{j}(z, w)\right| \leq & \text { const. }\|h\|_{\infty}^{k-2}\left\|H_{j}(z, \cdot)\right\|_{m} \tag{11}\\
& \cdot \int_{\Omega}\left|G_{j}\left(u_{1}, w\right)\right| \cdot\left|\varphi\left(u_{1}\right)\right|^{-(n+1-m) / 2} d \mu\left(u_{1}\right)
\end{align*}
$$

We look at the case $j=1$. To this end, set

$$
J_{v, a}(z)=\int_{\Omega} \frac{|\varphi(w)|^{v} d \mu(w)}{|\Psi(z, w)|^{n+1+v+a}}
$$

for $y>-1$ and $a \in \boldsymbol{R}$. By Lemma 2.7 in [18], p. 232, one has

$$
J_{v, a}(z) \leq \begin{cases}\text { const. } & \text { if } a<0 \\ |\log | \varphi(z) \| & \text { if } a=0 \\ |\varphi(z)|^{-a} & \text { if } a>0\end{cases}
$$

Then

$$
\begin{aligned}
\left\|H_{1}(z, \cdot)\right\|_{m}^{2} & =\int_{\Omega}\left|H_{1}\left(z, u_{k}\right)\right|^{2}\left|\varphi\left(u_{k}\right)\right|^{m} d \mu\left(u_{k}\right) \\
& \leq \text { const. }\|h\|_{\infty}^{2} \int_{\Omega}\left|\Psi\left(z, u_{k}\right)\right|^{-2(n+1+m)}\left|\varphi\left(u_{k}\right)^{m}\right| d \mu\left(u_{k}\right) \\
& =\text { const. }\|h\|_{\infty}^{2} J_{m, n+1+m}(z)
\end{aligned}
$$

so that

$$
\left\|H_{1}(z, \cdot)\right\|_{m} \leq \text { const. }\|h\|_{\infty}|\varphi(z)|^{-(n+1+m) / 2}
$$

Then (by (11))

$$
\begin{aligned}
\left|I_{1}(z, w)\right| \leq & \text { const. }\|h\|_{\infty}^{k-1}|\varphi(z)|^{-(n+1+m) / 2} \\
& \cdot \int_{\Omega}\left|G_{1}\left(u_{1}, w\right)\right|\left|\varphi\left(u_{1}\right)\right|^{-(n+1+m) / 2} d \mu\left(u_{1}\right) \\
\leq & \text { const. }\|h\|_{\infty}^{k}|\varphi(z)|^{-(n+1+m) / 2} \int_{\Omega} \frac{\left|\varphi\left(u_{1}\right)\right|^{-(n+1-m) / 2} d \mu\left(u_{1}\right)}{\left|\Psi\left(w, u_{1}\right)\right|^{n+1+m}} \\
= & \text { const. }\|h\|_{\infty}^{k}|\varphi(z)|^{-(n+1+m) / 2} J_{-(n+1-m) / 2,(n+1+m) / 2}(w) .
\end{aligned}
$$

We may conclude that

$$
\begin{equation*}
\left|I_{1}(z, w)\right| \leq \text { const. }\|h\|_{\infty}^{k}|\varphi(z)|^{-(n+1+m) / 2}|\varphi(w)|^{-(n+1+m) / 2} . \tag{12}
\end{equation*}
$$

Next (for $j=2$)

$$
\begin{aligned}
\left\|H_{2}(z, \cdot)\right\|_{m}^{2} & =\int_{\Omega}\left|E\left(z, u_{k}\right)\right|^{2}\left|h\left(u_{k}\right)\right|^{2}\left|\varphi\left(u_{k}\right)\right|^{m} d \mu\left(u_{k}\right) \\
& \leq \text { const } \cdot\|h\|_{\infty}^{2} \int_{\Omega}\left|\Psi\left(z, u_{k}\right)\right|^{-2(n+1+m)+1}|\log | \Psi\left(z, u_{k}\right) \|^{2}\left|\varphi\left(u_{k}\right)\right|^{m} d \mu\left(u_{k}\right)
\end{aligned}
$$

This integral may be written as a sum $\int_{\left\{\left|\Psi\left(z, u_{k}\right)\right| \geq 1\right\}}+\int_{\left\{\left|\Psi\left(z, u_{k}\right)\right|<1\right\}}$. In the first integral $\log \left|\Psi\left(z, u_{k}\right)\right| \leq\left|\Psi\left(z, u_{k}\right)\right|$ while for the second (cf. [18], p. 229)

$$
\begin{aligned}
\left|\Psi\left(z, u_{k}\right)\right| & \geq \text { const. }\left(|\varphi(z)|+\left|\varphi\left(u_{k}\right)\right|+\left|z-u_{k}\right|^{2}+\left|\operatorname{Im} \Psi\left(z, u_{k}\right)\right|\right) \\
& \geq \text { const. }|\varphi(z)|
\end{aligned}
$$

yields $|\log | \Psi\left(z, u_{k}\right) \| \leq$ const. $|\log | \varphi(z) \|$. Hence

$$
\begin{aligned}
\left\|H_{2}(z, \cdot)\right\|_{m}^{2} \leq & \text { const. }\|h\|_{\infty}^{2} \\
& \cdot\left(\int_{\Omega}\left|\Psi\left(z, u_{k}\right)\right|^{-2(n+m)+1}\left|\varphi\left(u_{k}\right)\right|^{m} d \mu\left(u_{k}\right)\right. \\
& \left.+ \text { const. }|\log | \varphi(z) \|^{2} \int_{\Omega}\left|\Psi\left(z, u_{k}\right)\right|^{-2(n+m)-1}\left|\varphi\left(u_{k}\right)\right|^{m} d \mu\left(u_{k}\right)\right) \\
= & \text { const. } \left.\|h\|_{\infty}^{2}\left(J_{m, n-2+m}(z)+|\log | \varphi(z)\right) \|^{2} J_{m, n+m}(z)\right)
\end{aligned}
$$

i.e.

$$
\left\|H_{2}(z, \cdot)\right\|_{m} \leq \text { const. }\|h\|_{\infty}|\varphi(z)|^{-(n+m) / 2}(|\varphi(z)|+|\log | \varphi(z) \|)
$$

Then (by (11))

$$
\begin{aligned}
\left|I_{2}(z, w)\right| \leq & \text { const. }\|h\|_{\infty}^{k-1}|\varphi(z)|^{-(n+m) / 2}(|\varphi(z)|+|\log | \varphi(z) \|) \\
& \cdot \int_{\Omega}\left|G_{2}\left(u_{1}, w\right)\right|\left|\varphi\left(u_{1}\right)\right|^{-(n+1-m) / 2} d \mu\left(u_{1}\right) \\
\leq & \text { const. }\|h\|_{\infty}^{k}|\varphi(z)|^{-(n+m) / 2}(|\varphi(z)| \\
& +|\log | \varphi(z) \|) \int_{\Omega} \frac{\left|\varphi\left(u_{1}\right)\right|^{-(n+1-m) / 2} d \mu\left(u_{1}\right)}{\left|\Psi\left(w, u_{1}\right)\right|^{n+1+m}} \\
= & \text { const. }\|h\|_{\infty}^{k}|\varphi(z)|^{-(n+m) / 2}\left(|\varphi(z)+|\log | \varphi(z) \|) J_{-(n+1-m) / 2,(n+1+m) / 2}(w)\right.
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\left|I_{2}(z, w)\right| \leq \text { const. }\|h\|_{\infty}^{k}|\varphi(z)|^{-(n+1+m) / 2}|\varphi(w)|^{-(n+1+m) / 2} F(z) . \tag{13}
\end{equation*}
$$

Next (as $H_{1}=H_{3}$)

$$
\begin{aligned}
\left|I_{3}(z, w)\right| \leq & \text { const. }\|h\|_{\infty}^{k}|\varphi(z)|^{-(n+1+m) / 2} \\
& \cdot \int_{\Omega}\left|E\left(w, u_{1}\right)\right| \cdot\left|\varphi\left(u_{1}\right)\right|^{-(n+1-m) / 2} d \mu\left(u_{1}\right) \\
\leq & \text { const. }\|h\|_{\infty}^{k}|\varphi(z)|^{-(n+1+m) / 2} \int_{\Omega}\left|\Psi\left(w, u_{1}\right)\right|^{-(n+1+m)+1 / 2} \\
& \cdot|\log | \Psi\left(w, u_{1}\right) \| \cdot\left|\varphi\left(u_{1}\right)\right|^{-(n+1-m) / 2} d \mu\left(u_{1}\right) \\
\leq & \text { const. }\|h\|_{\infty}^{k}|\varphi(z)|^{-(n+1+m) / 2} \\
& \cdot\left\{\int_{\Omega}\left|\Psi\left(w, u_{1}\right)\right|^{-(n+m)+1 / 2} \cdot\left|\varphi\left(u_{1}\right)\right|^{-(n+1-m) / 2} d \mu\left(u_{1}\right)\right. \\
& \left.+ \text { const. }|\log | \varphi(w) \| \int_{\Omega}\left|\Psi\left(w, u_{1}\right)\right|^{-(n+m)-1 / 2}\left|\varphi\left(u_{1}\right)\right|^{-(n+1-m) / 2} d \mu\left(u_{1}\right)\right\} \\
= & \text { const. }\|h\|_{\infty}^{k}|\varphi(z)|^{-(n+1+m) / 2} \\
& \cdot\left\{J_{-(n+1-m) / 2,(n-2+m) / 2}(w)+|\log | \varphi(w) \| J_{-(n+1-m) / 2,(n+m) / 2}(w)\right\} \\
\leq & \text { const. }\|h\|_{\infty}^{k}|\varphi(z)|^{-(n+1+m) / 2} \\
& \cdot\left\{|\varphi(w)|^{-(n-2+m) / 2}+|\log | \varphi(w) \| \cdot|\varphi(w)|^{-(n+m) / 2}\right\}
\end{aligned}
$$

i.e.
(14) $\quad\left|I_{3}(z, w)\right| \leq$ const. $\|h\|_{\infty}^{k}|\varphi(z)|^{-(n+1+m) / 2}|\varphi(w)|^{-(n+1+m) / 2} F(w)$.

Finally (as $H_{2}=H_{4}$ and $G_{3}=G_{4}$)

$$
\begin{equation*}
\left|I_{4}(z, w)\right| \leq \text { const } .\|h\|_{\infty}^{k}|\varphi(z)|^{-(n+1+m) / 2}|\varphi(w)|^{-(n+1+m) / 2} F(z) F(w) . \tag{15}
\end{equation*}
$$

The estimates (12)-(15) lead to

$$
\begin{align*}
\left|\left[K_{1,|\varphi|^{m}}^{(k)} h^{(k)}\right](z, w)\right| \leq & \text { const. }\|h\|_{\infty}^{k}|\varphi(z)|^{-(n+1+m) / 2} \tag{16}\\
& \cdot|\varphi(w)|^{-(n+1+m) / 2}(1+F(z)+F(w)+F(z) F(w)) .
\end{align*}
$$

To deal with $K_{1,|\varphi|^{m}}^{(1)}$ we firstly note that

$$
\left[K_{1,|\varphi|^{m}}^{(1)} h^{(1)}\right](z, w)=c_{\Omega}^{2} J_{1}(z, w)+c_{\Omega}\left(J_{2}(z, w)+J_{3}(z, w)\right)+J_{4}(z, w)
$$

where

$$
\begin{aligned}
& J_{1}(z, w)= \int_{\Omega}\left|\nabla \varphi\left(u_{1}\right)\right|^{4}\left|\operatorname{det} L_{\varphi}\left(u_{1}\right)\right|^{2} \Psi\left(z, u_{1}\right)^{-(n+1+m)} \\
& \cdot \overline{\Psi\left(w, u_{1}\right)}-(n+1+m) \\
& J_{2}\left(u_{1}\right)\left|\varphi\left(u_{1}\right)\right|^{m} d \mu\left(u_{1}\right) \\
& \cdot \int_{\Omega}\left|\nabla \varphi\left(u_{1}\right)\right|^{2} \cdot \overline{\operatorname{det} L_{\varphi}\left(u_{1}\right)} \cdot E\left(z, u_{1}\right) \\
& J_{3}(z, w)= \int_{\Omega} \mid \nabla \varphi\left(w, u_{1}\right) \\
&\left.\left.\cdot \overline{E(n+1+m)} h\left(u_{1}\right)\right|^{2} \cdot \operatorname{det} L_{\varphi}\left(u_{1}\right) \cdot \Psi\left(u_{1}\right)\right|^{m} d \mu\left(u_{1}\right) \\
&\left.\left(u_{1}\right) \mid \varphi\left(u_{1}\right)^{-(n+1+m)}\right)\left.\right|^{m} d \mu\left(u_{1}\right) \\
& J_{4}(z, w)= \int_{\Omega} E\left(z, u_{1}\right) \overline{E\left(w, u_{1}\right)} h\left(u_{1}\right)\left|\varphi\left(u_{1}\right)\right|^{m} d \mu\left(u_{1}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left|J_{1}(z, w)\right| \\
& \quad \leq \text { const. }\|h\|_{\infty} \int_{\Omega}\left|\Psi\left(z, u_{1}\right)\right|^{-(n+1+m)}\left|\Psi\left(w, u_{1}\right)\right|^{-(n+1+m)}\left|\varphi\left(u_{1}\right)\right| d \mu\left(u_{1}\right) \\
& \leq \\
& \quad \text { const. }\|h\|_{\infty} \cdot\left(\int_{\Omega}\left|\Psi\left(z, u_{1}\right)\right|^{-2(n+1+m)}\left|\varphi\left(u_{1}\right)\right|^{m} d \mu\left(u_{1}\right)\right)^{1 / 2} \\
& \quad \cdot\left(\int_{\Omega}\left|\Psi\left(w, u_{1}\right)\right|^{-2(n+1+m)}\left|\varphi\left(u_{1}\right)\right|^{m} d \mu\left(u_{1}\right)\right)^{1 / 2} \\
& \quad=\text { const. }\|h\|_{\infty} J_{m, n+1+m}(z)^{1 / 2} J_{m, n+1+m}(w)^{1 / 2}
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\left|J_{1}(z, w)\right| \leq \text { const } .\|h\|_{\infty}|\varphi(z)|^{-(n+1+m) / 2}|\varphi(w)|^{-(n+1+m) / 2} \tag{17}
\end{equation*}
$$

Next

$$
\begin{aligned}
&\left|J_{2}(z, w)\right| \\
& \quad \leq \text { const. }\|h\|_{\infty} \int_{\Omega}\left|E\left(z, u_{1}\right)\right| \cdot\left|\Psi\left(w, u_{1}\right)\right|^{-(n+1+m)}\left|\varphi\left(u_{1}\right)\right|^{m} d \mu\left(u_{1}\right) \\
& \leq \text { const. }\|h\|_{\infty}\left(\int_{\Omega}\left|E\left(z, u_{1}\right)\right|^{2}\left|\varphi\left(u_{1}\right)\right|^{m} d \mu\left(u_{1}\right)\right)^{1 / 2} \\
& \cdot\left(\int_{\Omega}\left|\Psi\left(w, u_{1}\right)\right|^{-2(n+1+m)}\left|\varphi\left(u_{1}\right)\right|^{m} d \mu\left(u_{1}\right)\right)^{1 / 2} \\
& \quad= \text { const. }\|h\|_{\infty} \cdot\|E(z, \cdot)\|_{m} J_{m, n+1+m}(w)^{1 / 2} \\
& \leq \text { const. }\|h\|_{\infty} \cdot\|E(z, \cdot)\|_{m}|\varphi(w)|^{-(n+1+m) / 2}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
& \mid E(z, \cdot) \|_{m}^{2} \\
& \quad \leq \text { const. } \int_{\Omega}\left|\Psi\left(z, u_{1}\right)\right|^{-2(n+1+m)+1} \cdot|\log | \Psi\left(z, u_{1}\right) \|^{2}\left|\varphi\left(u_{1}\right)\right|^{m} d \mu\left(u_{1}\right) \\
& \quad \leq \\
& \quad \text { const. }\left(\int_{\Omega}\left|\Psi\left(z, u_{1}\right)\right|^{-2(n+1+m)+3}\left|\varphi\left(u_{1}\right)\right|^{m} d \mu\left(u_{1}\right)\right. \\
& \\
& \left.\quad+|\log | \varphi(z) \|^{2} \int_{\Omega}\left|\Psi\left(z, u_{1}\right)\right|^{-2(n+1+m)+1}\left|\varphi\left(u_{1}\right)\right|^{m} d \mu\left(u_{1}\right)\right) \\
& \quad= \\
& \quad \text { const. }\left(J_{m, n-2+m}(z)+|\log | \varphi(z) \|^{2} J_{n, n+m}(z)\right) \\
& \quad \leq \text { const. }|\varphi(z)|^{-(n+m)}\left(|\varphi(z)|^{2}+|\log | \varphi(z) \|^{2}\right)
\end{aligned}
$$

i.e.

$$
\|E(z, \cdot)\|_{m} \leq|\varphi(z)|^{-(n+1+m) / 2} F(z)
$$

We conclude that

$$
\begin{equation*}
\left|J_{2}(z, w)\right| \leq \text { const. }\|h\|_{\infty}|\varphi(z)|^{-(n+1+m) / 2}|\varphi(w)|^{-(n+1+m) / 2} F(z) . \tag{18}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\left|J_{3}(z, w)\right| \leq \text { const. }\|h\|_{\infty}|\varphi(z)|^{-(n+1+m) / 2}|\varphi(w)|^{-(n+1+m) / 2} F(w) . \tag{19}
\end{equation*}
$$

Finally

$$
\left|J_{4}(z, w)\right| \leq \text { const. }\|h\|_{\infty}\|E(z, \cdot)\|_{m} \cdot\|E(w, \cdot)\|_{m}
$$

i.e.
(20) $\quad\left|J_{4}(z, w)\right| \leq \mathrm{const} .\|h\|_{\infty}|\varphi(z)|^{-(n+1+m) / 2}|\varphi(w)|^{-(n+1+m) / 2} F(z) F(w)$.

By taking into account the estimates (17)-(20) it follows that (16) holds good for
$k=1$ as well. To deal with $K_{1,|\varphi|^{m}}^{(2)} h^{(2)}$ one firstly uses the Schwarz inequality and Lemma 2.8 in [18], p. 233, so that to obtain

$$
\begin{aligned}
& \left|\left[K_{1,|\varphi|^{m}}^{(2)} h^{(2)}\right](z, w)\right| \\
& \quad \leq \text { const. }\|h\|_{\infty}^{2}|\varphi(z)|^{-(n+1+m) / 2} \int_{\Omega}\left|K_{m}\left(u_{1}, w\right)\right| \cdot\left|\varphi\left(u_{1}\right)\right|^{-(n+1-m) / 2} d \mu\left(u_{1}\right) .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
& \int_{\Omega}\left|K_{m}\left(u_{1}, w\right)\right| \cdot\left|\varphi\left(u_{1}\right)\right|^{-(n+1-m) / 2} d \mu\left(u_{1}\right) \\
& \leq \text { const. }\left(\int_{\Omega}\left|\Psi\left(w, u_{1}\right)\right|^{-(n+1+m)}\left|\varphi\left(u_{1}\right)\right|^{-(n+1-m) / 2} d \mu\left(u_{1}\right)\right. \\
&\left.+\int_{\Omega}\left|\Psi\left(w, u_{1}\right)\right|^{-(n+1+m)+1 / 2}|\log | \Psi\left(w, u_{1}\right) \| \cdot\left|\varphi\left(u_{1}\right)\right|^{-(n+1-m) / 2} d \mu\left(u_{1}\right)\right) \\
&= \operatorname{const} .\left(J_{-(n+1-m) / 2,(n+1+m) / 2}(w)+J_{-(n+1-m) / 2,(n-2+m) / 2}(w)\right. \\
&\left.+|\log | \varphi(w) \| J_{-(n+1-m) / 2,(n+m) / 2}(w)\right) \\
& \leq \operatorname{const} .\left(|\varphi(w)|^{-(n+1+m) / 2}+|\varphi(w)|^{-(n-2+m) / 2}\right. \\
&\left.+|\log | \varphi(w) \| \cdot|\varphi(w)|^{-(n+m) / 2}\right)=\text { const. }|\varphi(w)|^{-(n+1+m) / 2}(1+F(w))
\end{aligned}
$$

hence we may conclude that (16) holds for $k=2$ as well. At this point (16) furnishes

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \mid \mid \\
&\left.K_{1,|\varphi|^{m}}^{(k)} h^{(k)}\right](z, w) \mid \\
& \leq \text { const. } \frac{1}{1-\|h\|_{\infty}}|\varphi(z)|^{-(n+1+m) / 2}|\varphi(w)|^{-(n+1+m) / 2} \\
& \cdot(1+F(z)+F(w)+F(z) F(w))
\end{aligned}
$$

which, together with the estimate in Theorem 1, yields (10).

4. The complex dilatation of a symplectomorphism and the Beltrami equations

Let $\Omega \subset C^{n}$ be a γ-Kobayashi domain, for some $\gamma \in A W(\Omega)$. Let F be a symplectomorphism of $\left(\Omega, \omega_{\gamma}\right)$ in itself. We have

Lemma 3. For any $z \in \Omega$ and any $Z \in T^{1,0}(\Omega)_{z}, \quad Z \neq 0$, one has $\left(d_{z} F\right) \bar{Z} \notin T^{1,0}(\Omega)_{F(z)}$.

The proof is by contradiction. Assume that $\left(d_{z} F\right) \bar{Z} \in T^{1,0}(\Omega)_{F(z)}$ for some $Z \in$ $T^{1,0}(\Omega)_{z}, Z \neq 0$, and some $z \in \Omega$. As F is a diffeomorphism $\left(d_{z} F\right) \bar{Z} \neq 0$. Hence

$$
\begin{aligned}
0 & <\left\|\left(d_{z} F\right) \bar{Z}\right\|^{2}=g_{\gamma, F(z)}\left(\left(d_{Z} F\right) \bar{Z},\left(d_{z} F\right) Z\right) \\
& =-i \omega_{\gamma, z}(\bar{Z}, Z)=-\|Z\|^{2},
\end{aligned}
$$

a contradiction.
Let $T^{1,0}(\Omega)_{F}$ consist of all $Z \in T(\Omega) \otimes C$ with $(d F) Z \in T^{1,0}(\Omega)$.
Lemma 4. For any symplectomorphism F of $\left(\Omega, \omega_{\gamma}\right)$ there is a C-antilinear bundle map $\operatorname{dil}(F): T^{1,0}(\Omega) \rightarrow T^{1,0}(\Omega)$ so that

$$
T^{1,0}(\Omega)_{F}=\left\{Z-\overline{\operatorname{dil}(F) Z}: Z \in T^{1,0}(\Omega)\right\} .
$$

To prove Lemma 4, let $\pi_{0,1}: T(\Omega) \otimes C \rightarrow T^{0,1}(\Omega)$ be the natural projection. Then

$$
T^{1,0}(\Omega)_{F}=\operatorname{Ker}\left(\pi_{0,1} \circ(d F)\right)
$$

Let $\left(z^{1}, \ldots, z^{n}\right)$ be the natural complex coordinates on \boldsymbol{C}^{n}. Set

$$
F_{k}^{J}=\frac{\partial F^{J}}{\partial z^{k}}, \quad F_{\bar{k}}^{J}=\frac{\partial F^{J}}{\partial \bar{z}^{k}},
$$

etc.. Then $\operatorname{det}\left(F_{j}^{\bar{k}}\right) \neq 0$ everywhere on Ω. Indeed, if $\operatorname{det}\left(F_{j}^{\bar{k}}\left(z_{0}\right)\right)=0$ at some z_{0} $\in \Omega$ then $\sum_{k} F_{\bar{k}}^{j}\left(z_{0}\right) \overline{\zeta^{k}}=0,1 \leq j \leq n$, for some $\left(\zeta^{1}, \ldots, \zeta^{n}\right) \in \boldsymbol{C}^{n}-\{0\}$. Set $Z=$ $\sum_{j} \zeta_{j}\left(\partial / \partial z^{J}\right)_{z_{0}} \in T^{1,0}(\Omega)_{z_{0}}$. Then $Z \neq 0$ and

$$
\left(d_{z_{0}} F\right) \bar{Z}=\sum_{j, k} \bar{\zeta}^{k} F_{\bar{k}}^{J}\left(z_{0}\right)\left(\frac{\partial}{\partial z^{\prime}}\right)_{F\left(z_{0}\right)} \in T^{1,0}(\Omega)_{F\left(z_{0}\right)}
$$

a contradiction (by Lemma 3). Let $\operatorname{dil}(F): T^{1,0}(\Omega) \rightarrow T^{1,0}(\Omega)$ be given by $\operatorname{dil}(F)\left(\partial / \partial z^{J}\right)=\sum_{k} \operatorname{dil}(F)_{j}^{k} \partial / \partial z^{k}$ (followed by \boldsymbol{C}-antilinear extension) where

$$
\begin{equation*}
F_{j}^{\ell}=\sum_{k} \operatorname{dil}(F)_{j}^{k} F_{k}^{\ell} \tag{21}
\end{equation*}
$$

Finally, note that $\partial / \partial z^{J}-\overline{\operatorname{dil}(F) \partial / \partial z^{J}} \in \operatorname{Ker}\left(\pi_{0,1} \circ(d F)\right)$.
q.e.d.

The bundle map $\operatorname{dil}(F)$ is referred to as the complex dilatation (of the symplectomorphism F).

Proposition 1. Let F be a symplectomorphism of $\left(\Omega, \omega_{\gamma}\right)$ and $\operatorname{dil}(F)$ its complex dilatation. Then

$$
\omega_{\gamma}(Z, \overline{\operatorname{dil}(F) W})+\omega_{\gamma}(\overline{\operatorname{dil}(F) Z}, W)=0
$$

for any $Z, W \in T^{1,0}(\Omega)$. Also, $\operatorname{dil}(F)=0$ if and only if F is holomorphic.

Indeed, if $Z \in T^{1,0}(\Omega)$ then $(d F)(Z-\overline{\operatorname{dil}(F) Z}) \in T^{1,0}(\Omega)$. Therefore, as ω_{γ} vanishes on complex vector of the same type,

$$
\begin{aligned}
0 & =\omega_{\gamma}((d F)(Z-\overline{\operatorname{dil}(F) Z}),(d F)(W-\overline{\operatorname{dil}(F) W})) \\
& =\omega_{\gamma}(Z-\overline{\operatorname{dil}(F) Z}, W-\overline{\operatorname{dil}(F) W})=-\omega_{\gamma}(Z, \overline{\operatorname{dil}(F) W})-\omega_{\gamma}(\overline{\operatorname{dil}(F) Z}, W)
\end{aligned}
$$

for any $Z, W \in T^{1,0}(\Omega)$.
By (21), each component F^{j} of the symplectomorphism F satisfies the first order PDE (with variable coefficients)

$$
\begin{equation*}
\frac{\partial f}{\partial \bar{z}^{\prime}}=\sum_{k} d_{j}^{k} \frac{\partial f}{\partial z^{k}} \tag{22}
\end{equation*}
$$

where $d_{j}^{k}=\operatorname{dil}(F)_{j}^{k}$. We refer to (22) as the Beltrami equations (cf. e.g. [20]). On the other hand, with any contact transformation $F: M \rightarrow N$ between two strictly pseudoconvex CR manifolds M and N one may associate (cf. [10], p. 61) a complex dilatation $\mu: T_{1,0}(M) \rightarrow T_{1,0}(M)$ and whenever $M=H_{n-1}$ (the Heisenberg group) and N is a real hypersurface in C^{n} (carrying the standard CR structure induced from the complex structure of C^{n}), the components F^{j} of F satisfy the PDE

$$
\begin{equation*}
L_{\bar{\alpha}} f=\sum_{\beta=1}^{n-1} \mu_{\bar{\alpha}}^{\beta} L_{\beta} f \tag{23}
\end{equation*}
$$

where $L_{\bar{\alpha}}=\partial / \partial \bar{z}^{\alpha}-i z^{\alpha} \partial / \partial t$ are the Lewy operators (cf. e.g. [5], p. 435-436) on \boldsymbol{H}_{n-1}, and $\mu L_{\alpha}=\sum_{\beta} \mu_{\dot{\alpha}}^{\beta} L_{\beta}$. We refer to (23) as the tangential Beltrami equations.

Consider the Siegel domain $\Omega_{n}=\left\{\varphi_{n}<0\right\}$ and let $F=\left(F^{1}, \ldots, F^{n}\right)$ be a symplectomorphism of $\left(\Omega_{n}, \omega_{\alpha}\right)$ in itself. Let \mathscr{F}_{n} be the foliation of \boldsymbol{C}^{n} by level sets of φ_{n}. If F is smooth up to $\partial \Omega_{n}$ then μ (the complex dilatation of F) restricted to $T_{1,0}\left(\mathscr{F}_{n}\right)$ converges to the complex dilatation of the boundary contact transformation (the proof is a word by word repetition of the proof of Proposition 2 in [11], p. 1122). Also, if $\phi: \boldsymbol{H}_{n-1} \rightarrow \partial \Omega_{n}$ is the CR isomorphism $\phi(z, t)=\left(t+i|z|^{2}, z\right)$, then each $F^{\jmath} \circ \phi$ satisfies the tangential Beltrami equations (23) (this follows from the remark at the end of section 2 and by a result in [10], p. 62).

Let d_{j}^{k} be smooth functions defined on some neighborhood of $\bar{\Omega}_{n}$. The complex vector fields $\partial / \partial \bar{\zeta}^{j}-\sum_{k} d_{j}^{k} \partial / \partial \zeta^{k}$ span a rank n complex vector subbundle $B \subset T\left(\Omega_{n}\right) \otimes C$. For the Siegel domain Ω_{n}, the vector field ξ (determined by (6)) is given by $\xi=2 i \partial / \partial \zeta^{1}$. The CR isomorphism $\phi: \boldsymbol{H}_{n-1} \approx \partial \Omega_{n}$ maps the Lewy operators $L_{\bar{\alpha}}$ into $Z_{\bar{\alpha}}=\partial / \partial \bar{\zeta}^{\alpha}+\zeta^{\alpha} \bar{\xi}, 2 \leq \alpha \leq n$. We establish the following

Proposition 2. Let D be an open neighborhood of $\bar{\Omega}_{n}$ and $\mu: T^{1,0}(D) \rightarrow$ $T^{1,0}(D)$ a fibrewise C-antilinear bundle morphism which maps $T_{1,0}\left(\partial \Omega_{n}\right)$ into itself. Let $B_{b} \subset T\left(\partial \Omega_{n}\right) \otimes C$ be the rank $n-1$ complex subbundle spanned
by $Z_{\bar{\alpha}}-\mu_{\bar{\alpha}}^{\beta} Z_{\beta}, \quad 2 \leq \alpha \leq n$, where $\mu_{\bar{\alpha}}^{\beta}$ are given by $\mu\left(Z_{\alpha}\right)=\mu_{\bar{\alpha}}^{\beta} Z_{\beta}$. Let $d_{\bar{j}}^{k}$ be given by $\mu\left(\partial / \partial \zeta^{J}\right)=d_{j}^{k} \partial / \partial \zeta^{k}$ and set $h(\zeta)=2 i \sum_{\beta} d_{1}^{\beta} \bar{\zeta}_{\beta}-d_{1}^{1}-1$. Then

$$
B_{b}=\left[T\left(\partial \Omega_{n}\right) \otimes C\right] \cap B
$$

on $\partial \Omega_{n} \cap\{\zeta: h(\zeta) \neq 0\}$. In particular, the trace on $\partial \Omega_{n}$ of any solution $f \in$ $C^{\infty}\left(\bar{\Omega}_{n}\right)$ of the Beltrami equations (22) satisfies the tangential Beltrami equations $Z_{\bar{\alpha}} f=\mu_{\dot{\alpha}}^{\beta} Z_{\beta} f$ on the open set $\left\{\zeta \in \partial \Omega_{n}: h(\zeta) \neq 0\right\}$.

Indeed, as $\mu\left(T_{1,0}\left(\partial \Omega_{n}\right)\right) \subseteq T_{1,0}\left(\partial \Omega_{n}\right)$,

$$
\begin{aligned}
\mu_{\bar{\alpha}}^{\beta} & =d_{\bar{\alpha}}^{\beta}-2 i \zeta_{\alpha} d_{\overline{1}}^{\beta} \\
2 i \mu_{\bar{\alpha}}^{\beta} \bar{\zeta}_{\beta} & =d_{\bar{\alpha}}^{1}-2 i \zeta_{\alpha} d_{1}^{1}
\end{aligned}
$$

where $\zeta_{\alpha}=\zeta^{\alpha}$. Consequently $Z=a^{J}\left(\partial / \partial \bar{\zeta}^{J}-d_{j}^{k} \partial / \partial \zeta^{k}\right)$ is tangent to $\partial \Omega_{n} \cap$ $\{h \neq 0\}$ if and only if $a^{1}=-2 i \zeta_{\alpha} a^{\alpha}$, i.e. $Z \in \Gamma^{\infty}\left(B_{b}\right)$.
q.e.d.

Proposition 3. Let $F: \Omega_{n} \rightarrow \Omega_{n}$ be a C^{∞} diffeomorphism, smooth up to the boundary, each of whose components F^{j} satisfies the PDE

$$
Z_{\bar{\alpha}} F^{J}=\mu_{\dot{\alpha}}^{\beta} Z_{\beta} F^{j}
$$

in Ω_{n}, for some C^{∞} functions $\mu_{\dot{\alpha}}^{\beta}: \Omega_{n} \rightarrow C$. If F is a foliated map, i.e. it preserves the foliation \mathscr{F}_{n}, then for any $\alpha>-1$ there is $f_{\alpha} \in C^{2}\left(\Omega_{n}\right), f_{\alpha} \neq 0$ everywhere, so that

$$
F^{*} \omega_{\alpha} \equiv f_{\alpha} \omega_{\alpha}, \bmod \theta_{\alpha}, d \rho_{\alpha}
$$

Proof. Set $V_{\alpha}=Z_{\alpha}\left(F^{j}\right) \partial / \partial \zeta^{j}$ and $W_{\alpha}=Z_{\bar{\alpha}}\left(F^{j}\right) \partial / \partial \zeta^{j}$. As

$$
\begin{gathered}
(d F) T\left(\mathscr{F}_{n}\right)=T\left(\mathscr{F}_{n}\right), \\
Z_{\alpha}-\mu_{\alpha}^{\bar{\beta}} Z_{\bar{\beta}} \in T\left(\mathscr{F}_{n}\right) \otimes \boldsymbol{C}, \\
W_{\alpha}=\mu_{\bar{\alpha}}^{\beta} V_{\beta},
\end{gathered}
$$

(where $\mu_{\alpha}^{\bar{\beta}}=\overline{\mu_{\bar{\alpha}}^{\beta}}$) one has

$$
(d F)\left(Z_{\alpha}-\mu_{\alpha}^{\bar{\beta}} Z_{\bar{\beta}}\right)=V_{\alpha}-\mu_{\alpha}^{\bar{\beta}} W_{\beta} \in T_{1,0}\left(\mathscr{F}_{n}\right)
$$

Note that

$$
H\left(\mathscr{F}_{n}\right) \otimes C=\operatorname{Re}\left\{B_{b} \oplus \overline{B_{b}}\right\}
$$

and

$$
\left(F^{*} \theta_{\alpha}\right) \bar{B}_{b} \subseteq \theta_{\alpha}\left(T_{1,0}\left(\mathscr{F}_{n}\right)\right)=0
$$

hence

$$
F^{*} \theta_{\alpha}=a \theta_{\alpha}+b d \rho_{\alpha}
$$

for some C^{∞} functions $a, b: \Omega_{n} \rightarrow \boldsymbol{R}$. Here $\theta_{\alpha}=(i / 2)(\bar{\partial}-\partial) \rho_{\alpha}$. Also $\rho_{\alpha} \circ F=\lambda \rho_{\alpha}$ for some $\lambda \in C^{2}\left(\bar{\Omega}_{n}\right), \lambda>0$ everywhere. Next, one may use

$$
\omega_{\alpha}=(n+1+\alpha)\left\{\frac{d \theta_{\alpha}}{\rho_{\alpha}}-\frac{d \rho_{\alpha} \wedge \theta_{\alpha}}{\rho_{\alpha}^{2}}\right\}
$$

to conclude that

$$
F^{*} \omega_{\alpha}=\frac{a}{\lambda} \omega_{\alpha}+\frac{n+1+\alpha}{\lambda \rho_{\alpha}}\left((d a-a d \log \lambda) \wedge \theta_{\alpha}+(d b-b d \log \lambda) \wedge d \rho_{\alpha}\right)
$$

Finally $a \neq 0$ everywhere (for if $a\left(z_{0}\right)=0$ at some $z_{0} \in \Omega_{n}$ then

$$
\theta_{\alpha, F\left(z_{0}\right)}\left(d_{z_{0}} F\right)=b\left(z_{0}\right) d_{z_{0}} \rho_{\alpha},
$$

i.e. $\left(d_{z_{0}} F\right) T\left(\mathscr{F}_{n}\right)_{z_{0}} \subseteq H\left(\mathscr{F}_{n}\right)_{F\left(z_{0}\right)}$, a contradiction).

References

[1] E. Barletta and S. Dragomir, On the Djrbashian kernel of a Siegel domain, Studia Math., 127 (1998), 47-63.
[2] S. Bergman, The Kernel Function and Conformal Mapping, Math. Surveys, 5, Amer. Math. Soc., New York, 1950.
[3] S. Dragomir, On welghted Bergman kernels of bounded domans, Studia Math., 107 (1994), 149-157
[4] C. Feferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., 26 (1974), 1-65.
[5] G. B. Folland and E. M. Stein, Estımates for the $\bar{\partial}_{b}$-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522.
[6] F Forelli and W Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J., 24 (1974), 593-602.
[7] S. Helgason, Differential geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978, 352-373.
[8] S. Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc., 92 (1959), 267-290.
[9] A. Korányi and H. M. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math., 80 (1985), 309-338.
[10] A. Korányi and H. M. Reimann, Quasiconformal mappings on CR manifolds, Lecture Notes in Math., 1422, Sprınger-Verlag, Berlin-Heıdelberg-New York, 1988, 59-75.
[11] A. Korányi and H. M. Reimann, Contact transformations as limits of symplectomorphisms, C.R. Acad. Scı. Parıs, 318 (1994), 1119-1124.
[12] A. Korányi and H. M. Reimann, Foundations for the theory of quasiconformal mappings on the Hesenberg group, Adv. Math., 111 (1995), 1-87
[13] J. M. Lee and R. Melrose, Boundary behaviour of the complex Monge-Ampère equation, Acta Math., 148 (1982), 159-192.
[14] E. Ligocka, On the Forelli-Rudin construction and weighted Bergman projections, Studia Math., 94 (1989), 257-272.
[15] T. Mazur, On complex manifolds of Bergman type, Classical Analysis, World Scientific, River Edge, 1992, 132-138.
[16] Z. Pasternak-Winiarski, On the dependence of the reproducing kernel on the weight of integration, J. Funct. Anal., 94 (1990), 110-134.
[17] Z. Pasternak-Winiarski, On weights which admit the reproducing kernel of Bergman type, Internat. J. Math. Math. Scı., 15 (1992), 1-14.
[18] M. M. Peloso, Hankel operators on werghted Bergman spaces on strongly pseudoconvex domans, Illinois J. Math., 38 (1994), 223-249.
[19] M. M. Peloso, Sobolev regularıty of the weighted Bergman projections and estimates for mınımal solutions to the $\bar{\partial}$-equatıon, Complex Variables Theory Appl., 27 (1995), 339-363.
[20] L. Wang, The globally homeomorphic solutions to Beltramı system in C^{n}, Math. Z., 216 (1994), 371-377

Università degli Studi della Basilicata
Dipartimento di Matematica
via N. Sauro 85
85100 Potenza
Italy
e-mail: barletta@unibas.it
e-mail: dragomır@unibas.ıt

[^0]: ${ }^{1}$ We learned Theorem 1 from [18]. However, M. M. Peloso claims Theorem 1 is implicit in [14], while E. Ligocka employs an older ıdea by F Forelli and W. Rudin [6].

