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MEROMORPHIC FUNCTIONS / AND g THAT SHARE TWO

VALUES CM AND TWO OTHER VALUES IN THE SENSE OF

Ek(β,f)=Ek(β,g)

HlDEHARU UEDA

1. Introduction

In this paper the term "meromorphic function" will mean a meromorphic
function in C. We will use the standard notations of Nevanlinna theory: T(r, / ) ,
S(rJ), m(r,β,f), N(r,βJ), N(r,βJ), Nx(rJJ)9 #i(r,/?,/), N^rJ), Nx{rJ),
® (/?>/) (/? e CU {oo}),... etc., and we assume that the reader is familiar with the
basic results in Nevanlinna theory as found in [3].

For a nonconstant meromorphic function / , a number β e C U {oo} and a
positive integer or +oo k, we write Ek{β,f) = {z e C : z is a β — point off with
multiplicity less than or equal to k.}.

If two nonconstant meromorphic functions / and g satisfy 2s+00 (/?,/) =
E+OD(β,g), then we say t h a t / a m / g share β IM. If / and g satisfy Ek(β,f) =
Ek(β,g) for all positive integers k, then we say that / and g share β CM.

The following Theorems A-C are due to Bhoosnurmath and Gopalakrishna

[i]

THEOREM A. Let f and g be nonconstant meromorphic functions. Assume
that there exist distinct 5 elements a\,...,a$ in CU{oo} such that Ejc(aj,f) =
Ek(aj, g) for j — 1,..., 5, where k ( ^ 3) is a positive integer or +oo. Then f = g.

THEOREM B. Let f and g be nonconstant meromorphic functions. Assume
that there exist distinct 6 elements a\,...,ae in CU{oo} such that £2(0/,/) =
E2(aj, g) for j = 1,..., 6. Then f = g.

THEOREM C. Let f and g be nonconstant meromorphic functions. Assume
that there exist distinct 1 elements a\,...,aη in CU{oo} such that E\(aj,f) =
Eι(aj,g)forj=l,...,7. Then f = g.

The case of k = +00 in Theorem A is a well-known result of Nevanlinna
what is called Five-Point Theorem [5]. As we have pointed out in [6, p. 458], in
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the above three results, the assumption on the number of distinct elements {α,}
satisfying Ek(aj,f) = Ek(ctj,g) cannot be improved.

In connection with Theorems B and C we showed in [7] the following
Theorems D and E.

THEOREM D. Let f and g be nonconstant meromorphίc functions. Assume
that f and g share two values 0 and oo CM, and further that they satisfy E2(aj,f) =
E1{ahg) for j = 3,4,5, where a3 = 1, α4 = a, a5 = b. (a,b φ 0, oo, 1; a φ b) (i) If
{a,b} = {ω,ω2}, where ω(φl) is a third root of unity, then f3=g3. (ii)
If {a,b} Φ {ω,ω2}, then f = g.

THEOREM E. Let f and g be nonconstant meromorphic functions. Assume
that f and g share two values 0 and oo CM, and further that they satisfy E\(aj,f) =
E\{ahg) for j = 3,... ,6, where a3 = 1, a4 = α, a5 = b, a6 = c. (a,b\c Φ 0, oo, 1;
aΦbφcΦήlfilf {a,b,c} = { I , - 1 , - I } , then f4 = g\ (ii) // {a,b,c\ = {α,
- l , - α } ( α ^ ± i ) , thenf2 = g2. (iii) // {a,b,c} Φ {α, - 1 , -α} ? then f = g.

Gundersen [2] proved the following result which generalizes a well-known
result of Nevanlinna what is called Four-Point Theorem [5].

THEOREM F. Let f and g be nonconstant meromorphic functions. Assume
that f and g share two values 0 and oo CM, and that they share two values 1 and
a(*0,oo,l)IM. (i)Ifa = -l,thenfg=l,f+g = Oorf = g. (ii) If a=l/2,
then ( / - ( l / 2 ) ) ( f l f - ( l / 2 ) ) = l / 4 , f + g=l or f = g. (iii) If a = 2, then

1) = 1, f + g = 2 or f = g. (iv) If a Φ -1,1/2,2, then f = g.

In this paper in relation to Theorems A and F we prove the following two
results.

THEOREM 1. Let f and g be nonconstant meromorphic functions. Assume that
f and g share two values 0 and oo CM, and that they satisfy Ek(aj,f) = Ek{cij,g)
for j = 3,4, where a3 = \, a^ = a (#0,oo,l,—1) and k (^12) is a positive integer.
(i) If a= 1/2, then (f - (\/2))(g - (1/2)) = 1/4, f + g=l or f EE g. (ii) //
a = 2, then (/ - \){g - 1) = 1, / + ̂ 2 or f = g. (iii) // a Φ -1,1/2,2, then

THEOREM 2. Let f and g be nonconstant meromorphic functions. Assume
that f and g share two values 0 and oo CM, and that they satisfy Ek(aj,f) =
Ek{aj,g) for j = 3,4, where a3 = 1, a4 = — 1 and k (^7) is a positive integer.
Then fg=\, f + g = 0 or f = g.

2. Notations and terminology

In this section, we introduce some notations and terminology which will be
needed to prove Theorems 1 and 2.
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<i> Let / , g be distinct nonconstant meromorphic functions. For r > 0, put
Γ(r)=max{Γ(r,/), T(r,g)}. We write σ(r) = S(ή for every function σ : (0,+oo) ->
(-00, +00) satisfying σ(r)/T(r) —> 0 for r —> +00 possibly outside a set of finite
Lebesgue measure.
_ <ii> Let fΛg be nonconstant meromorphic functions. We denote by
Nc(r,β;f,g) = Nc(rJ) (resp. Nd(rJ;f,g)=Nd(r,β)) the counting function of
those common / -̂points of / and g with the same multiplicity (resp. with the dif-
ferent multiplicities), each point counted only once regardless of multiplicity, and
we write Ni(r,β'J,g) = Nfaβ) = Nc(r,β) + NA[r,β).

We say that / and g share β CM" if N(r_,βJ) - Nc_(rJ) = S(r,f) and
N(r,β,g)-Nc(r,β) = S(r,g) hold. Similarly, if N(r,βJ)-Ni(r,β) = S(rJ) and
N(r,β,g) - Ni(r,β) = S(r,g) hold, then we say that /and g share β IM". These
notions CM" and IM" are slight generalizations of CM and IM, respectively.

<iii> Let / and g be nonconstant meromorphic functions. For /?, γ
(eCU{oo}), βφ γ we put

mβ)γ(r) =mβtγ(r;f,g) = m(r,β,f) + m(r,γ, f) + m(r,β,g) + m(r,γ,g),

Nβ,y{r) = Nβ%γ(r,f,g) = N{rJ = β, g Φ β) + N(r;f = γ, g Φ γ)

+ N(r;g = β, fφβ)+N(r;g = γ, f Φ y),

Nly{r) = N'iy{rJ,g) = Nd(rJ)

Nβ,γ(r)=Nβ,y(nf,g) = Nίγ(nf,g) + ^

where for example, 7V(r; f = β, g Φ β) denotes the counting function of those β-
points of / which are not / -̂points of g, each point counted only once.

3. Preparations for the proof of Theorems 1 and 2

We often need a slight generalization of Theorem F:

THEOREM F'. Theorem F remains still valid if CM and IM are replaced by
CM11 and IM", respectively.

In order to prove this fact we have only to use the argument (due to Mues)
of the proof of Theorem 1 in [4] by replacing CM and IM by CM" and IM",
respectively.

In the rest of this section, we assume that / and g are distinct nonconstant
meromorphic functions sharing a\ = 0 and aι = 00 CM and satisfying Ek{aj,f) =
Ek(aj,g) for j = 3,4, where a^ — 1, a$ = a (#0, 00,1) and k (^2) is a positive
integer. We write, for ^xample, JV(r,O,/) = N(r,0,g)_= N(r,0), N_(r,oo,f) =
N(r,ao,g)=N(r,σo), iV(r,0,/) = ΛΓ(r,O,fif) = iV(r,0), N(r, 00,/) = N(r, 00, g) =
N(r, 00), M W / ) = NxirAg) = M(r,0), Nχ(r, 00 J) = Nx(r, co,g) = Nx(r, oo),
Nl(r,0J)=Ni(rAg)=Nl(r,0), JVi(r, 00,/) = A^r, 00,g) = Nχ(r, 00).



276 HIDEHARU UEDA

LEMMA 1. S(r) = S(rJ) = S(r,g).

Proof. Let d e C be different from aj (7 = 1,2,3,4), and let bj = (aj - d)~ι

(.7 = 1,2,3,4). Then b\,..., b4 are all distinct and finite. If we put F = (/ - d)~ι

and G=(g- d)~\ then F and G share 61 and ό2 CM and satisfy Ek(bj,F) =
Ek(bj,G) for 7 = 3,4. By the second fundamental theorem and the fact that
F ψ G

7=1

4

N(r; F = bj, G Φ bj) + S(r, F)

^ N(r,0,F- G) + {2/(k+l)}T(r,F) + S(r,F)

^ T(r,F) + T(r, G) + {2/(k + l)}T(r,F) + S(r,F),

i.e.,

(3.1) T(r,F)ί{(k+l)/(k-l)}T(r,G) + S(r,F).

(3.1) is still valid when we exchange F and G, so that

(3.2) Γ(r, (?) ύ {(k + l)/(* - l)}Γ(r,F) 4- S(r, G).

Taking Γ(r,F) = Γ(r,/) + 0(1) and T(r,G) = T(r,g) + 0(1) into account, we
immediately deduce Lemma 1 from (3.1) and (3.2). •

LEMMA 2. Let h(r\f' = g' = 0 ,/ φ 0,# φ 0) denote the number of distinct
common zeros of ff and gι which are neither zeros off nor g in \z\ ̂  r. Put

' fc' '( J g ) fc{( )(
fφθ,gφ 0)}/tdt + h{0;f = g' = 0,/ φ 0,g φ 0)logr. // g/f is not a con-

stant, then N(r;f = g' = 0, / Φ 0, g Φ 0) = S(ή.

Proof. Since / and g share 0 and oo CM, there is an entire function α
satisfying g — eaf, where α is nonconstant. Assume that there is a point z<> such
that f'(z0) = fif'(zo) = 0, /(z0) # 0 and 0(zo) # 0. The differentiation of g = e*f
gives g' = ea(a'f + / ' ) , and so we have α'(zo) = 0. Since α is entire, we deduce
using the lemma of the logarithmic derivative that

N{r f = g' = 0,fΦ0,g*0)ί N(r, 0, a') ύ m(r, α') + 0(1)

= m{r,(e«y/e"} + O(l) = S(r,e«)

= S(r,g/f) ί S(r, f) + S(r,g) = S{r). •
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z\ ̂  rLEMMA 3. Let n[(r,f) denote the number of multiple points off in
such that f φ 0, oo, I, a, where a point of multiplicity m is counted (m - 1) times,
and put N[{rJ) = £{n[(t,f) - n[(0J)}/t dt + n[(0J) logr. // N{(r, g) is sim-
ilarly defined, then

(3.3) N{'Jnf,g)+kNUr,f,9)+N{(r,f)+N{(r,g)

Proof. By the first and the second fundamental theorems

(3.3)' mλ,a(r,f,g) + 2N[ta(r,f,g) + 3N{'Jr,f,g) + (k

ahf) + N{r,aj,g)} - {N[{rJ) + N{(r,g)} + S(r)
7=1

from which we immediately deduce (3.3).

Now, we introduce some auxiliary functions:

f'θ'if-g)1

φ.-

(3.5) φ

(3.6) φ3 =
 f'

f9{f-\){9-\){f-a)(g-a)

- f'f 9'9

f(f-l)(f-a) g(g-l)(g-ay
f f f n1

f f / - I f-a) \g> g g-\ g-a)'
r I f nt

a a aΦs- \7+27~7^~7^J" W^^~ϊ^ϊ~9^a)'
(3.9) Φ6 = Φl-{l+a)2φu

( JΛU) ψη '= φc — ( i ~r a) ψ\,

nu\ Λ (f of f + °f\ ίg" ->9' 9' , ag'(3.11) φs= [-J-2—--Z—τ + -—-) - [-T-2--
f f f - r f - a ) \g> g g-\ g-a)'
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and

J
g g-\ g-aj

We remark that for the case a— - 1 , φ% = φ4 and φ9 = φ5 hold. With the
aid of these auxiliary functions we obtain some basic estimates:

LEMMA 4. (i)

(3.13) 2{tfi(r,0) +M(r, oo)} +N[{rJ) +N[(r,g) ^ JV1>β(r) + S(r).

(ii) If neither φ2 = 0 nor φ3 = 0, then

(3.14) N(r, 0) + N(r, oo) ^ 2{ΛΓi>β(r) 4- < , » } + S(r).

(iii) 7/" neither φ6 = 0 «or ^7 = 0,

(3.15) N(r,O)+N{r, oo)<

/6>r example, Nx (r, /) denotes the counting function of multiple points of
f(Φ0,ao,l,a), each point counted only once.

(iv) If neither φs = 0 «or ^ 9 = 0,

(3.16) 7V(r,0) +7V(r, oo) g ^%(r) + 2JV1>β(r)

oo) + 5(r) {aΦ-\).

Proof (i) From the fundamental estimate of the logarithmic derivative it
follows that m(r, φx) = S(r) (cf. [4, p. 171]). The poles of φλ occur with multiplicity
1 due to the case [i] the 1- or a- points of/ (resp. g) which are simple points of
g{Φ\,a) (resp. f(Φl,ά)), and with multiplicity 2 due to the case [ii] the
common roots of / = 1 (resp. f — a) and g = a (resp. g = 1). Hence we have
N(r,co,φλ) = Nha(r) - {N[(r,f;g = l,ά) + N[(r,g;f = 1, a)}, where for example,
N{(r,f;g=l,a) denotes the counting function of those multiple points of
f(φθ, oo, l,α) which are either 1- or α-points of g, each point counted only
once. Since φλ φ 0, we obtain from the first fundamental theorem

(3.13)'

^N{r^φx)^T(r,φλ) +

= Nla(r) - {N[(rJ;g =
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where for example, N[(r,f;gΦ\,a) denotes the counting function of those
multiple points of / ( # 0 , oo, I,a) which are neither 1- nor α-points of g, each
point counted only once. From (3.13)' we immediately deduce (3.13). •

(ii) From our assumption that φ2φ0 and φ3 ψ 0, it follows that

tf(r,0) g N(rAΦ2) ύ T(r,φ2) + 0(1) = m(r,φ2)+N(r, oo,^2)

and

N(r, <x>) £ ΛΓ(r,O,&) g Γ(r,^) + O(l) = m(r,&) +7V(r, 00,^3) + 0(1)

Combining these inequalities we have (3.14). •

(iii) Let zo be a common simple zero of / and g. Then we easily see that
Φβ(zo) — 0. Hence our assumption φ6 φ 0 gives

N(r,0) ί N(r,0Jβ)+Nι(r,0) ί T(r,φ6) + JV,(r,O)

= m(r,^6) + ΛΓ(r, 00, ̂ 6)

ί 2NUa(r) + 2{N[ (r, f) + N[ (r, g)} + N,(r, 0) + 5(r).

(In particular, if α = - 1 , then we obtain

N(r,0) ^ N(r,0,Φ4) +^i(r,0) ^ Γ(r^ 4 ) + JV,(r,O) + 0(1)

Next, let z^ be a common simple pole of/ and #. Then we have φ1{zQa) = 0.
Using the assumption that φΊ φ 0, we obtain

N(r, 00) ^ ΛΓ(r,O,^) + JV,(r, 00) ^ Γ(r,^) + ^i(r, 00) + 0(1)

= m(r, ̂ 7) + N(r, 00, ̂ ) + JV,(r, 00) + 0(1)

r,/) + N[(r,g)} + JVi(r, 00)

(In particular, if α = - 1 , then we get
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JV(r, oo) ̂  N(rAΦs) + #i(r, °°) ^ ^ M s ) + #i(r, oo) + 0(1)

^ JVi,β(r) + {Jv| (r,/) + J\F| (r, #)} + ̂  (r, ex)) + S(r).)

The combination of the above two estimates yields (3.15). •

(iv) If zo (resp. z^) is a common simple zero (resp. pole) of / and g, then
φs(zo) = 0 (resp. φ9(zoo) = 0). Since we assume that ^ 8 # 0 and ̂ 9 # 0, we easily
see that

N(r, 0) + JV(r, oo) £ tf(r, 0, ̂ 8 ) + N(r, 0, 09) + Nx(r, 0) + J?!(r, oo)

^ JV(r, oo,^8) + 7V(r, oo,^9) + J7i(r,0) + J7i(r, oo) + S(r)

Z N»a(r) + 2Nha{r) + 2{ivί (r,/) + JvJ(r, g)}

4. Proof of Theorems 1 and 2

In what follows we assume that / and g are distinct and satisfy the as-
sumptions of Theorem 1 or 2, and so there is an entire function α satisfying

CASE 1. We first consider the case that ea is a constant C (#0,1) . From
the assumptions Ek(\,f) = Ek(l,g) and E^[a,f) — Efc(a,g) it follows that Θ(l,g),
Θ(a,g)^k/(k+l). If Cφa, we also obtain Θ(C,g)^k/(k+l), and so Θ(l,gf) +
Θ(α,gf) +®(C,g)^.3k/(k+ 1) > 2, a contradiction. This shows C=a. Further
if a2 Φ 1, we also obtain Θ(a2,g) ^ k/{k+ 1), and so Θ(l,#) + Θ(β,gf) + Θ(«2,^)
^ 3A:/(Λ: + 1) > 2, a contradiction. This shows a2 = 1, i.e., α = — 1 and / + g = 0.

In this case we remark that N(r, 1, / ) = ΛΓ(r, - 1 , g) and N(r, — 1, / ) = JV(r, 1, g)
are not necessarily S{r)\

CASE 2. We next consider the case that ea is nonconstant. We divide our
argument into several subcases:

2.1. The case φ2 = 0
Φ2 = O implies that any 1- and α-point of / (resp. r̂) is a 1- or an #-point of g

(resp. / ) . By making use of Lemma 2, we deduce from the assumptions
E k ( a j , f ) = E k ( a j , g ) f o r j = 3 , 4 w i t h a 3 = I, a A = a t h a t N ( r J = l,g = a) +
N(r;f = a, g = 1) = S(r), (where N(r;f = \,g = a) denotes the counting func-
tion of common roots of / = 1 and g = a, each counted only once,) and so by
Lemma 1 / and g share two values 1 and a IM". Hence by Theorem F ; / and
g are connected with one of the relations stated in Theorem F. Further,
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straightforward computations show that only two relations (/—(1/2))
(g - (1/2)) = 1/4 (with a = 1/2) and (/ - \){g - 1) = 1 (with a = 2) are suitable
for φ2 = 0.

2.2. The case ^ Ξ O
The same reasoning as in the case 2.1 shows that only two relations

/ + g = 2 (with a = 2) and f + g=l (with a =1/2) are suitable for φ3 = 0.

2.3. The case φβ = 0
First we consider the case a Φ — 1. By (3.9)

(4.1) *4

2 = ( l + f l ) V i

The poles of the right hand side of (4.1) occur with multiplicity 1 due to the
case [i] the 1- or α-points of/ (resp. g) which are simple points of g(φ\, a) (resp.
f(Φl,ά))9 and with multiplicity 2 due to the case [ii] the common roots of / = 1
(resp. f = a) and g — a (resp. g — 1).

On the other hand, the poles of the left hand side of (4.1) occur with
multiplicity 2 due to the following two cases:

[iii] The 1- or α-points of/ (resp. g) which are neither 1- nor α-points of g
(resp. / ) ,

[iv] the zeros of / ' such that / φ 0,1,a or the zeros of gf such that g φ
0,1, a, where the multiplicities of the zeros of / ' and g' are different.

Hence we see that there are no points satisfying the above [i], [ii], [iii] or [iv],
so that / and g share 1 and a IM. Therefore by Theorem F, / and g are
connected with one of the relations stated in Theorem F. Further straight-
forward computations show that only two relations ( / - ( l / 2 ) ) ( # - ( l / 2 ) ) = 1/4
(with a=l/2) and (/ - \){g - 1) = 1 (with a = 2) are suitable for φ6 = 0.

We next consider the case a = -\. In this case φ6 = 0 implies φ4 = 0. φ4 = 0
implies that any 1- and α-point of/ (resp. g) is a 1- or an tf-point of g (resp. / ) .
The same argument as in the case 2.1 yields that / and g are connected with the
relation with a = — l stated in Theorem F, i.e., fg=\. But, a direct computation
shows that this is not suitable for φ4 = 0.

2.4. The case φη = 0
The same reasoning as in the case 2.3 shows that only two relations

/ + g = 2 (with a = 2) and f+g=l (with a =1/2) are suitable for φΊ = 0.

2.5. The case φ$ = 0
If a = — 1, then φ$ = φ4. Since we have already handled the case φ4 = 0

with a = - 1 in 2.3, we may consider the case a φ - 1 . First we easily see that /
and g share 1 IM by considering the residue of φ$ at any 1-point of/ or g, where
we used the assumption a Φ - 1 . Next, we prove that / and g share a IM", i.e.,
N(r;f = a,gΦa)+N(r,g = a,fφa) = S(r). To show this, we suppose that
N(jr\ f = a, gΦ a) + N(r; g = a, f φ a) φ S(r), and will seek a contradiction.
Under this assumption, we have - 1 < a < 0. In fact, (without loss of generality)
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we may assume that N(r;f — a, g φ ά)φS(r). From Lemma 2 we see that there
exists a point za satisfying f(za) = a with multiplicity p ( ^ f c + 1 ) and
g(za) = b(φa,\,0,oo) with multiplicity 1. By the computation of the residue
of φ$ at za we have p— 1 + ap = 0, i.e., ( α + 1)/*=1, which gives — 1 < a < 0.
Further the same reasoning shows that if N(r;f — a, g Φ a) Φ S(r), then any
α-point of / which is not an α-point of g has multiplicity ^ (a + I ) " 1 = Po
(Ξ>fc + 1 ̂  13). In the same way, if 7V(r; g = a, f φ a) φ S(r), then any α-point
of g which is not an α-point of / has multiplicity ^ ( α + l ) " 1 ^ ^
(grfc + 1 ̂  13). Hence (by taking the fact that / and g share 1 IM into account)
in the same way as in (3.3)' in Lemma 3 we have

+ Po{N(r\f = a,gφ a)+N(r;g = a, f Φ a)}

ί 2{N(r,0) +7V(r, 00) + #i>e(r;/,fl0} +N{rJ = a, g Φ a)

g = α, / Φ a) - {N{(r,f) +N{(r,g)} + S(r),

and so

(4.2) Po{N(rJ = a,gΦa)+ N(r g = a, f Φ a)} ^ 2{J?(r,0) + JV(r, 00)}

+ {N(r;f = a,gΦa)+ JV(r; β = β, / # α)} + 5(r).

If z^ satisfies f'(zp)=09 f(zβ) # 0, l,α, (resp. gf(zβ) = 0, g(zβ) Φ 0, l,α) then ^ 8 = 0
implies that ^(z/O = 0, ^(z^) 7̂  0,1 (resp. / ;(z^) = 0, /(z^) # 0,1). Hence by
Lemma 2

(4.3) N[{rJ) + #;(r,0) ύ 2N{rJ' = gf = 0, f Φ 0, g Φθ) = S(r).

In view of (3.13) we have

(4.4) 2{tfi(r,0) + iVi(r, 00)} ̂  JV(r;/ = α, flf ̂  a) + iV(r;^ = fl, / * *)} + S(r).

Since we have already considered the case φ6 = 0 in 2.3 and φη = 0 in 2.4, we
may now consider the case φ6 ψ 0 and ̂ 7 ^ 0. Substituting (4.3) and (4.4) into
(3.15) with a Φ - 1 , we obtain

(4.5) 2{N(r, 0) + N(r, 00)} ̂  9{ΪV(r;/ = fl, ^ # a) + JV(r; flf = α, / # α)} + 5(r).

The combination of (4.2) and (4.5) gives p0 g 10, which is a contradiction. This
proves that / and g share a IM". Thus we deduce from Theorem F ' that / and
g are connected with one of the relations with a φ — 1 stated in Theorem F. But
straightforward computations show that none of the relations stated in Theorem F
are suitable for φs = 0, φ6 φ 0 and φΊ ψ 0.

2.6. The case φ9 = 0 (, φ6 ψ 0, φΊ ψ 0)
The same reasoning as in the case 2.5 shows that there is not a pair of/ and

g satisfying φ9 = 0, φ6 ψ 0 and ^ 7 ^ 0.
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2.7. The case φ2 ψ 0, φ3 # 0, φ6 ψ 0, φΊ ψ 0, fa ψ 0, φ9 ψ 0
First we consider the case a Φ - 1 . Combining (3.3), (3.15) and (3.13), we

have

(4.6) i V ί »

On the other hand, using (3.3), (3.16) and (3.13) we have

(4.7) (k

Substituting (4.7) into (4.6), it follows that (k - Π)N\ta(r) ύ S(r). Since k ^ 12,
this implies that ΪVi,fl(r) = S(r), and so N[[a{r) = S(r) by (4.6).

Now assume that a= — 1. Combining (3.3) and (3.14), we have

(4.8) ( k J

On the other hand, we use (3.3), (3.15) and (3.13) to obtain

(4.9) N{

Taking the fact k ^ 7 into account, we deduce from (4.8) and (4.9) that N"a(r) —
S(r) and Nha(r) = S(r).

Hence, JVi,β(r) = S{r) and N[[a(r) = S(r) hold in both cases. From (3.13)
and (3.14) we obtain N(r,0) + N(r,ao) = S(r)9 and so by Lemma 1 and the
second fundamental theorem N(r, 1,/), N(r,a,f) — T{r,f) + S(r) and N(r, \,g),
N(r,a,g) = T(r,g) + S(r). On the other hand, N^a(r) = S(r) implies that / and
g share two values 1 and a IM", and so we deduce from Theorem F' that / and
g are connected with one of the relations in Theorem F. Therefore we obtain
fg=\ with a — —\ in this case.

This completes the proof of Theorems 1 and 2. •

Remark 1. The author does not know whether Theorem 1 holds for positive
integers fc(3^fc^ll) or not.

Remark 2. The author does not know whether Theorem 2 holds for positive
integers k (3 ^ k ^ 6) or not.

Acknowledgement. The author is very grateful to the referee for his (or her)
valuable comments.
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