ON d-SPANNEDNESS OF THE ADJOINT BUNDLES ON POLARIZED MANIFOLDS

TAKESHI KAWACHI

1. Introduction

Let X be a projective variety and L be an ample Cartier divisor. Then the pair (X, L) is called a polarized variety.

Let K be an algebraically closed field of characteristic $p \ge 0$. Let X be an n-dimensional smooth variety over K. Denote by $X^{[r]}$ the Hilbert scheme of all zero dimensional subschemes (Z, \mathcal{O}_Z) of X with length $(\mathcal{O}_Z) = r$. An element of $X^{[r]}$ is sometimes called a zero cycle.

Denition ([BB (0.0)]). An element (Z, \mathcal{O}_Z) of $X^{[r]}$ is called curvilinear if $\dim T_v Z \leq 1$ for every $v \in Z_{\mathrm{red}}$.

DENITION ([BB (0.0)]). Let L be a line bundle on X and let $d \ge 0$. We say that L is d-spanned if $\Gamma(L) \to \Gamma(\mathcal{O}_Z(L))$ is surjective for any curvilinear zero cycle $Z \in X^{[d+1]}$.

Note that L is 0-spanned if and only if L is generated by global sections. Note also that L is 1-spanned if and only if L is very ample.

Note that if L is d-spanned and (Z, \mathcal{O}_Z) is a curvilinear zero cycle with length $(\mathcal{O}_Z) = m \leq d+1$, then the linear span $\langle Z \rangle$ by $H^0(X, L)$ is isomorphic to \mathbf{p}^{m-1}

On the d-spannedness, the following Fujita's conjecture is well known.

Conjecture ([F1]). Let (X, L) an smooth polarized n-dimensional variety over C. If $L^n > 1$ then

- (1) $K_X + tL$ is spanned for $t \ge n$.
- (2) $K_X + tL$ is very ample for $t \ge n + 1$.

This conjecture is true if $n \le 2$ by [R]. The case (1) of above conjecture is also true if $n \le 4$ (by [EL] and [F2] if n = 3 and by [K] if n = 4). If n = 2, the following theorem holds.

¹⁹⁹¹ Mathematics Subject Classification. Primary 14F05, Secondary 14C20, 14J40. Key words and phrases. polarized variety, d-spannedness, Fujita conjecture. Received October 27, 1997; revised May 8, 1998.

THEOREM ([BFS Theorem (2.2)]). Let (S,L) be a polarized surface and let $d \ge 0$. If $L^2 > 1$, then $K_S + tL$ is d-spanned for any $t \ge d + 2$.

When $L^n = 1$, there are some examples where $K_X + nL$ is not spanned, such as $(P^n, \mathcal{O}(1))$, a hypersurface M of degree 6 in the weighted projective space $P(3,2,1,\ldots,1)$ with $\mathcal{O}_M(1)$, and so on. We construct new series of such examples for d-spannedness.

The main result is the following:

MAIN RESULT. For any integers $d \ge 0$, $n \ge 2$, and for any algebraically closed field K, there exists an n-dimensional polarized manifold (X, L) of general type with $L^n = 1$ over K such that $K_X + (n + d)L$ is not d-spanned.

2. Preliminaries

Let $q \ge 5$ be a prime number such that $q \ne p$. Let $G \cong \mathbb{Z}/q\mathbb{Z}$ be a cyclic group of order q generated by the primitive q-th root of unity. Given a nonnegative integer n and a sequence w_0, \ldots, w_{n+1} with $0 \le w_0 < \cdots < w_{n+1} \le q-1$, we define an action of G on P_n^{n+1} by

$$g \cdot (z_0 : \cdots : z_{n+1}) = (g^{w_0} z_0 : \cdots : g^{w_{n+1}} z_{n+1})$$

for $g \in G$.

Denote by S_d^j the set of monomials $\{z_{i_1},\ldots,z_{i_d}\}$ of degree d such that $w_{i_1}+\cdots+w_{i_d}\equiv j$. Here and throughout this paper, \equiv means conjugate modulo q, i.e. \equiv in $\mathbb{Z}/q\mathbb{Z}=\mathbb{F}_q$. Let X be a smooth hypersurface in \mathbb{P}_K^{n+1} defined by a G-invariant homogeneous polynomial F of degree q. Let

$$F = \sum_{f_i \in S_q^0} \alpha_i f_i = \alpha_0 z_0^q + \dots + \alpha_{n+1} z_{n+1}^q + \dots = 0 \quad \text{for } \alpha_i \in K,$$

and we assume $\alpha_j \neq 0$ for all $j = 0, \dots, n+1$.

Note that F does not contain monomials of the form $z_a^i z_b^{q-i}$, $a \neq b$ and $i \not\equiv 0$. Indeed, otherwise, $(w_a - w_b)i \equiv 0$. Since $w_a \not\equiv w_b$, this implies $i \equiv 0$.

LEMMA 1. This action of G on X is fixed point free. Therefore the quotient space M = X/G is smooth.

Proof. Assume that gx = x for $x = (x_0 : \dots : x_{n+1}) \in X$ and for $g \neq 1$. Take j such that $x_j \neq 0$. Since $gx = (g^{w_0}x_0 : \dots : g^{w_{n+1}}x_{q-1}) = x$, we have $(g^{w_i - w_j} - 1)x_i = 0$ for any $i \neq j$. Since the order of g is q, $g^{w_i - w_j} \neq 1$ for $i \neq j$. Hence we have $x_i = 0$ for $i \neq j$. Therefore $x = (0 : \dots : 0 : 1 : 0 : \dots : 0)$ but this point is not on X since $\alpha_j \neq 0$.

Let $\pi: X \to M$ be the natural morphism which is a covering of degree q.

For $a \neq b$, let $x_{a,b}$ be a point on X defined by $z_j = 0$ for all $j \neq a, b$. Such a point satisfies the equation $\alpha_a z_a^q + \alpha_b z_b^q = 0$, hence is unique up to the G-action, and defines a unique point on M, which will be denoted by $y_{a,b}$.

3. The fundamental case

In this section we assume n=q-2. Let X and $F=\alpha_0z_0^q+\cdots+\alpha_{n+1}z_{n+1}^q+\cdots$ be as before. We assume that $\alpha_0,\ldots,\alpha_{n+1}\neq 0$ and X is smooth. Set $F_i=(\partial/\partial z_i)F$. Since X is smooth, $F_0(x)=\cdots=F_{q-1}(x)=0$ does not occur at any $x\in X$.

PROPOSITION 2. The canonical sheaf of M = X/G is trivial.

Proof. The natural surjective morphism $\pi: X \to M$ is the étale Galois covering. Since $H^1(\mathbf{P}^{n+1}, \mathcal{O}_{\mathbf{P}^{n+1}}(-q)) = 0$ for $1 \le i \le n$, we have

(1)
$$H^{i}(X, \mathcal{O}_{X}) = 0 \quad \text{for } 1 \leq i \leq n - 1.$$

Since π is finite morphism, we have $H^i(M, \pi_* \mathcal{O}_X) = H^i(X, \mathcal{O}_X) = 0$ for $1 \le i \le n-1$. Hence we have

(2)
$$H^{i}(M, \mathcal{O}_{M}) = 0 \quad \text{for } 1 \leq i \leq n - 1,$$

because of \mathcal{O}_M is a component of direct sum of $\pi_*\mathcal{O}_X$. By the adjunction formula we have $\omega_X \cong \mathcal{O}_X$. Hence we have

(3)
$$H^{n}(X, \mathcal{O}_{X}) \cong H^{0}(X, \omega_{X}) = H^{0}(X, \mathcal{O}_{X}) = K,$$

by the Serre duality. Since n = q - 2 is an odd number, we have $\chi(\mathcal{O}_X) = 0$ by (1) and (3). Hence we have

(4)
$$\chi(\mathcal{O}_M) = (1/\deg \pi)\chi(\mathcal{O}_X) = 0.$$

Since (1) and (4), we have

(5)
$$h^0(M,\omega_M) = h^n(M,\mathcal{O}_M) = h^0(M,\mathcal{O}_M) = 1.$$

Since $\omega_X \cong \mathcal{O}_X$, hence ω_M is numerically trivial as an element of Pic(M). Since (5), we have $\omega_M \cong \mathcal{O}_M$.

Let H_j be the divisor on X defined by $(z_j = 0)$. Then G acts on H_j freely. Hence $D_j = H_j/G$ is an ample divisor on M. Since $H_j^n = q$ and $\pi^*D_j = H_j$, we have $D_j^n = 1$.

Let
$$N = D_1 - D_0$$
 and $N' = D_j - D_{j-1}$. Since

$$\operatorname{div}\left(\frac{z_{j-1}z_1}{z_jz_0}\right) = H_j - H_{j-1} - H_1 + H_0$$

and $f = z_{j-1}z_1/(z_jz_0)$ is G-invariant, thus $f \in K(M)$ and div(f) = N - N'. Therefore N' and N are linearly equivalent. Hence we have $D_i - D_j = (i-j)N$ in Pic(M). Moreover, $\mathcal{O}_M(N)$ is a q-torsion element in Pic(M).

Let $E = \sum_{i=0}^{q-1} a_i D_i + jN$ be a divisor on M where each $a_i \ge 0$ and $j \ge 0$. Since $D_i - D_0 = iN$, we can write $E = tD_0 + j'N$ where $t = \sum_{i=0}^{q-1} a_i$ and $j' \ge 0$. We consider divisors of the form tD + jN, where $D = D_0$.

THEOREM 3. Let M be as before.

- (1) $|K_M + nD + jN|$ has finite base points. They are exactly the $y_{a,b}$'s such that $a + b + j \equiv 0$.
 - (2) $K_M + (n+d)D + jN$ is not d-spanned for $d \le q-1$.

Proof. For simplicity, denote H_0 by H. Recall that $K_M = 0$ in this case. (1) Since

$$\pi^*: H^0(M, nD + jN) \rightarrow H^0(X, nH)$$

is injective, we identify $H^0(M, nD + jN)$ with its image of π^* . Then S_n^j can be viewed as a basis of $H^0(M, nD + jN)$.

Let $a \neq b$. Take a point $x_{a,b}$ in $\pi^{-1}(y_{a,b})$. Assume that $a+b \equiv -j$. We will show that $y_{a,b}$ is a base point of $|K_M + nD + jN|$. If not, there exists $f \in S_n^J$ such that $f(x_{a,b}) \neq 0$. Since $z_i = 0$ for $i \neq a,b$ at $x_{a,b}$, f must be of the form $f_{a,b}^{(i)} = z_a^i z_b^{n-i}$ for $i = 0, \ldots, n$. Hence

$$|f_{a,b}^{(i)}| = ai + b(q - 2 - i) \equiv (a + b)i - 2b(i + 1) \equiv -ji - 2b(i + 1) \equiv j.$$

Hence we have $(2b+j)(i+1) \equiv 0$. Since $i \neq q-1$, we have $j \equiv -2b$. Since $a+b \equiv -j \equiv 2b$, we have a=b, which is a contradiction. Therefore $y_{a,b}$ is a base point of $|K_M+nD+jN|$.

Conversely, let $x=(x_0:\dots:x_{q-1})$ be a base point of $|K_M+nD+jN|$. Let $t\equiv -j/2$. Since $f=z_1^n\in S_n^j$, we have $x_t=0$ at x. Suppose that $x_a\neq 0$ for $a\neq t$. Consider the form $f=z_a^iz_b^{n-i}$ where $b\neq a$ and $i=0,\dots,n$. Since $n=q-2, f\in S_n^j$ if and only if $(a-b)i-2b\equiv j$. For any a,b,j with $a\neq b$, this relation gives a unique $i\in \mathbb{Z}/q\mathbb{Z}$. Moreover $i\equiv q-1$ only if $a+b\equiv -j$. Hence, if $a+b+j\not\equiv 0$, we have $z_a^iz_b^{n-i}\in S_n^j$ for some $i\leq n$. Since x is a base point and $x_a\neq 0$, we have $x_b\neq 0$ for $b\not\equiv -a-j$. This shows that the base points of $|K_M+nD+jN|$ are exactly the points $y_{a,b}$ with $a+b+j\equiv 0$.

(2) We assume that $d \ge 1$ (the case of d = 0 is (1)). As in (1), we may regard S_{n+d}^{J} as the basis of $H^{0}((n+d)D+jN)$.

Take a, b and $c \equiv (a+b+j)/d$. If $c \equiv a$ or $c \equiv b$, we can replace (a,b) by (a+1,b-1) or (a-1,b+1) so that a, b, c are mutually distinct in \mathbf{F}_q , because $q \ge 5$.

Let $L_c=X\cap (\bigcap_{i\neq a,b,c}(z_i=0))$ and let $Z=(d+1)y_{a,b}$ be a curvilinear zero cycle along $\pi(L_c)$. The image of the map $\rho:H^0(M,(n+d)D+jN)\to H^0(Z,(n+d)D+jN)$ is generated by monomials h in S^J_{n+d} such that $h(L_c)\neq 0$. They are of the form $h=z_c^kz_a^iz_b^{n+d-i-k}$ with $k\leq d$. In case

k = d, we have $i \le n = q - 2$ and $i + 1 \ne 0$. But $j \equiv cd + ai - (2 + i)b$ yields $(a - b)(i + 1) \equiv 0$ since $c \equiv (a + b + j)/d$. This contradicts $a \ne b$, so we conclude k < d.

Next, recall that $F|_{L_c}$ is of the form $z_a^q + z_b^q + z_c^q + (other\ terms)$. Hence $z_a^q|_{L_c}$ can be expressed by terms of smaller degrees in z_a . Thus we may assume that g in of the form $z_c^k z_a^{l_a} z_b^{n+d-l-k}$ with k < d and $0 \le i < q$. Since $j \equiv kc + ai + b(n+d-i-k) \equiv (a-b)i + k(c-b) + b(n+d)$, i is uniquely determined for each $k=0,\ldots,d-1$. Therefore $\mathrm{Im}(\rho)$ is generated by d monomials, so dim $\mathrm{Im}(\rho) \le d$, hence ρ is not surjective, and $K_M + (n+d)D + jN$ is not d-spanned.

We get the following corollary by setting j = 0:

COROLLARY. $|K_M + nD|$ has finitely many base points and $K_M + (n+d)D$ is not d-spanned for $0 \le d \le q-1$.

4. General case

By taking a divisor D_i in the preceding example, we will get examples of dimension q-3. This process gives examples of any dimension.

Let X' be a smooth hypersurface in P^{n+1} defined by a G-invariant homogeneous polynomial of degree q as in section 2, and set M' = X'/G, where the G-action is given by $g(z'_0:\dots:z'_{n+1})=(g^{w_0}z'_0:\dots:g^{w_{n+1}}z'_{n+1})$ for some w_0,\dots,w_{n+1} with $0\leq w_0< w_1<\dots< w_{n+1}\leq q-1$. Let $T=\{0,\dots,q-1\}\setminus\{w_0,\dots,w_{n+1}\}$ and s=#T=q-2-n. Then there are a linear embedding $i:P^{n+1}\subset P^{q-1}$ and a smooth hypersurface X in $P^{q-1}=\{(z_0:\dots:z_{q-1})\}$ defined by a G-invariant homogeneous polynomial of degree q such that $X'=X\cap P^{n+1}$, where the G-action on P^{q-1} is given by $g:z_j\mapsto g^jz_j$ and $z'_j=i^*z_{w_j}$. The pair X and M=X/G is a fundamental one as in section 3. Moreover M' is identified with the submanifold $\bigcap_{i\in T}D_i$ in M. Set $D'=D_{w_0}|_{M'}$ and $N'=N|_{M'}\in \operatorname{Pic}(M')$. Then

$$K_{M'} + tD' + jN' = \left(K_M + (s+t)D_{w_0} + \left(\sum_{i \in T} (i-w_0) + j \right) N \right) \Big|_{M'}$$
$$= \left(K_M + (s+t)D + \left(\sum_{i \in T} i + tw_0 + j \right) N \right) \Big|_{M'}$$

by the adjunction formula.

Since H is an ample divisor on X, we have

$$0 = H^1(X, \mathcal{O}_X(-sH)) \cong H^1(M, \pi_*\mathcal{O}_X(-sH)) = \bigoplus_j H^1(M, \mathcal{O}_M(-sD+jN)).$$

Hence we have $H^1(M, \mathcal{O}_M(-sD+jN)) = 0$ for any j. Therefore the restriction map $H^0(M, K_M + (s+t)D + (\sum i + tw_0 + j)N) \to H^0(M', K_{M'} + tD' + jN')$ is

surjective for any t, j. Hence $|K_{M'} + tD' + jN'|$ has a base point if $|K_M + (s+t)D + j'N|$ has a base point on $\bigcap_{i \in T} D_i$ for $j' = \sum_{t \in T} i + tw_0 + j$. Similarly, $K_{M'} + tD' + jN'$ is not d-spanned if $H^0(M, K_M + (s+t)D + j'N)$ is not d-spanned at a point in $\bigcap_{i \in T} D_i$ along curvilinear zero cycles in M'.

By this observation and Theorem 3, we get the following:

THEOREM 4. Let $n \ge 2$ and let M' be as before. For $a \ne b$, let $y_{a,b}$ be the point on M' defined by $z'_i = 0$ for all $i \ne a, b$. Let $j' = \sum_{i \in T} i + (n+d)w_0 + j$. Then

- (1) If there exist a, b such that $w_a + w_b + j' \equiv 0$ and that $a \neq b$ then $y_{a,b}$ is a base point of $|K_{M'} + nD' + jN'|$.
- (2) If there exists w_c such that $w_c \equiv (w_a + w_b + j')/d$ and that c is different from a, b then $K_{M'} + (n+d)D' + jN'$ is not d-spanned for $d \leq q-1$.

Proof. If q = n + 2, this is just Theorem 3. Let q > n + 2.

- (1) By Theorem 3, $y_{a,b}$ is a base point of $|K_M + (q-2)D + j'N|$ if $w_a + w_b + j' \equiv 0$. Hence the above observation applies.
- (2) By Theorem 3, $|K_M + (q-2+d)D + j'N|$ is not d-spanned along the curvilinear zero cycle Z over $y_{a,b}$ along L_c . Hence the above observation applies.

If n = q - 2 then the canonical sheaf of M is trivial and M is of Kodaira dimension 0. If n < q - 2, the canonical sheaf of M is ample and M is of general type.

Now we give explicit examples by applying Theorem 4.

(1) Consider first the case where $n \ge 3$ and $d \ge 0$. Choose a prime number q such that $q \ne p$ and that $q \ge \max(n+3,d+1)$.

Assume that q-2-n=2m is even and set

$$T = \left\{ \frac{q-1}{2} - (m-1), \frac{q-1}{2} - (m-2), \dots, \frac{q-1}{2} + m \right\}.$$

Then we have $\sum_{i \in T} i = 0$ and $\{0, 1, 2, q - 2, q - 1\} \subset \{w_0, \dots, w_{n+1}\}$. Let $D' = D_0|_{M'}$. In this case, we have $j' \equiv 0$. Let $\{a, b\} = \{1, q - 1\}$. Then we have $a + b + j' \equiv 0$ and $c \equiv (a + b + j')/d \equiv 0$. Hence $K_{M'} + nD'$ has a base point $y_{1,q-1}$ and $K_{M'} + (n+d)D'$ is not d-spanned along L_0 at $y_{1,q-1}$.

Assume next that q-2-n=2m+1 is odd. Note that (q-1)/2+m < q-3. Indeed, 2(q-3)-(q-1)-2m=q-2m-5=n-2>0. Let

$$T = \left\{ \frac{q-1}{2} - (m-1), \frac{q-1}{2} - (m-2), \dots, \frac{q-1}{2} + m, q-3 \right\}.$$

Then we have $\sum_{i \in T} i = -3$ and $\{0, 1, 2, q - 2, q - 1\} \subset \{w_0, \dots, w_{n+1}\}$. Let $D' = D_0|_{M'}$. In this case, we have $j' \equiv -3$. Let $\{a,b\} = \{1,2\}$. Then we have $a+b+j' \equiv 0$ and $c \equiv (a+b+j')/d \equiv 0$. Hence $K_{M'} + nD'$ has a base point $y_{1,2}$ and $K_{M'} + (n+d)D'$ is not d-spanned along L_0 at $y_{1,2}$.

(2) Consider next the case where n=2 and $d\geq 0$. Choose a prime number q with $q\geq \max(n+3=5,d+3)$ and set $c\equiv -1/(d+1)\in \mathbb{Z}/q\mathbb{Z}$. Since $q\geq d+3$, we have $c\neq 0,1$. Let a=0 and b be different from 1,a,c. Define the ambient space P^{n+1} of X to be $\bigcap_{i\neq 1,a,b,c}(x_i=0)$ in P^{q-1} . Then $(x_a:x_1:x_b:x_c)$ gives $i\neq 1,a,b,c$ homogeneous coordinater of P^{n+1} . Let $D'=D_0|_{M'}$. In this case, we have $j'\equiv -(1+a+b+c)$. If d=0 then $a+b+j'\equiv -(c+1)\equiv 0$. Hence $K_{M'}+nD'$ has a base point $y_{a,b}$. If d>0 then $(a+b+j')/d\equiv -(1+c)/d\equiv c$. Hence $K_{M'}+(n+d)D'$ is not d-spanned along L_c at $y_{a,b}$.

Thus we have the examples of $n \ge 2$ for any $d \ge 0$ and $p \ge 0$.

REFERENCES

- [BB] E. BALLICO AND M. BELTRAMETTI, On the k-spannedness of the adjoint line bundle, Manuscripta Math., 76 (1992), 407–420.
- [BFS] M. BELTRAMETTI, P. FRANCIA AND A. J. SOMMESE, On Reider's method and higher order embeddings, Duke Math. J., 58 (1989), 425-439.
- [EL] L. EIN AND R. LAZARSFELD, Global generation of puricanonical and adjoint linear series on projective threefolds, J. Amer. Math. Soc., 6 (1993), 875-903.
- [F1] T. FUJITA, Classification Theories of Polarized Varieties, London Math. Soc. Lecture Notes Ser., 155, Cambridge Univ. Press, 1990.
- [F2] T. FUJITA, Remarks on Ein-Lazarsfeld criterion of spannedness of adjoint bundles of polarized threefold, preprint.
- [K] Y. KAWAMATA, On Fujita's freeness conjecture for 3-folds and 4-folds, preprint (1995).
- [R] I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math., 127 (1998), 309-316.

DEPARTMENT OF MATHEMATICS TOKYO INSTITUTE OF TECHNOLOGY 2-12-1 OH-OKAYAMA, MEGURO-KU TOKYO 152-8551, JAPAN TELEFAX: +81-3-5734-2738

E-mail: kawachi@math.titech.ac.jp