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ON LOG HODGE STRUCTURES OF HIGHER DIRECT IMAGES
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1. Introduction

Let Y be an analytic space endowed with an fs log structure Jίγ in the sense
of Fontaine-Illusie. The pair ( Y , J f γ ) is called an fs log analytic space (cf.
[KN]). For an fs log analytic space (Y,Jlγ\ K. Kato and C. Nakayama

construct in [KN] a ringed space (7log,0yg) endowed with a continuous sur-
jective map τ : 7log — » Y. In this paper, we mainly treat an object on Y called a
log Hodge structure which is defined by K. Kato in [Ka2]. It consists of the
following triplet that satisfies certain conditions (See 5.3):

• A sheaf of β-modules 34fQ on 7log.
• A sheaf of 0y-modules Jtfφ on Y endowed with a descending filtration.
• An isomorphism of 0yg-modules / : J4?Q (x)ρ0yg ^ τ*Jf<p.

Let / : (X,Jiχ) — > ( Y , J f Y ) be a morphism of fs log analytic spaces satisfying
the following condition:

(*) Locally on X and on 7,
(i) There exists a chart P := N — > Jtγ, and a morphism of monoids

P^Q:=Nr. 1^(1,. ..,1),

for some r > 1, and
(ii) X is isomorphic to an open subspace of Y Xspecqp]^ SpecC[β]Λn, where

Spec C[P] and Spec C[Q] are endowed with the log structures associated to
P -> C[P] and Q -> C[β], respectively.
First, we prove two basic properties.

THEOREM A. We have a quasί-isomorphism

where coχγ = ̂ χγ ®&x ®χg and ωγ is its exterior algebra.

THEOREM B. Assume moreover f is proper. Let τ : Flog — » Y be the canonical
map. Then we have an isomorphism of ΘY

% '-modules

Y

B ^ τ*Rmf*ω*x/Y

for each m.
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(**) For example, let Y := {z e C| |z| < 1} be the unit disk, and/ : X -» Y
a protective surjective morphism of complex manifolds. We assume that / is
smooth over the punctured disk 7* = Y - {0} and that XQ =f~l(Q) is a reduced
divisor with normal crossings. Let P e XQ. We assume that there exists a
coordinate neighborhood U of P with coordinates (ZQ, . . . ,z w ) and an integer r
with 1 < r < n such that P = (0, . . . ,0) and f\U(z\, . . . ,zπ) = z\ zr = z. Let
e/^Y (resp. e^j^) be a sheaf of holomorphic functions on Y (resp. JO which
are invertible outside the origin (resp. XQ). Then we have a morphism
/ : (X,Mχ) — » (y,^y) of fs log analytic spaces, which satisfies the condition (*).

If / : X —> Y is a proper smooth morphism of complex manifolds, it is well
known, as relative Poincare lemma that Ω^/y is a resolution of the sheaf
f~l(9γ. Using this, it is easy to construct an isomorphism of 0y-modules
Rmf*Q®@γ ^Rmf*Ω'x/γ. Theorem A and Theorem B correspond to these
facts. As for a log Hodge structure, we have

THEOREM C. Let f : X -> Y be as in (**). Let MQ = Rmfl°*Q, ^& =
Rmf*ω*χ,γ endowed with a filtration Rmf*co*jfJl

Y and i the isomorphism as in
Theorem B. Then the triplet (^,3^0,1) is a log Hodge structure on Y.

Here is some backgrounds. Let Y := {z e C\ \z\ < 1} be the unit disk, and
/ : X — > Y a projective surjective morphism of complex manifolds. We assume
that /is smooth over the punctured disk 7* = Y — {0} and that XQ =f~l(Q) is a
divisor with normal crossings. We can consider a family of the polarized Hodge
structures over Y*. We can consider it as a holomorphic map from Y* to the
classifying space of polarized Hodge structures modulo monodromy. This map
is called the period map. W. Schmid has proved in [Sch] that the period map
can be approximated by the associated nilpotent orbit. It is a holomorphic
map from Y to the compact dual of the classifying space of polarized Hodge
structures, for which the origin of Y is mapped to a polarized mixed Hodge
structure. On the other hand, log geometry works well with varieties with
normal crossings. The aim of Theorem C is to treat the above fact from a
viewpoint of log geometry. In the proof of Theorem C, we see that this log
Hodge structure amounts to W. Schmid's nilpotent orbit theorem. We expect
that log Hodge structures give a construction of compactification of some moduli
space.

Remark 1.1. Related topics are studied by some people. S. Usui obtains a
theorem corresponding to our Theorem B in [Usu] independently. His method is
quite different from ours and he obtains a more general result. F. Kato also
obtains Theorem A and Theorem B in [FKa]. His method is similar to ours.

In Section 2, we recall basic notions of a log geometry. In Section 3, we
prove Theorem A, a "log version" of relative Poincare lemma. In Section 4, we
prove Theorem B using the log Poincare lemma and some inductions. In Section
5, we define the log Hodge structure and prove Theorem C.
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The author is grateful to Professor K. Kato for giving him the problem
of this paper as well as the idea of log Hodge structures. The author is also
grateful to Professors C. Nakayama and M. Somekawa for many discussions and
suggestions to many improvements in this paper. He is also grateful to Professor
T. Kajiwara for giving him some advice on the presentation.

2. The ringed space (Arlog,(P^8) associated to a log scheme X

In this section, we recall some notions in log geometry, which will be used in
the later sections. For more systematic descriptions, see [Kal], [KN].

o

DEFINITION 2.1. Let X be an analytic space and Φg the sheaf of holo-
morphic functions on X. A pre-log structure on X is a sheaf of monoids M on
X endowed with a homomorphism of sheaves of monoids α : Jt —> Θ% with respect
to the multiplication on 0%. It is denoted by (Λ?,α), or simply Jί. A pre-log
structure is said to be a log structure if vΓl(G*Δ —> (9*° is an isomorphism via α.

o
2.2. A log analytic space X is a pair of an analytic space X and a log

structure Jtx on X. It is denoted by X := (X,Jiχ\ or simply by (X,Jtχ). A
morphism (AT, Jlχ) —> (Y,Mγ) of log analytic spaces is defined to be a pair of a
morphism of analytic spaces / : X —> Y and a homomorphism h :f~l(Jtγ) —»

such that the diagram

f-l(&γ) -—> &χ

is commutative. It is denoted by (/, h), or simply by /.

2.3. For a pre-log structure (M, α) on X, its associated log structure Jta is
defined to be the push out of

cr'0ί

in the category of sheaves of monoids, endowed with the homomorphism

Ma -* Qχ\ (a, b) M> α(fl)6 (aeJt,be 0*x).

2.4. A monoid P is said to be an fs monoid if it satisfies the following three
conditions:

(i) P is finitely generated.
(ii) If a, b, c e P and ab = ac, then b = c.
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(iii) If a € P& and an e P for some n φ 1, then a e P. Here P& is the group
associated to P.

2.5. A log analytic space (X, Jlχ) is said to be an fs log analytic space if
locally there exists a constant sheaf P of fs monoids and a homomorphism
P — > GX such that the log structure Jix is isomorphic to the log structure
associated to the pre-log structure defined by P. A pair of P and the canonical
map P -> Jix is called a chart. By definition, a chart exists locally.

DEFINITION 2.6. Let X := (X, Jίx) be an fs log analytic space. We define
the associated topological space Xlog in the following way. Let T be the analytic
space Spec C endowed with log structure MT given by

where

= {χeR;χ>Q} and S1 = {x e C \x\ = 1}

are considered as the multiplicative semi-groups and the morphism Jlτ — » ®τ is
given by

R>Q x S1 — > C; (x,j) h-* xy.

Let T be the log analytic space (T1, ̂ r). As a set, we define A^08 to be the
set of all morphisms T — > ̂  of log o analytic spaces over C. We have the
canonical surjective map τ : Xlog — > Jf. We define the topology of Xl°s as
follows. Working on locally on X, let α : P — > Mj^ be a chart of ĵ̂ . Then, by
using the homomorphism P& — > ex^ ,̂ A'108 is identified with a closed subset of
X x HomtP^S1). The topology of Xlos> is given by this identification.

LEMMA 2.7 (KN, (1.3)). (i) The map τ : Xlo% -> JT w continuous. Further-
more it is proper, that is, for any compact subset C of X, the sub space τ~!(C) of
Xlog is compact.

(ii) For x e X, τ~l(x) is homeomorphic to the product of r copies ofS1 where
r is the rank of Λ(%x/β*XtX.

o o
(iii) Let X:=(X,Jΐχ) and Y:=(Y,Jίγ) be fs log analytic spaces, re-

spectively. Let f : X — > Y be a morphism of log analytic spaces. Assume
f~lJtγ-^ Jlχ. Then the diagram of topological spaces

v-log

is cartesian.
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2.8. Let (X,Mχ] be an fs log analytic space and τ : X{°& — > X the canonical
map. For a topological space A, we denote by Cont(,Λ) the sheaf of con-
tinuous functions on X]°z with values in A. Let τ~'(^|P) — > Cont(,S !) be the
natural map. Let Cont( ,//?) — > Cont( ,5!) be the map given by composition
with exp. We define a sheaf & of abelian groups on Xlo% to be the fibre prod-
uct of Cont( ,//?) and τ"1^ over Cont( ,5rl). Let h : τ~xΦχ -> ̂  be the map
induced by the map τ~](9χ — > Cont( ,//?);/ 'ι— »/ — Re(/). Then we have the
following commutative diagram with exact rows.

τ~lΘ - > 0

Z(l)

0 - > Z(l) - > Cont( ,//?) - > Cont( ,S!) - > 0

DEFINITION 2.9. Let Symz(^) be the symmetric algebras of & over Z.
We define a sheaf $£8 of τ~lΦχ -algebras on X^ as follows:

where α is the ideal of τ~lθx ®zSymz(j£f) generated by local sections of the
form

/ ® 1 - 1 ® A ( / ) for fετ~}Θx.

For reZ, we define a filtration fil,(^^8) of ί?^g to be the image of
τ~lθχ ®z θ^o SymzJ^ in 0^8, where SymzJ^ denotes the /-th symmetric power
over Z.

LEMMA 2.10 (KN, (3.3)). Let x be a point of X, y a point of τ~\x) c X^
and (ti)\<l<n a family of elements of the stalk ϊ£y whose image under exp is a

Z-basis of (<^ψ/@*χ)x Then the (9 x ̂ -algebra homomorphism

is an isomorphism.

LEMMA 2.11 (KN, 3.4)). (i) fi!0(<8)
(ii) The canonical homomorphism τ

induces an isomorphism

for any r > 0.



86 TOSHIHARU MATSUBARA

3. Logarithmic relative Poincare lemma

The aim of this section is to prove Theorem A.

PROPOSITION 3.1 (Relative Poincare lemma). Let f : X — > Y be a smooth
holomorphic map of complex manifolds. Then

is a quasί-isomorphism.

3.2. Let / : (X,Mχ) — > (Y,Mγ) be a morphism of fs log analytic spaces
satisfying the following conditions:

Locally on X and on Y,
(i) there exists a chart P := N — » Jίγ, and a morphism of monoids

for some r > 1, and
(ii) ^is isomorphic to an open subspace of Y xspecCfp]^ Spec C[Q\m, where

Spec C[P] and Spec C[Q] are endowed with log structures associated to P — > C[P]
and Q — > C[β], respectively.

PROPOSITION 3.3. Let Q be the monoid N and P the monoid Nr for
r e N. We denote i-th basis of P as £/. Let X be the analytic space Cr and Y the
analytic space C. Let ( f ι , . . . , f r ) (resp. z) be a coordinate of X (resp. Y). Let
f : X — » Y be a morphism defined by (t\, . . . , tr) ι-> t\ - - - tr. Let α (resp. β) be the
morphism of monoids P — > Γ(X, Oχ) (resp. Q—>Γ(Y,ffγ)) defined by n e i t - * f }
(resp. «ι— >zw). Let (X,Jtχ) and (Y,Mγ] be the associated log analytic spaces,
respectively. Then we have an isomorphism of f~lθγ-modules

(3.4) ξλ : f ^ β γ ( S > z / \ - - ^ ^ ( ω χY) forallq>0.

Proof. If 2£q c ωq

χ ,Y is a sheaf of sections of cocycles, we have a morphism

a® Λ ϊ i , ι

Let z be a point of X. If A, e 0*x^z for some i, then a branch of logft, is in φ^jZ

and hence the image of a ® Λ Z i/ is a coboundary. Hence we have a well-defined
morphism of sheaves

It is enough to prove that £ι is an isomorphism at each stalks.
CASE 1: Let x = (t\,..., tr) be a point of X such that t\ - - tr φ 0. Since its

log structure is trivial on a neighborhood of x, the stalk at x of the right hand
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side of (3.4) is f~l(9γ,x (resp. 0) if q — 0 (resp. if q Φ 0). Hence we obtain the
desired isomorphism in this case by 3.1.

CASE 2: Let x = (0, 0, . . . , 0). We can compute the right hand side of (3.4)
as f~l&γ,x®z/\q Zr/Z. We will prove in three steps that

Σ β<ι. *Λ Λ ΛΛ;*'.,.-* ef-le>γ
*ι< -<tq<r

where ft = dtj/tj (1 <i<r) and / is the submodule generated by /H ----- \-fr.
We have

i _ Oχ,xfι Θ Θ gjr,,/r

We can write an element of ω|yrjc as

Σ Σ <C£Λ
βi. A y2</ι<-</9<r

Let M be the submodule

ilr.^fa Λ - - Λ fi if

of ωq

vlv „. Then we have

ί v- 1= < φ e > Mq

p . 0 converges .
I &» •""•* J

STEP 1. For φeMj^ ^, we will prove that dφ e Mj~
We write ^ as follows:

^2<ii<-<z^<r

We have

i - fel . . . t*r \^ \^ a e f Λ Λ. Λ ' - ΛZ—/ Ί,•••>«? yΛ/ ^«ι

-^-•-^ V V a (e<-- ll lr Z^ Z^ "Ί.-.ίίV^
2<zι<-</9<r 7^{l,zι,...,zg}

— teι fr V^ < V^Γ—l^"1 ( — } > f Λ Λ /"•

2<ίι< <z9+ι <r ^ A:=l J
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STEP 2. Let φ e Mj{ 6f n kerrf. We will prove that φ φ \md if and only if
d = ••• = er and φ / 0.

Let

ί! <•••</,,_! <r

be an element of Mj~1^. Then φ e imrf if and only if there exists a complex
vector (δ/j,...^) such tϊίat φ = d\l/. This is translated as what the simultaneous
linear equations in the άiλ ^ z

(2 < i! < - - - < iq < r)

has a solution. "If part" is clear. In order to prove "only if part", we may
assume that e\ Φ CΊ without loss of generality. Let a (resp. a) be the vector
(ai{ ;k l ) (resp. (έfy,...,^)) and A the matrix whose entries consist of coefficients
of the simultaneous equations (3.5). For 7 = {ι*ι,.. . ,ιg}, we call the equation

as an 7-th equation. We call the row of the matrix A corresponding to the 7-th
equation as 7-th row. Then there exists a solution of (3.5) if and only if
rank A = rank (A, a). Let 7 be a set {/i, . . . , iq} such that 2 < i\ < - - < iq < r.
For each & = ! , . . . , # , we denote
elementary transformation as follows.

:= {2} u (7 — {i^}). We will make an
Multiply the 7-th row of A by e^ —

and add (— l ) ( e i k — e\) times the Λ-th row of A to it for all k. Then we have

(7-th equation) x (e2 - e\) + -th equation)) x (eik - e\)
k=\

7=1

Σ (
/=*+!
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= 0.

This means that, by the above elementary transformation, A is transformed to

- e\ 0

έ?2-έ?ι

\ 0

Using the same elementary transformation for the vector a, its 7-th row is
transformed to

(3.6)
Λ;=0

Therefore the condition ^ekerrf implies that (3.6) is equal to 0. This means
that (A, a) is transformed to

/ €2 - e\ 0

0 ei — e\

\ o

*

0

\

*

o/
Thus we have rank A = rank (A, a) as desired.

STEP 3. Let φ be an element of ωq

χ,γ ^nkerrf and ^ei'-'*r an element of
Mfir ,er

 suc'1 ^a^ Σelr erΦ
eiί A converges iii some neighborhood of Λ: and such

that this sum is equal to φ. We claim that there exists ψ e coq

γ x such that

all
= ψif and only if there exist j'1^ such that d\l/eι—6r = φeι"">e' for

The "only if part" is clear, hence we will prove the "if part." All what we
e to do is to prove Σei

x. We write φeι>" " (resp. "- as
have to do is to prove Σeir..A Ά*1' '"'*' also converges in some neighborhood of

'

Σ
{2<n<-<ιq<r

resp.
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Then it is enough to prove that

converges in some neighborhood of x for all (ι'ι, . . . ,fy-ι). By the argument in
Step 2, we can solve the simultaneous linear equations in α '̂ 5f

r

r In fact,

assume φ Φ 0 and take an integer k, with 1 < k < r and e^ Φ e\, then we have,
for example, for some k = k(e\, . . . , er) such that e^φ e\, we can write as follows:

e, f
''-' l

,.,e, f (ft
θ,

M ft, ,
otherwise.

Hence

is finitely bounded, therefore
From Step 2, we have

*1' ' A converges in some neighborhood of

otherwise.

From Step 1 and Step 3,

Σ ^converges}.
J

Thus we have

Λ /<,; α,-,,...,Σ α' .-',Λ
<iq<r

as desired.
CASE 3: Let x be the point (0, 0, . . . , 0, fc+i, . . . , ίr) such that fc+i

(ί: < r — 1), then x e A" has an affine open neighborhood

Spec C[z, h,...,tk, t^v . . . , t p l ] / ( zl z - tr}.

We change coordinate t\ by T = t\tk+\ - - - tr. This change of coordinate induces
an isomorphism of fs log analytic spaces. We denote by X1 the resulting open
set:

X' = (Spec C[z, Γ, f2, . . . , fe, r*.1!, . . . , t * l ] / ( z - 7Ϊ2

Then / becomes

f:X'-+Y; (z,T,t2,...,tr)*-+Tt2 'tk.
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Now we will compute the cohomology Jίf9(ω'x,,γ)x. We have

,Λ _Gχ*f[® ®βχ,*fr
ωχl/γ'χ- ^(Λ' + +ΛO '

where f{ = dT/T, f[ = Λ, /ί, for ι> 1. Similarly as Case 2, we define sub-
For

«.,. ,V/Z Λ Λ.£ ) if ? 6 M'« ,...A,
<ιq<r J

we have

Σ
2<ι\< <ιq<r

j=k+l

By a similar argument in Case 2, we can show that 3tf>q(ω*x,γ)x is isomorphic to
the stalk of the right hand side of (3.4) at x. Π

THEOREM A (Log relative Poincare lemma). Let f : X — * Y be a morphism
of f s log analytic spaces satisfying 3.2. Let o/Λy &£ °*ω9χ/γ9 nere σ :

/A^ canonical map. Then the canonical morphism

is a quasi-isomorphism.

Proof. Let (P -> ^j^, β^^y,β^P) be a chart of the morphism /
Let S (resp. T) be Spec cfp]^ (resp. Spec C[β]an). The question being local, we

may assume X ^ F X T 5*. Since ω^?| ^ ω*s?τ ®&s ®x = ω5/°r ®&τ ®Y> we

sj*} ®Θτ (9Y.

On the other hand, as 0yg = 0£g<8)0r0r, we may assume that ^ = 5 and
Y=T. Let y e Xlo*9 x = σ(xf) e JST and j =/(jc) e 7. Let (^j < , < Γ be a

family of elements of ^ψx whose classes in ΛPψx/@*χ x is a basis of Λfψx/@*χ x

over Z and w an element of Jΐψy whose class in Jΐψ y/@*γy is a basis of

,y/β*Y,y OVeΓ Z ' '

STEP 1. Let A (resp. B) be the polynomial ring Gγ,y[z] (resp.
I^ij » TT])- We define a morphism of Φγ,y -algebras by
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A -> B; z h-» Tι + - - + Tr

and a morphism φ of complexes of 0 γ,y -modules by

Let A — > Ω£/^ be the canonical morphism of complexes. Then the diagram

is commutative.

STEP 2. The morphism A —> Ω^ is a quasi-isomorphism. This is well
known.

STEP 3. We define increasing filtrations F of Ω*B/A and G of ω^1?̂  χ by

Fk(Ωq

B,A) := {Σ/;/; f e B, deg/ < k, η = dTh Λ - Λ rfT^ e Ω|̂ (/ι < - < ^)},

Gjtfωv^v) := the image of filfc(0!?g) ® ωί/v in ι
^ Λ. I I ' *^ \ . Λ / Λ / Λ

Here fil is the filtration introduced after 2.9. Since φ respects to filtrations F and
G, it induces Gr(^) : Gif (ΩJ^) -» Grj^Ω^)^ We claim that Gr(^) is a
quasi-isomorphism.

(From Step 3, ^ : Ω^/A — >• ^/y^ is a quasi-isomorphism, hence ^4 — > co*^yx

is a quasi-isomorphism.)
Now we prove Step 3. By 2.11, there is the canonical isomorphism of

complexes

* : Grf (β$«) S σ-'ίSymlί^f/^)) ® z - I

Let

9

be the natural isomorphism. Let £ι be a morphism as in 3.3. Put ξ =
(ίi ® id) o {2. Then ξ makes the following diagram commutative:

Thus we have Gr(^) is a quasi-isomorphism as desired.
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4. The morphίsm τ*Rf*ω*x/γ -> Rf^C ® Θy*

Let / : X —> 7 be a proper smooth morphism of complex manifolds. Then
we have a quai-isomorphism Rf*C ® c@γ —» -R/*Ω^/y. We construct a similar
quasi-isomorphism on fs log analytic spaces satisfying 3.2.

LEMMA 4.1 (Proper base change theorem). Let X, 7, Z, W be locally
compact Hausdorff topological spaces and f : X —> Y, g : Z -^ W, σ : X —> Z,
τ : F —> W continuous maps such that the diagram

ω cartesian. Assume that g is proper (i.e., an inverse image of a compact set is
compact}. Then for any complex K9 of sheaves of abelian groups on Z, we have a
quasi-isomorphism

See [SGA, p. 39].

LEMMA 4.2. Let f : X — > Y be a proper continuous map of locally compact
Hausdorff topological spaces, stf a sheaf of rings on Y, 3F a sheaf of (/~W)-
modules on X and $ a sheaf of sέ '-modules such that ^y is a free stfy-module for
each y e Y. Then we have a quasi-isomorphism

Proof First notice that, using 4.1, we may assume that Y is a point.
Hence it is enough to prove that

0 jHm(X, 3?) -> Hm(X, Θ/ #")

is an isomorphism for all m. If 7 is a finite set, it is clear. If 7 is an infinite set,
use [Ive, p. 173, Theorem 5.1]. D

4.3. Let X, Y,f be as in Theorem A in section 3 and moreover, assume that
/ is proper. Let X (resp. Y) be the underlying analytic space of X (resp.
Y). We have the canonical commutative diagram of topological spaces

J ) ylog

Y.
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Let X' be a log analytic space (l,/*^y). Let g : Xfl°* -> rlos, A
<τ : χfl°8 — > ̂  be the canonical maps, respectively.

4.4. Let J^ be a locally free ^-module of finite rank. From the natural
morphism 3F — » σ*σ*2F ^ σ^Λ^σ*^, we have an associated morphism

LEMMA 4.5. σ*^ — » Rh*σ*^ is a quasi-isomorphism.

Proof. Since taking a cohomology commutes with taking a direct sum, our
task is now to show σ*Θχ — > Rh*σ*&χ is a quasi-isomorphism. This is
equivalent to show that Φ^ — » Rh*(9λχg is a quasi-isomorphism. Let x be a
point of Xflog. Since A is proper, we have

Let r be rankz (Jl$tX/0*XtX). Then we have A-'(X) s (S1)'-1. Let AT* be the
log analytic space whose base space is AT and whose log structure is locally
defined by the chart

(Hence we have Xr = X and X\ = X'.} For 1 < k < r - 1, let ψk : Xk+λ -> Λjt
be the morphism of log analytic spaces, that is defined by the morphism of
monoids

Let hk : X\ — > °S ^e ^e associated morphism to .̂ Then λj
Therefore, in order to show being a quasi-isomoφhism d?̂ ,g -̂  Rh*®^, it is
enough to prove that the following morphism are quasi-isomorphisms:

We will prove it only in the case r = 2, since the argument is the same as in the
general case. Set h = h\. We compute the cohomology of h~l(x)=Sl with
coefficients in &{£*\h~l (x) in the Cech method. We define a coordinate θ on Sl

defined by

S1 -{exptv^fl) θeR}.

Let {t/i, C/2} be an open covering of S1 defined by
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Uι = {exptx/^Tfl); 0 < θ < 2π},

U2 = {exp(V^ΪΘ) π < θ < 3π}.

Let V\ (resp. F2) be an open set {exp(\/^T0) 0 < θ < π} (resp. {exp(\/^T#);
π < θ < 2π}) of S1. If V be the intersection of U\ and C/2, then V is a disjoint

union of V\ and F2. Since 0£g|l/ι,0£g|C72 and 0£g|F are constant sheaves, we
have

= o
for /: > 0. Hence, we can compute the Cech cohomology of 0!£g|A~1(;c) by the
open covering {U\,U2}. Let y = σ(x) e A". We denote the restriction of 0^ to

C/i (resp. C/2) by 0£g|t/ι - 0^[Γι, Γ2] (resp. 0^\U2 = ®x,y[T{, T'2]) where Tί9 T(

are variables such that the difference of Γ, and T7/ on F is in 2π^/^ΐZ. From
the assumption of/, we have Γi + Γ2 = Γ{ + T'2. Therefore we may assume that

T( = Γi

Thus we have the following Cech complex C*

!, Γ2) - <7(Γb Γ2),χΓι, Γ2) - ^(Γi + 2πV^T, Γ2 -

Hence we have

= (p(Tλ, T2) 6 0^[Γι, Γ2]; XΓi, Γ2) =/ι(Γι + 2πV^T, T2 -

= ̂ [Γi + Γ2] s 0 .̂

It is clear that Hl(C') = 0. This completes the proof. Π

Similarly, we have the following proposition.

PROPOSITION 4.6. Let X be an fs log analytic space, 3F a locally free Ox-
module of finite rank and τ : XloB> — > X the canonical continuous map. Then we
have a quasi-isomorphism

& -̂  Rτ+τ*^.

Hence

^ θx, and Rlτ*Vχg = 0, for i > 1.
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PROPOSITION 4.7. Let X, Y, /, τ be as in 4.3. FFe have a quasi-isomorphίsm

Proof We have the notation in 4.3. From 2.7 (iii), the following diagram
of topological spaces is catesian.

j^r/log 9 ^ ylog

By 4.1, we have a quasi-isomoφhism τ ^/^ω^/y -̂  Rg*σ lω*xιγ. Thus using
4.2, we have quasi-isomoφhisms

τ*Rf*ω χ/γ = (τ-lRf*ω χ/γ) ®τ-l&γ <
g

^ Rg*(σ~lω χ/γ)

Since Φl

xf = σ~l@χ ®/ x-i g~l&lγg, we have a quasi-isomoφhism

(4.8) τ*^/*

By 4.5, we have a quasi-isomoφhism σ*ω^/y ̂  Rh*σ*ω*x/γ. Since /log = ^fΛ,
we obtain quasi-isomoφhisms

(4.9) Rg*σ*ω*x/γ

(4.10)

By 4.8-4.10, we obtain the desired quasi-isomoφhism. Π

THEOREM B. Let f : X —* Y be a proper morphism of fs log analytic spaces
that satisfies 3.2. Then we have a quasi-isomorphism

Proof. By Theorem A, we have a quasi-isomoφhism

C®cf
l°^βl?^

Hence, using 4.2, we have quasi-isomorphisms

Theorem B follows from 4.7. Π
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5. Log Hodge structures

The aim of this section is to prove Theorem C. A log Hodge structure in
Theorem C is a log geometric interpretation of object called a limit mixed Hodge
structure in [Stl].

Let X be an fs log analytic space. For x e X, let ®/x (resp. 9X) be the set of
all homomorphisms M^ x — > /?>o (resp. Jtχ,x -> R>o) which are extensions of

We introduce on <3fx (resp. <3fx) the topology in the following way. If a\ , . . . , ar

are elements of ^f^ (resp. J^χjX) whose classes in Λ(^fx/@*χx (resp. Jfχ,x/(9*x x)

generate <^^x/@*χ,x as a group (resp. ^ifχtx/βχtX as a monoid), 9X (resp. <9X)

has the topology as a subspace of (/?>o)r (resp. (/?>o)r) in which 9X (resp. Φx) is
embedded by ψ -» (ιA(«/))ι < , < r

We regard <3/x as a subspace of ®/x by the fact that a homomorphism
^f?^ — > R>Q is uniquely induced to one Jlχ,x — > ^f?^ — > l?>oc-^/?>o. Let ίx

be the element of ®/x that sends M^ x - 0*x'x to 0 e /?>0.

LEMMA 5.1 (K. Kato). Let y e Xl°* and let x = τ(y) e X. Let ®/x,y be the
set of homomorphisms φ : (9l£B

y — > C having the following properties:
(1) φ is an extension of (9χ,x -* C; /ι->/(x).
(2) The composite <ey *-+ β^y Λ C -> C/Λ = ^V^T coincides with θy in 2.8.

α unique bijection

satisfying

Proof. Let ;/ — Re(ι/^>;). Then ^ is uniquely determined by η. Let
t\,...,tr be a family of elements of £fy whose image under exp is Z-basis of
•^Ψx/Φxx V (rcsp. ψ) is uniquely determined by the image of f ι , . . . , / Γ (resp.
exp(ίι),..'. ,exp(fr)). Put η(tϊ) = log(^(exp(ίz ))). Then we have the desired
bijection. Π

We assume that the fs log analytic space X satisfies the following condition:

5.2. Locally on X, there is an fs monoid P and an ideal Σ of P such that X
is an open subspace of (Spec C[P]/Σ)an that is endowed with the log structure
associated to P -> C[P]/Σ.

DEFINITION 5.3 (K. Kato). Let X be an fs log analytic space satisfying the
condition 5.2. For n e Z, a log Hodge structure (log HS) 3? on X of weight n is
a triplet (Jfρ, «#0,ίjr) consisting of
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• a sheaf of β-modules MQ on
• a sheaf of tf^-modules M® on X endowed with a descending filtration

^φ)ieZ and with an integrable connection

V ' <ffi(t) — > OJ

• an isomorphism of 0^δ-modules

that satisfy the following conditions 5.4-5.9:

5.4. J^Q is locally constant, and each stalk is free of finite rank as a Q-
module.

5.5. $CQ is locally free of finite rank as an 0jr-module.

5.6. FJtfo = tf® if ϊ « 0, Ftfφ = 0 if / » 0.

5.7. Each FjΊfφ is an (P^-submodule of Jίfo, and is locally an tf^-direct
summand of tfφ.

5.8. V(Fjff0) dωl

x®&xF-l3fe) for each /.

5.9. Let x e X. Then there exists an open neighborhood F of ξx in <3fx such
that for any y e τ"l(x) and ψ e <S/X n F, 3PQ,y with the filtration C®&XxF

l3tf&,x

on C® «#gj, = C®oXxJtfo,x, the equality given by ψy, is a Hodge structure of
weight n in the classical sense. Here Θχ,x —> C is f*-+f(x).

Let Y = {z e C\ \z\ < 1} be the unit disk with the log structure defined by
the origin, 7* the punctured disk. Via the mapping U -» 7*; w h-> exp(2τπ w),
the upper half plane U = {u e C \ Im(w) > 0} becomes the universal covering of
7*. The fundamental group π\(Y*) = πι(7log) is generated by the translation
M h - * w + l . Consider the subsheaf Q[u] a(9{yg. Let σ be the monodromy of
Q[u] around the origin. Then we have σ : u ι-» u — 1 and log σ = —d/du.

LEMMA 5.10. Let V be a Q-vector space, N : F —> F nilpotent homo-
morphism and Q[u] a polynomial ring in one variable over Q. We define the
endomorphism Δ of F ®β β[n] ίo fe TV (x) 1 - 1 ® d/du. Then

kerΔ = W :=

Proof. Let / be an element of V ® Q[u]. We can write / = £ 0̂ xt ® MZ,

z e V. Then we have
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m-1

ι=0

Hence, / e kerΔ implies Λ;, = NI(XQ)/I\ for (i > 1), therefore / e W. It is clear
that J^ckerΔ. Π

LEMMA 5.11. Let X be the analytic space Spec Can endowed with the log
structure associated to N — > C; n ι-> 0" #«J ̂  # locally constant sheaf of Q-vector
spaces on the topological space A"log. Let t be a section of the sheaf of monoids on
X associated to its log structure such that t is an image of I e N, and consider the
subsheaf Q[u] c 0£g where u = (2π\^ϊ)~l logΛ Let N be the logarithm of the
monodromy of 3F '. Assume N is nilpotent. Then the restriction map of the sheaf

® β[κ]) -> ^α (x) β[ιι], (α e

factors through the submodule

— i ® ̂  '' x e

ιι=0 W'

moreover, Γ(Xlog, 3F ® β[w]) — > exp(wJV)«^a w #« isomorphism.

Proof. Let Δ be TV (x) 1 - 1 ® J/rfw. Since Δ is the logarithm of the
monodromy of & (x) β[ιι], we have Γί^108, J^ ® β[w]) -̂  ker Δ c J^ ® β[κ].
From 5.10, we have the desired isomorphism Γ(Xlog, & ® Q[u\) ^ exρ(wJV) Jv

D

5.12. Let Γ be a topological space and & a sheaf on T. For a subset S of
Γ, we omit Γ(S^\S) as

PROPOSITION 5.13 (F. Kato). Let Y be a unit disk with the log structure
defined by the origin and f : X — > Y a proper morphism of fs log analytic spaces
that satisfies 3.2. Let D be f~l(0) and X* the fibre product of X and the universal
covering of Y* over Y*. Let τ : Flog — > Y be the canonical map. For α e τ'^O),
we have

(i) p : H™((f^Γ\κ), C) ̂  H™(X\ C) (resp. ^((/^-'(α), β) ̂  H>»(X\

β))
(ii) Γ(τ-Hθ),^m/JogC(χ)^g)^^m((/log)-1(α),C)

(iii) L ί̂ i be a morphism as in Theorem B. Taking Γ(τ ^0), ) on i, we got
an isomorphism q : Hm(D,ω*D) -̂  /ίm((/log)~1(α), C). Then the composite map
poq is the same isomorphism as [St\, (2.16)].

Proof. See [Usu] and [FKa, pp. 21-22]. Π
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5.14. let Y := {z e C | |z| < 1} be the unit disk, and / : X -> 7 a projective
surjective morphism of complex manifolds. We assume that /is smooth over the
punctured disk Y* = Y — {0} and that XQ =/~1(0) is a reduced divisor with
normal crossings. Let P e XQ. We assume that there exists a coordinate
neighborhood U of P with coordinates (ZQ, . . . , zn) and an integer r with 1 < r < n
such that P = (0, . . . ,0) and f\U(z\,. ..,zn) = zι zr = z. Let Jtγ (resp. Λ^)
be a sheaf of holomorphic functions on Y (resp. ^) which are invertible outside
the origin (resp. XQ).

THEOREM 5.15 (Usui). Let f : X — > Y a morphism of fs log analytic spaces
that satisfies 5.14. Then fλo* : Xlo% -> Ylo& is a locally topologically trivial family
over the base. Moreover Rmfl°^Q is a locally constant sheaf. (This is a special
case of [Usu, Theorem 3.4].)

THEOREM C. Let f : X -> Y be as in 5.14. Let tfQ
jtfφ = Rmf*ω*χ,γ endowed with a filtration ̂ l := Rmf*ω*χjy and i the isomorphism
as in Theorem B. Then the triplet («#ρ,.#0,ϊ) is a log Hodge structure on Y.

Proof. To show Theorem C, we will verify the conditions from 5.4 to
5.9. It is well known that the pair («#0,^Γ*) satisfies from 5.5 to 5.8. 5.4 is
direct from 5.15. Let y e Y be a smooth point, then it is well known that 5.9
is satisfied for y from the theory of variation of Hodge structure. We verify
5.9 for the origin y of Y as follows. Let w e τ"1^) c Ylo% and u' an element of
<&w whose image under exp is the Z-basis of Jί*γ y/®*γ , i.e., exp(w') =
exp(2π/w) = z. Let ψw : OlγS

w —> C be an element of <3fyίW such that ψw(u) = a,
ψ : Jΐψ^ -^ R>Q the corresponding element of <3fy. We have the following
commutative diagram

fD) JI* Hm(X*,C) ^ Hm(X*,Q]

Hm(D, ωj,) ® &°e

w ^ ^»(/iog-ι (H,), β) ® ̂  ^ /p(/«og-ι (w), β)

Hm(D,ω D) ^
la

Here r^ is a restriction map. By 5.11, the image of Hm(X*,Q) in
Hm(flo*-l(w},Q}®&l^w at the above diagram is ^exp(wTV)Jfβ,α. We have
ι/^ o res is the identity map. Hence an image of Hm(X*, Q) in the left hand side
of ιa at the diagram is canonical. Consider Hm(X*,Q) as a submodule of
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Hm(D,ωp) in this way. Since the above diagram is commutative, the image
of Hm(X*9Q) by ιa is Q\ρ((a/2πi)N)^fQιW. Let - (resp. l) be^the complex
conjugation mapping associated to the g-structure Hm(X*,Q) (resp.

' Then we have I = exp(-(a/2πί)N) o - o exp((α/2π/)JV). Hence

• © #-• =
2π/ / \2π/

By nilpotent orbit theorem [Sch, (4.9)], (Hm(fr,Q),Hm(DJirD)9 exp((a/
is a Hodge structure if ίm(a/2πi) » 0. This is equivalent to say that

, #β>w,#"*) is a Hodge structure if ψ(z) « 0. Π
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