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ON SOME HYPERSURFACES AND HOLOMORPHIC MAPPINGS
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§ 1. Introduction

In [S], the author gave a homogeneous polynomial Hn of variables H>O, . . . , wn

with the property:
If two algebraically non-degenerate holomorphic mappings / and g of C into

Pn{C) with reduced representations/ and g respectively satisfy Hn(g) — ocHn(f)
for some entrie function α without zero, then /' = g.

From this, we can get a hypersurface in the complex projective space with
the property that two algebraically non-degenerate holomorphic mappings of C
into the complex projective space which have the same inverse images as divisors
are identical.

In this paper, we give another polynomial different from the above one with
this property and others.

Acknowledgements. The author would like to thank the referee for valuable
suggestions.

§2. Previous results

We use the terminology in [S]. In this section we recall the results in [S].
Let / be a holomorphic mapping of C into F"(C) with a representation

/ = (/o, ,/«)• If f(z) = (co:--:cn) for all zeC -f~ι(o), where c 0 , . . . , cn

are constants at least one of which are not 0, then we say that / or (fo : :fn)
is constant and write f — (f0 : -- - :fn) = (co : : cn).

We will need the following:

THEOREM A ([S, p. 291]). Let f be a nonconstant holomorphic mapping of
C into Pι(C) with a reduced representation (fo,fι) and {(wo : w\) ePι(C) :

+aj\W\ = 0 } (1 <j < q) distinct hyperplanes in PX(C). If all the zeros of
+ tfyi/i have the multiplicities at least mj for each j , where mj are arbitrarily
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fixed positive integers (1 <j<q), then

Let d and p be two positive integers with d > 2p -f 8 and /? > 2 which
have no common factors. Define homogeneous polynomials H\(wo,w\) =
wod + W(/w\d~p + w\d with degree d and

with degree </Λ for n > 2.

THEOREM B ([S, p. 297]). Let f and g be algebraically non-degenerate
holomorphic mappings of C into /^(C) with representations f = (fo,... ,fn) and
g = (go,.' >gn) respectively. If

Unfa, , flfn) = αί&ί/o,. . . ,/,)

holds for some entire function α without zero, then

where β is an entire function such that βd" = α.

LEMMA C ([S, p. 295]). Let f and g be algebraically non-degenerate hol-
omorphic mappings of C into Pι(C) with reduced representations f = (fo,fι) and
9 = (go,gi) respectively. If

holds for some meromorphic function h, then h is an entire function without zero.

Remark. For holomorphic mappings into Pι(C), algebraic non-degeneracy
coincides with nonconstantness.

We give a new version of the case of n = 1 of Theorem B.

THEOREM 2.1. Let f and g be algebraically non-degenerate holomorphic
mappings of C into Pι{C) with representations f = (fo>f\) and g = (#o>0i) re-
spectively. If

H1(go,gι)=hdHι(foJι)

holds for some meromorphic function A # 0, then

where φ is a meromorphic function such that φd = hd.
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Proof Let A be a common factor of /o and f\, and let B be a common
factor of go and 01. Then

90 ί l λ _LdAdττ(fθ f\

By Lemma C, (A/B)h is an entire function without zeros. Hence, we get, by
Theorem B,

= βfj/A (j = 0,l),

where β is an entire function such that βd = ((A/B)h)d. If we put φ = (B/A)β,
then we have the conclusion. Q.E.D.

We give other homogeneous polynomials different from the above Hn. Let
P(wo,w\) = Λ(WO,H>I) = H\(WQ,W\) and define inductively

PΛ(wo,..., wn) = Pn_i(P(wo, wi),...,P(wπ_i, wΛ))

with degree J " for « > 2. In place of Hn, we consider Pn in this paper.

§3. Uniqueness of holomorphic mappings

First, we prove the following uniqueness theorem:

THEOREM 3.1. Let f and g be algebraically non-degenerate holomorphic
mappings of C into Pn(C) with representations/ = ( / 0 , . . . ,/„) and g = (go, ...,gn)
respectively. If

(3.1) Pn(g*, ,9n)=hdnPn{fo,...Jn)

holds for some meromorphic function h φ 0, then

gj = ωnhfj ( 0 < y < « ) ,

where ωn is an dnth root of unity.

Proof We proceed the proof by induction on n.
The case of n = 1 is proved in Theorem 2.1. Assume that the result is true

for n — 1 and consider the case of n. Put Fj = P(fj,fj+\) and Gj = P(gj,gj+\).
Then we can simplify the identity (3.1) into the form

It follows from the assumption of induction that

Gj = ωn.ιh
dFj (0<j<n

or
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From the result of n = 1, we get

gj = ώjhfj and gj+ι = ώjhfj+x,

where ώj are rfth root of ωn-\. Because of fj φ 0 and #/ ̂  0 (0 <j < n), we
obtain ώo = = ώn-\ and set ωn = ώj (0 <j <n— I). This completes the
proof. Q.E.D.

§4. Constantness of holomorphίc mappings

In this section we prove theorems which show constantness of holomoφhic
mappings.

LEMMA 4.1. Let f and g be entire functions at least one of which are not
identially equal to zero. If

for some entire function α, then (f:g) is constant.

Proof Consider the factorization P(wo,w\) = Y[d

J==ι(wo + ajW\). If α = 0,
then / + ajg = 0 for some j . Hence (f:g) = (-aj : 1). Assume that α φ 0.
Since Σ l i ί 1 - (1/rf)) = d - 1 > 2, we see that (/ : g) is constant by Theorem
A. Q.E.D.

THEOREM 4.2. Let fo,f\ and fa be entire functions at least two of which are
not identially equal to zero, and let C be a nonzero constant. If

then (fo :/i :fi) is constant.

Proof Note that the constantness of {fo :fi) and that of (f\ :fι) are
equivalent by Lemma 4.1, and in this case trivially {fo'-fi'-fi) is constant.

Assume that neither (fo '.fι) nor (f\ 1/2) are constant. Then by Theorem
2.1, there exists dth root C of C such that /0 = Cf\J\ = C% which is a
contradiction. Q.E.D.

For more ^'s, we have

THEOREM 4.3. Let n>2 be an integer and fo^-^fn entire functions. If at
least two of P(fo,f\),P(f\,fι),.. .,P(fn-\,fn) are not identically equal to zero and
(P(fo,f\) : P(fuK) ' " ' P(fn-ufn)) is constant, then (/o : :/„) is constant.

Proof. We proceed the proof by induction on n. The case of n = 2 is
proved by Theorem 4.2.

Assume that the result of n — 1 has been proved and consider the case of n.
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(I) The case of P(fn-\,fn) = 0. Since in this case there exist at least two
j (0 <j < n - 2) such that p(fjJj+\) φ 0, (fo : :fn-\) is constant by the assump-
tion of induction. Further, the assumption P(fn-\,fn) = 0 implies that (fn-\ :fn) =
{cn-\ : cn) Φ (0 : 1) or fn_χ =fn = 0. We can easily get the result by these.

(II) The case where P(fn-\,fn) φθ and there exist at least two
j (0 <j<n- 2) such that P(fjjj+ι) φ 0. Then (/0 : :/„_!) = (c0 : : cn.λ)
by the assumption of induction. If P(fj,fJ+\) φ 0, then there exists a nonzero
constant C such that P(fj,fj+\) = CP(fn-\,fn) by the constantness of (P(fJifJ+ι) :
P(fn-ufn)). Because of (fjjj+i) Φ (0,0) and (fj :fj+ι) = (Cj : c +i), (/„_! :/„) is
constant by Lemma 4.1. If fn_\ φ 0, then we can write fn = (cn/cn-\)fn-\. If
fn-ι = 0, then we can write /„ = (cn/cj)fj or fn = (cn/cj+ι)fj+ι.

(III) The case where P{fn-i,fn) Φ0 and there exists the only one
j (0 <j <n- 2) such that P(J5, Jj+i) Φ 0. If P(/o,/i) = 0, we can get the result
as the case (I).

Hence we consider the case where Pifo.f^φO and P(fι,fi) = =
P(fn-2,fn-i) = 0. In this case, we get (/i : :/n-i) = (ci : : cπ_i), where 9
are nonzero constants, or /1 = ••• =fn-\ = 0. Moreover, we have P(fo,f\) =
CP(fn-ufn) for a nonzero constant C. If fx = =/„_! = 0, then fo

d = Cfn

d.
Hence we get (fo : : ^ ) = (co : 0 : : 0 : cn). Consider the case of
(/1 : :fn-\) = (c\ : : cn-\). If (/o :/i) is constant, then (fn-χ :fn) is con-
stant and also we can write fo = (co/c\)f\, fn = (cn/cn-\)fn-\, which implies
(fo ' ''' 'fn) = (co : : cn). If (fo :/i) is not constant, then by Theorem 2.1,
there exists a rfth root C of C such that /o = C'/π_i, /1 = C%. Hence
(fo '-"'fn) is constant. Q.E.D.

THEOREM 4.4. Let n be a positive integer and f a holomorphic mapping of C
into P"(C) with a reduced representation (fo,... ,fn). If Pn(fo, >Λ) = 0, then
f is constant.

Proof We proceed the proof by induction on n. The case of n = 1 is
trivial and the case of n = 2 is proved easily by Theorem 4.2. Assume that
the result for n — 1 is proved. Let Pn(fo, >fn) = 0. If we put Fj = P(fj,fj+\),
then Pn-\(Fo,...,Fn-\) = 0 . If Fo = = Fn-\ = 0, then the conclusion is
obvious. Hence assume that there exists j (0 <j < n — 1) such that Fj φ 0. Note
that there exist at least two such j . By the assumption of induction,
(Fo : - : Fn-\) is constant. Using Theorem 4.3, we conclude that (fo : :fn) is
constant. Q.E.D.

It follows from this theorem and Brody's theorem (see Theorem 2.1 in [L,
p. 68]) that the hypersurface Sn defined by Pn(wo,..., wn) = 0 in /^(C) is
Kobayashi-hyperbolic.

THEOREM 4.5. Let f be a holomorphic mapping of C into P2(C) with a
reduced representation (fo,f\,fi)> If P2(fo,f\,fi) = v? for some entire function
α Φ 0, then f is constant.
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Proof. PutFo = P ( / o > / i ) a n d F i = P ( / i , / 2 ) . ThenP(/%,ίi) = ̂  Trivi-
ally (Fo,Pi) # (0,0). In the case of Fo = 0, we have F\d = <xd\ It follows from
Fo = 0 that /o =/i Ξ 0 or that (/0 :/i) = (c0 : ci) ^ (1 : 0), (0 : 1). By Lemma
4.1, it follows from Fλ

d = α^2 that (ft :/2) = (cj : c'2). If / 0 =/i ΞΞ 0, then
f2 = CO20L, where C02 is a d2th root of unity. Hence (fo :f\ 1/2) = (0 : 0 : 1). If
(yb :/i) = (co c\), then ci # 0, which implies the constantness of (7b >fι -fi)
In the case of Pi = 0, we have Fod = ocd . Hence we can prove our assertion as
above. If Po φ 0 and Pi = 0, then (Po : Pi) is constant by Lemma 4.1. In this
case we can use Theorem 4.2 and get the conclusion. Q.E.D.

THEOREM 4.6. Let f be a holomorphic mapping of C into Pn(C) with a
reduced representation (fo,... ,fn). If Pn(fo, ,fn) = 0Ld" for some entire
function α ψ 0, then f is constant.

Proof We proceed the proof by induction on n. The case of n = 1 is
proved by Lemma 4.1 and the case of n = 2 by Theorem 4.5. Assume that the
result for n - 1 is proved. Let Pn(fo, - - - ,fn) = ocd". If we put Fj = P(fj,fj+\),
then Pπ_i(Po,... ,Pw-i) = ocd". Since the case Po = = Pn_i = 0 is impossible,
there exists j (0 <j < n — 1) such that Fj φ 0. By the assumption of induction,
(Po : : P«_i) is constant. If there exist at least two j (0 <j < n - 1) such that
Fj φ 0, then Theorem 4.3 yields the conclusion. Hence we consider the case
where there exists the only one such j . If Fj φ 0, then KFf"'1 = adn, where K is
a nonzero constant. Hence K'Fj = ocd, where K' is an dn~ιth root of
K. Therefore (fj :fj+ι) is constant by Lemma 4.1. In this case, if fj = 0, then
fo = "'=fj = O a n d (fj+x : :fn) = (cj+x : - : c n ) , w h e r e ck are n o n z e r o
constants. If jj+i = 0, then fJ+λ = =fn = 0 and (/0 : : fj) = (c0 : : q),
where ck are nonzero constants. In the case where f} φθ and fj+\ φ 0, we have
the conclusion by using P^ = 0 (k φj). Q.E.D.

From this theorem, every holomorphic mapping of C into Pn(C) omitting Sn

is constant. Hence Pn(C)\Sn is hyperbolically imbedded in P"(C) and is
complete hyperbolic by Theorem 3.3 in [L, p. 75].
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