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Abstract

The space of isometric immersions of an n-dimensional anti-de Sitter space-
time into another with codimension one is described in terms of certain fa-
milies of countable n-tuples of real-valued functions.

1. Introduction

A fundamental problem in differential geometry is to characterize and
determine all the submanifolds in a space form. A complete solution to the
problem in the generality as stated above simply seems beyond the reach of
the current mathematics. Historically, various conditions were imposed upon
so as to make the problem somewhat more feasible, if not more viable. One
of such conditions is to restrict submanifolds to being of codimension one and
of the same constant curvature as the ambient space. The problem has re-
ceived considerable attention under this rather restricted state indeed, it has
seen much progress.

For example, the problem has long been settled for the Riemannian space
forms of non-negative curvature (see [5] and [11] for more information). In
the hyperbolic case, only some partial solutions (see [2], [7], [9], [10]) existed
until a lengthy but more complete description of the space was recently ob-
tained (see [4]). In the indefinite case, Graves ([6]) gave the answer to the
problem for the flat Lorentzian space forms. The case involving the de Sitter
space forms was treated in [1].
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theorem for hypersurfaces, universal pseudo-Riemannian covering manifold.

Partly supported by the Grants-in-Aid for Scientific Research, the Ministry of Educa-
tion, Science and Culture, Japan.

1991 Mathematics Subject Classification. Primary 53 C 42, Secondary 53 C 21.
Received January 9, 1997 revised October 7, 1997.

218



PARAMETRIZATION OF ISOMETRIC IMMERSIONS 219

In this paper, we take up the anti-de Sitter space forms of constant cur-
vature —1. We give a complete description of the space of the isometric im-
mersions of //? into i/?+ 1. Here we denote by H\ the universal pseudo-Rie-
mannian covering manifold of the n-dimensional anti-de Sitter space-time H\.

Our main result, in essence, states: For each isometric immersion f:
H7}—>H7}+1, there exists a family of properly chosen, countable n-tuples of real-
valued C°° functions which completely describe the second fundamental form of the
immersion therefore, the immersion itself.

Conversely, given a family of properly chosen, countable n-tuples of real-valued
C°° functions defined over a family of mutually disjoint open intervals, there is an
isometric immersion f: H^-^H^1 whose relative nullity foliation is completely
determined by functions in the family.

Throughout this paper, we make extensive use of the notion of relative
nullity foliations. They are ideally suited for this study of submanifolds in the
setting of this paper.

In Section 2, we briefly recall the universal pseudo-Riemannian manifold
H\ of an n-dimensional anti-de Sitter space-time and show that no leaf of the
relative nullity foliation associated with the isometric immersion / : i/?->//?+ 1

is a Lorentzian manifold with the induced metric.
In Section 3, we give a complete description of the relative nullity foliation

of /. Central here is to make a proper choice for a family of C°°-functions
defined in open intervals according to degeneracy or non-degeneracy of the
leaves of the relative nullity foliation.

Section 4 is devoted to a precise statement of our main result and its proof.

2. Preliminaries

First, we recall the n-dimensional anti-de Sitter space-time H\ (see [1] and
[12] for details):

with the indefinite metric < , •> = — dy\—d
Next, we will define the universal pseudo-Riemannian covering manifold

if? of HI. We consider a mapping π: Rn-*H'Ί given by

(2.1) π(xu x2, ... f xn)=(σ1/2cos xu σ1/2smxu x2, ..., xn),

Xi, x2, ..., xn^Ry where G—IΛ-1LJI=<ZX\. It is easy to show that the mapping
π is a covering mapping in the sense that for x[, ..., x'n and xlt ..., xn^R,
π(xΊ, xί, ... , x'n)=π(xlf x2, ... , xn) if and only if x[—xί=2πk, (k : integer), x'%—
xlf i=2, 3, ..., n. We also find that
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(2.2) *=**«•, »=-σdx\+t%%(δtj-xιxjσ~ι)dxidxJ,

where σ = l + Σ ? = 2 * ! . From this observation we can define a universal pseudo-
Riemannian covering manifold H7} of H7} by

(2.3) ϊϊϊ={Rn, g).

We will begin with the following Lemma.

LEMMA 2.1. Suppose that S E ( 0 , 2π), sφπ, (alJ)z^ltJ^n+1^SO(n—l) andθ<a,

iS<oo are given. Then we can find real numbers tA, ..., tn+i and φ, 0e[O, 2π)
satisfying the following condition.

(2.4)

(2.5)

( τcos φ~cos # cos s~cosh α sin θ sin s,

τcosh β sin 0=cos 0 sin s-f-cosh a sin ̂  cos s,

τsinh /3 sin φ—azz sinh a: sin ̂  ,

tj = aSj sinh α sin θ, /=4, ... , w+1,

Proof. First, we define real numbers P and Q by

= {(flsβ̂  cos s—μ)2+(aS3 sin s sinh α) 2} 1 / 2,

= {(α33^-/ί cos s)2+(sin s sinh β)2} ι'\

where Λ=sinh a cosh β and ^=cosh a sinh ^. Next, we define real numbers tt by

(2.6) tt=Q~1asi sinh a sinh β sins, 2—4, ..., n+1.

Note that for each SG(0, 2π)—{π} and each α, βe(0, oo), we have C?>0 and

( n+l \ 1/2
1+Σ«) =P/Q.

1 = 4 /

Finally, we define φ, β e [ 0 , 2π) by

' sin φ—P~ιazz sin s sinh a,

cos φ—P'1 (β3 3 cos s sinh α cosh β—cosh α sinh β),

sin Θ — Q~ι sin s sinh /3,

I cos Θ—Q^ia^ sinh α cosh /5—cos s cosh a sinh j8).

(2.8)

Using (2.5H2.8) we find that (2.4) is valid.
This completes the proof. α

Lemma 2.1 implies the following.
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PROPOSITION 2.1. No leaf of the relative nullity foliation associated to / :
//?—>//?+1 is a Lorentzian manifold with the induced metric.

Proof, Recall that any complete totally geodesic submanifold of codimension
one intersects the center circle S1 : = {(xlf x2, 0, ..., 0)ei/?} once and only once
in the projective sense. Thus any complete totally geodesic foliation of codi-
mension one of a connected component V of U in Wl is parametrized as follow.

Let c(s)=(coss, sins, 0, ..., 0), a<s<b, be the intersection of V and the
center circle S1. For each se(α, b) we denote by L(s) the leaf of £F passing
through the point c(s). Assume that for each sε(fl, b), TcωL(s), the tangent
space of the L(s) at the point c(s) is a Lorentzian manifold. Then it is the
intersection of H\ and the vector subspace of RT1 which is generated by the
vectors c(s), (0, 0, an(s), ..., aιn+1(s)), i=4, ..., n + 1 and cosh tf(s)c'(s)+sinh a(s)
(0, 0, α33(s), ..., flsn+i(s)), where a(s) and atJ(s), 3^z, j^n+1, are C°° functions
in s and {atj(s)) is in SO(n — 1). From this fact the foliation £F on V is para-
metrized as follows.

/ : (α, fyxS'xR71-2—>//?

/(s, ^, ί4, ..., ίn+i)=^ cos ^c(s)+^ sin ^ {cosh

n+

+sinh α(s)«8(s)} + Σ
n+i

Σ

where ^ = (1 + Σ?i 1«) 1 / B, β,(s) = (0, 0, αi3(s), ..., α tn+1(s)), ι = 3, 4, ..., n+l. We
may, up to an isometry of Hn

lf assume that a<Q<b and et(0)=(0, ..., 0, 1, 0,
..., 0), (1 : i th coordinate), ί=3, ..., n + l . Let se(α, b), sφπ fix. It follows
from Lemma 1.1 there exist real numbers t4, ..., tn+1, φ, θ such that

(2.9) Mφ.U, ..., f»+i)=/(s, fl, 0, . . . ,0) .

In fact, setting β=a(0), a=a(s) we see that (2.9) is equivalent to the system
of the equations in (2.4). From this observation we find that if the leaves of
£F are Lorentzian manifolds, then any two of them do intersect. This contra-
dicts the definition of the foliation.

This completes the proof. •

For later purpose we will introduce some notations and symbols. Let π:
H7l-^HΊl(resp. πf: /3V1—>//^+1) be the universal pseudo-Riemannian covering
mapping of the n-dimensional (resp. (n+l)-dimensional) anti-de Sitter space-time
//?(resp. //?+1) as in (2.1). Since the both mapping π and π' are local iso-
metries we can show that an isometric immersion / : 7/?-+//?+1 is lifted to an
isometric immersion / : /??->#?+ 1, that is, π'*f=zf π\ H^HV1-

Let / : /??—>//?+1 be an isometric immersion. Denote by A the shape

operator of / relative to a unique (up to a sign) field of unit normals along /.

Recall that i/?=(/?*, g). Let άtJ be the components of A with respect to the
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standard coordinates {xlf ..., xn} of Rn

We will, for simplicity, say that the άVJ are components for /.

3. Description of foliation

Let / : WΊ-^HY1 be an isometric immersion. Denote by £F the relative
nullity foliation on H\ determined by /. We know (see [3]) that £F is a co-
dimension one complete totally geodesic foliation in an open subset U of //?.
By 3\Uα we mean the restriction of ^ to a connected component Uα of U.
From Lemma 3 in [1] and Proposition 2.1 in this paper we find that the leaves
of %\Uα are either all degenerate submanifolds of Hn

x or all Riemannian sub-
manifolds of //?. Note that the center circle S1 in # ? is parametrized by

(3.1) c(s)=(coss, sins, 0, ..., 0), -π<s^π.

We find that each leaf L of £F|ί/α meets the center circle at a unique point.
In fact, since L is a connected, complete totally geodesic hypersurface of Hn

ly

it is a connected component of the intersection of VΓ\Hn

ly where V is a linear
hyperplane in RT2 which meets i/?(see [12], pp. 62-68). From this observa-
tion and the very definition of foliation it follows that V meets S1 at one point,
but cannot contain the center circle.

3.1. Foliation with degenerate leaves. We will first consider the case
where leaves of S£\Uα are degenerate submanifolds of //?. We know (see [1])
that along the center circle c(s)=(coss, sins, 0, ..., 0) in H", there exists a
parallel field e(s) (resp. V(s)) of null vectors (resp. (n—2)-dimensional Rieman-
nian vector spaces) tangent to the leaves of <Ξ. Note that e(s) may be written
in the form

e(s)=(—cos s, sin s, b2(s), ..., fe»(s)), α<s<b,

where b2(s), ..., bn(s) are C°° functions defined in the open interval (α, b) satis-
fying the condition Σ?=2&<(s)2=l. Since e{s) is parallel along the curve c(s),
the Weingarten formula implies that all the functions bt(s) are constant. From
this fact together with that V(s) is also parallel, we find that V(s) is a constant
(n—2)-dimensional vector space in Rn~ι. Here and in what follows, we will
canonically identify the (n—l)-dimensional Euclidean space Rn~ι with the subset
{(0, 0)}Xi?n~1 of RT\ From this observation we have the following descrip-
tion of the relative nullity foliation whose leaves are degenerate.

PROPOSITION 3.1. Suppose that the leaves of £F|ί/α are all degenerate mani-
folds. Then, the open subset Ua is parametrized by a mapping φ: (a,
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(3.2) Φ(s, U, U, ... , ί n ) = Σ M t ,
1 = 2

s(=(a,b), and t2, ..., tn ^ R, where τ = (l + Σ!?=3^)1/2. The second fundamental
form Π of f\Ua, at the point φ(s, t2, ... f tn), is given by

Π=r(s)τds\

where r(s) is a C00 function defined in the open interval {a, b).

Proof. First, note that the mapping φ is an imbedding. Setting tx — s and
denoting by gtJ the components of the induced indefinite Riemannian metric
0*« , •» we have that

(3.3) { glx=Utxτ-\ i = 3 , ... , n ,

£ 2 i = 0 , 1 = 2, 3, ... , 72,

gtj—Sij—titjT'2, i, 7 = 3 , ... , 72,

where δi} is the Kronecker's delta. Denote by gXJ the components of the inverse
matrix of the matrix (gtJ). Then, from (3.3) it follows that

(3.4)

t=-δuτ-1, 1 = 1 , 2 , . . . , 7 2 ,

ί , 7 = 2 , . . . , 7 2 .

Let A be the shape operator of the isometric immersion / relative to a unique
(up to a sign) field of unit normals along /. Recall that for each fixed s<=(a, b),
the mapping (f2, ..., tn)^Rn'ι^φ{s, t2, ..., tn)^!!1} defines a leaf of the foliation
3\Ua. From this observation it follows that

(3.5)

/ = 2 ' • - » '

where r is a function of s, t, U, ..., tn.
From the Codazzi equations together with (3.3), (3.4) and (3.5) it follows

that the function r depends only on s.
This complete the proof. •

We will consider an isometric immersion / : /??-*$?+1, which covers the
restriction f\φ((a, ^x/?71"1), and calculate the coefficients άl3 of the second
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fundamental form of /. Using (2.1) and (3.2) we can naturally lift the mapping
φ to a mapping φ: (α, b)xRn-ι->Hϊ=(Rn, g) in the form.

(3.6) :(s, U, ..., ί n)=(s+tan" 1(ί 2r- 1), 0, ..., 0)+ Σ Ue%

where τ = ( l + Σ?=3ί!)1/2 and gx :=(0, δ i 2, ..., bin), i=2, 3, ..., n. Define the vector
fields Xx on (α, b)xRn~x by

(3.7)

ί = 2 , ..., n,

where r = ( l + Σ?=sf?)1/e, Γ=(f i+r 2 ) 1 / a and Rl = T2bu-^n

J=Mjbji. Then from
(3.6) and (3.7) it follows that

(3.8) ι ' = 1 ' 2 ' ' n

From the fact that TΓ (resp. π') is a local isometry of ff7} onto //? (resp. /7?+1

onto //Γ 1) together with (2.10), (3.2) and (3.6) we find that the values of alJf

at the point φ(s, t2, ..., tn), are given by

(3.9)

i,' j = 2 , ..., n, where τ, T and i?t are given as above. Recall (see [8], p. 24)
that for any C00 function h defined in the open subset Ω:—<l>{(a, b)xRn~ι) of
/?? we have that

y = l , ..., n. Nate that the composite functions άx^φ are C°° in (a,
and are analytic functions of the variables t2, ..., tn. From this observation it
follows that the coefficients of the second fundamental form are C°° in a neigh-
borhood of the closure of the subset $((α, b)xRn~ι) in H1} if and only if we
have that

(3.10)
d3

dsJ As) o, y = o , l, 2 , . . . ,

as s approaches the end points of (a, b).

3.2. Foliation with Riemannian leaves. We will next consider the case
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where leaves of $\Ua are Riemannian submanifolds of H^. Along the intersec-
tion UaΓλS1 we can find a C°° function θ(s) and a C°° field of orthonormal
vectors e2(s), ..., en(s) of R71'1 to describe the foliation 3\Ua as follows. As
in the previous subsection, we will canonically identify the (72—1)-dimensional
Euclidean space R71'1 with the subset {(0, 0)} XR71-1 of R%+1.

On the function θ(s) and the fields of orthonormal vectors e2(s), ... , en(s)
we will impose the conditions (3.11), (3.13) and (3.14) below which are necessary
and sufficient conditions for that the parametrization φ of (3.15) below represent
the foliation 9\Ua-

We will, first, write down the preliminary conditions.

(3.11) <eί(s), 0, (s)>=O, for

where < , > is the Euclidean inner product of Rn~\ We can easily shown that
operating a suitable C°°SO(n—2)-valued function defined in the open interval
(a, b), (3.11) is always satisfied. Let £3(s), ..., kn(s) be C°° functions uniquely
determined in the open interval (a, b), subject to the following conditions.

(3.12)

Conditions we impose are as follows.

(3.13) θ'(s)2+ I ] ^(s)2sinh20(s):Scosh20(s),

|(9/(s)|<cosh/9(s), when
(3.14) , __

| ^ / ( ) ] 2 | h ^ ( ) | , when V 2 <cosh θ(s).

PROPOSITION 3.2. Suppose that the leaves of 3\Ua are all Riemannian mani-
folds. Then, the open subset Ua is parametrized by a mapping φ: (a,
H\ defined by

( n \i/2

l + Σ ί ί ) c(s)+t2smhθ(s)c'(s)

(3.15)

+ί2cosh θ(s)et(s)+ Σ tMs),
3

, b) and t2y ..., tn(=R. The condition (3.13) is a necessary and sufficient con-
dition for the mapping φ to be an immersion. The conditions (3.14) is a
necessary and sufficient condition that for each fixed se(α, b), the mapping (ί2, ...,
tn)

h-*φ(s, t2, ..., tn) represents a leaf L(s) of the foliation £F|ί/Λ. The second
fundamental form Π of f\Ua, at the point ψ(s, t2, ..., ίn), is given by

/7 =r(s)(T cosh ^(s)+^/(s)+PFsinh θ(s))ds2,
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where T=(1+Σ?= 2 *D 1 / 2 , W=^^hkj(s) and r(s) is a C°° function defined in the
open interval (a, b).

Proof. Setting tι=s and denoting by gtJ by the components of the induced
indefinite Riemannian metric ^*« , •» we have the following.

n = -t2(smh2θ(s)+θ'(s)2)-T2-2t2θ'(s) cosh θ(s)T

-2f20'(s) sinh θ{s)W+W2+ Σ (t2kj(s) cosh θ(s))2,
.7 = 3

-tlT-1) sinh 0(s)-cosh θ(s)W,

' 1 sinh Θ(s)+Ukj(s) cosh 0(s),

(3.16)

Denote by Δ by the determinant of the matrix (gtJ). Using the Laplace ex-
pansion theorem for Δ we find that

A=-T~\T cosh Θ(s)+W sinh 0(s)+f20'(s))8.

Note that q : = T cosh θ{s)+t2θ\s)+W sinh θ(s) is positive when t2f ..., fn = 0.
Using Schwartz inequality we have that for all t2, ..., tn

( T 2 -

with equality θ'(s)=λt2, ki(s) sinhθ(s)=λtt, i—?>, ..., n for some constant Λ^O.
From this observation it follows that the condition (3.13) is a necessary and
sufficient condition that the mapping φ be an immersion.

Denote by glJ the components of the inverse matrix of the matrix (gtj).
Using the Laplace expansion theorem for Δ we find that

(3.17)

n = -(T cosh Θ(s)+W sinh

l2=gι\T sinh 0(s)+cosh θ(s)W),

t{s)cosh θ(s)\ ι=3, 4, ..., n.

Defining τ=(T2+t2

2 s i n h 2 0 ( s ) ) 1 / 2 a n d t a n - 1 ^ ^ " 1 s inh 0 ( s ) ) = ω ( s , ί2, •••, ί n ) = : ω w e
find t h a t

ψ(s, t2, ... , ίn)=r(cos(s+ω), sin(s+ω), 0, ..., 0)

+t2 cosh 0(s)e2(s)+ Σ tMs),

where e<(s)=(0, 0, bi2(s), ..., ftin(s)), ί=2, ..., n.
To prove the third assertion in Proposition 3.2 it is sufficient to show that

(3.14) holds if and only if

(3.18) I dω/ds | = | τ~2Tt2θ'(s) cosh 0(s) | < 1
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for all f2, . . . , f n eJ? and for all sε(α, ft). Putting s = t i , :y=Σ?-β*ϊ and m—
cosh 0(s), we find that

(3.19) dω/ds=h(s, x, y)θ'(s),

where

' ' l-{-m2x+y '

Since

dh(s, x,

for 0<%<oo, 0^3^<oo, we have that

}^A(s, x, y)<h(s, oo, 3^)=c

when cosh 0 (s) ̂  V 2

I when ()

From this observation, we see that our assertion holds.
Denote by A the shape operator of / relative to a field of unit normals

along /. From (3.16) and (3.17) it follows that

(3.20)

where r is a function of s, t2, ..., tn. Denote by Vt the covariant differentiation
with respect to the z-th coordinate vector field d/dtt. Then, we get that

(3.21) Σ V 1 ( ( - ^ » ) - 1 ' V ^ - | j - ) = 0 , i=2, ..., n.

In fact, from the definition of the Christoffel's symbols it follows that

It h> j—i

Codazzi equations then imply that the function r is a function of s only.
This completes the proof. •

As in the previous subsection, we consider an isometric immersion / : /??-*

ί??+ 1, which covers the restriction f\ψ((a, fyxR71-1), and calculate the coeffi-

cients άtJ of the second fundamental form of /.
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Using (2.1) and (3.15) we can naturally lift the mapping φ to a mapping
φ: (a, fyxR^-^Hϊ^R71, g) in the form.

s, tt9 ..., ί n ) = -1 sinh θ(s)), 0, ..., 0)
(3.22)

where T = (l+Σ?- 2 f ϊ) 1 ' 1 , βi(s) = (0, bUs), ..., bin(s)), ι = 2, 3, ..., n. We define
the vector fields Xlf ι = l , ..., n, in the product space (α, fyxR71'1 by

(3.23)

Tcosh^s)
A x - ^ A ,

ί = 2 , ..., n,

where P = T 2+ίlslnh 2^(s), Q = T cosh fl(s)+ίaβ
/(s)+α> sinh 0(s), σ = Σ?-8^fe/s)

and Rι=(T2-t2

2)b2i(s)-Σ>%3tztjbji(s)cosh θ(s). Here we define the vector fields
X and Yx by

3 -*,sinhfl(s)fl'(s)+g 3 «
S

ι=2, ..., n .

From (3.15) and (3.23) it follows that

(3.24) (-g^

From (3.2), (3.15) and (3.24) together with that π is a local isometry, we find
that the values of άιJf at the point φ(s, t2, ..., tn), are given by

{ an = -r(s)T*(PQ)-1 cosh* θ(s),

= -r(s)TQ'1 cosh θ(s) sinh Θ(s)b2j(s),

1 tanh 0(s),
(3.25)

i, /—2, ..., n, where P, Q, σ and Rt are given as above. By similar arguments
in the previous subsection, we can show that the coefficients of the second
fundamental form are C°° in a neighborhood of the closure of the subset ψ((a, b)X
Rn~ι) in H1} if and only if we have that as s approaches the end points of
(α, b\

(3,26)

for all nonnegative integers lu l2, ..., /n.
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4. Proof of theorem

Let / : i/?-^//?+ 1 be an isometric immersion. Denote by 3 the relative
nullity foliation on Hn

x determined by /. By the same argument as in the
previous section we can show (see [3]) that 3 is a codimension one complete
totally geodesic foliation in an open subset 0 of //?. By 3\Ua we mean the
restriction of § to a connected component Ua of 0. We also find that the
leaves of <Ξ\Ua are either all degenerate submanifolds of H" or all Riemannian
submanifolds of //?.

We first consider the case where the leaves of S\Ua are degenerate mani-
folds. In Oa we have a parametrization φa : (aa, ba)XRn~1^H7l=(Rn, g) given by

(4.1) φa{s, u, ..., ίn)=(s+tan- 1(ί,r- 1), 0, ..., 0)+ Σ U8ta,

aa<s<ba, -oo<t2, .»,tn<oo, where r = ( l + S?=3*D 1 / 2 and {eιa :=(0, bi2ay . . . ,

bina), ί=2, 3, ... , n\ is an orthonormal basis of the Euclidean space Rn~x = {0} X
Rn~ιcRn along (αα, ba). The components atJ, at the point φa(s, t2, ..., tn), of
the shape operator of the isometric immersion /, are given by

άn=ra(s)τT-

(4.2)

i, j=2,..., n, where τ = ( l + Σ?=sft)1/2, T=(f 2 +r 2 ) 1 / 2 and Rta = Tzb2ux-Σ>%2t2tjbjίa.
The function rα(s)eC°°(αα, ba) satisfies

(4.3) . ^ _ r α ( s ) _ > o , y=0, 1,2, ...,

as s approaches the end points of (αα, 6β).
We next consider the case where the leaves of 3\ϋβ are Riemannian mani-

folds. In Uβ we have a parametrization ψβ : (aβf bβ)xRn~ι^H7l—{Rn, g) given by

ψβ(s, t2f ..., ί n )=(s+tan- 1 ( ί ί T- 1 sinh θβ(s)), 0, ..., 0)
(4.4)

+t2 cosh θβ(s)S2β(s)+ Έjieιβ(s),Έj

aβ<s<bβ> -oo<t2, ..., tn<oo, where T=(l+Σ?=2*i) 1 / 2 and {^(s)=(0, 6 lίi8(s),
..., binβ(s)), i—2, 3, ..., n\ is a C°° field of orthonormal vectors of the Euclidean
space R*-1^ {0} xR^czR" along (aβ, bβ). Note that the field {eiβ(s), ί=2, ...,
n} is uniquely determined by (n— 2) C°° functions ^8^(s), ..., knβ(s) defined in
(aβ, bβ). Defined by < , > is the Euclidean inner product of Rn~1^ {0} xRn~\
We assume that the functions θβ(s) and ktβ(s), ί=3, ...., n, satisfy the following
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conditions:

(4.5)

(4.6)

(4.7)
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<g'tβ(s), eJβ(s)}=0, for 3£ί, j<n,

n

\ β2.β\S)—- ^J %iβ\S)βiβ\S) y

1 8iβ(s)=-k%β(s)8iβ(s), ι = 3 , ..., n,

(4.8)
\θ'β(s)\<coshθβ(s), when cosh θβ(s)£V2,

\θ'β(s)\<2\tanhθβ(s)\, when V 2 <cosh θβ(s).

The components alJy at the point ψβ(s, t2, ..., tn), of the shape operator of the

isometric immersion /, are given by

( ~au=-rβ(s)T\PβQβ)-ιcσsh*θβ(s)f

ι cosh θβ(s) sinh θβ(s)b2jβ(s),

1 tanh θβ(s),

1 tanh θβ(s),

(4.9)

i, j = 2, ..., n, where Pβ = T 2 + if sinh2 0^(s), Q^ = Tcosh ^^(s) + Uθ'β{s) + σ^
sinhtf^s), σβ = ΣMkjP(s) and Λ t i 8 = ( r 2 - β ) f t t ^ ( s ) - Σ ? - WAiiί(s)coshί ii(s).
The C°° functions rβ(s), θβ(s), kzβ(s), ..., knβ(s) defined in (aβ, bβ) satisfy the
conditions that as s approaches the end points of (dβ, bβ),

(4.10) X\)>Xϊβ-Xn%K)—>0

for all nonnegative integers lu ί2, ... f ln Here the vector fields Xιβ, i=l, ..., n,
in the product space (a,β, bβ)xRn~1 are given by

__T coshθβ(s)
β— —

Q β

γ
Λβ,

(4.11)

Also Xβ and Ytβ are the vector fields in (aβf bβ)xRn~1 given by

« ••

For each pair of parametrizations φa as in (4.1) and ψβ as in (4.4), we have
one of the following inequality:
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const(α, β)<aa—bβ, or,
(4.12)

const(/3, a)<aβ—ba,

where const (a, β) is a positive constant depending on the vectors eSa, ..., ena,
and the functions kBβ(s), ..., knβ(s) and θβ(s) defined in (aβ, bβ). In fact, if
α/ϊ-& β <π/2-ten->(s), Vse(β0, ft/0, where p(s)=λ(s)(l+μ(s)2$mh2θ2

β(s))1/2, we
can find 2n real numbers se(α α , 6α), s ' e ^ , bβ), and ί2, ..., ίn, tί, ..., t'n such
that

#«(s, ί2,..., tn)=ψβ(s', tί,..., *;) .

Operating a rotation of the Euclidean space 7?71"1 on ezβ(s'), ..., ^ ( s ' λ if neces-
sary, we may assume here that for each pair of real numbers s e ( α α , ba), s ' e
(dβ, bβ), eιa(s)=eιβ(s'), i=4, ..., n and that

*a = ±{-μ(s')etβ(<s')+λ(s')e>β(s')},

for some suitable functions λ(s') and ^(sO
Hence we have the following.

THEOREM 4.1. For a given isometric immersion f of H\ into H7}*1, there

are a family of countable ra(s) of real-valued functions defined in (αα, ba) satisfy-

ing (4.3) such that the components άXJ of f, at φa(s, t2, ..., tn), are given by (4.2),

and a family of countable n-tuples \rβ{s), θβ(s), ksβ(s), ..., knβ(s)} of real-valued

functions defined in (aβ, bβ) satisfying (4.5)-(4.8) and (4.10) such that the com-

ponents άtJ of f, at φβ(s, t2, ..., ίn), are given by (4.9).

Conversely, suppose that there are given a family of countable ra(s) of real-

valued functions defined in (aa, ba) satisfying (4.3) and a family of countable n-

tuples \rβ(s), θβ(s), ksβ(s), ... , knβ(s)} of real-valued functions defined in {aβ, bβ)

satisfying (4.5)-(4.8) and (4.10). Assume further that (4.12) holds among aa's,

aβys, βa's and bβs. Then, there is an isometric immersion f of E\ into //?+ 1

such that the components al3 of f are given by (4.2) and (4.9).

Proof. The first half has already been shown above.

To obtain the second half, we only need to trace backward the argument
for the first half. D
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