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ON THE FUNDAMENTAL INEQUALITY FOR
NON-DEGENERATE HOLOMORPHIC CURVES

NOBUSHIGE TobDA

1. Introduction

Let
f: C— P™C)

be a holomorphic curve from C into the z-dimensional complex projective space
P*(C), where n is a positive integer, and let

(flr --~yfn+l): C-.—)Cn+l—{0}
be a reduced representation of f. We then write f as follows:
f:[fl’ --‘:fn+1:|-

We use the following notation :

If@I= 1@ P4+ fra@) D2
and for a vector a=(a,, ..., @,,,) in C**!
(@, H=afrit+anfau,
(a, f@)=a.f1(D+ +an.1fra(2),
lal=(la:1*+ -+ laz.|%)"".

The characteristic function 7'(r, f) of f is defined as follows (see [11]):

T(r, =5 logl f(re*)|d6 ~log] fO)

Further, put
U(z)= max |f;(@)],
1spsn+1

then it is known ([1]) that
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(1) TG, f):glﬂ—gz”logU(rei")dB—!—O(l).

We suppose throughout the paper that f is transcendental; that is to say,
T¢ 0 _
- lOg 7
We denote by p(f) the order of f:

log T(r, f)

p(f)=lim sup Tog 7

and by S(», f) any quantity satisfying

s {O(logr) (r—o0) it p(f)<eo
r, f)=
O(ogrT(r, f)) (r—oo, r&E) otherwise,
where E is a subset of [0, o) the measure of which is finite.
For meromorphic functions in {z|<o we shall use the standard notation

and symbols of the Nevanlinna theory of meromorphic functions ([3]).
For a=(a,, ..., G,.)C""*—{0} such that (a, f)+0, we write

_ 1 el e
s @ =), 98 1, framyr

and
N(@, a, f)=N(r, 1/(a, f)).
Then we have

(2) T(r, f)=N(r, a, [)+m(r, a, f)+0() ([11], p. 76).
It is called that the quantity

Nr, @ f) i ing 70 @, )

T(r, ) r  T(r, f)
is the deficiency of a with respect to f. By (2)

o(a, f)=1—lim sup

since m(r, a, f)=0 and N(r, a, f/)=0 for r=1.
Further, let v(c¢) be the order of zero of (a, f(z)) at z=c¢ and for a positive
integer k let

na(r, a, f)= 3 min{u(c), k}.
Then, we put for »>0

r ma(, a, )—n0, a, f) dt+n(0, a, f)logr

Nu(r, a, H={] t

and put
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Nk(r) a, Z_)_
T(r, /)

It is easy to see that d(a, f)<d:(a, f)<1 by definition.

We say that f is linearly non-degenerate (or simply, non-degenerate) if and
only if f,, ..., fa.1 are linearly independent over C and that f is linearly de-
generate when f is not linearly non-degenerate.

It is well-known that f is non-degenerate if and only if the Wronskian
W(f1, ..., fas) Of fi, ..., fae1 is not identically equal to zero. From now on
we suppose that f is non-degenerate.

Let X be a subset of C"*'— {0} such that #X=n+1. We suppose that X
is in general position; that is to say, any n+1 elements of X are linearly in-
dependent. About 65 years ago, H. Cartan ([1]) proved the following funda-
mental inequality.

d:(a, f)=1—limsup

THEOREM A. For any a,, ..., aq in X,
G=n=DT(, )< ZNC, @y H=NG VW (Fy s frad+ST, 1),

E.l. Nochka generalized this theorem to the case when j is linearly de-
generate (see [2], Chapter 3). Our first purpose of this paper is to give an
improvement of Theorem A.

Recently, we have introduced the following notion for holomorphic curves
in [7], which corresponds to the derivative of meromorphic functions when
n=L

DEFINITION A. We call the holomorphic curve induced by the mapping
U1 L RN W( o, fa)): € —CF

the derived holomorphic curve of f and express it by f*.

It is easy to see that f* is independent of the choice of reduced represen-

tation of f ([7]).
Let d(z) be an entire function such that the functions

fd (=1, ..., n) and W(f,, ..., fasr)/d
are entire functions without common zeros. Then,
fr=0ry/d, ., Rt d, Wty o, fas)/d].
We proved the following in [7].

THEOREM B. (a) T(r, fX<(n+DT(r, /)—N(r, 1/d)+S(r, f),
(b) f* is transcendental,

) o(fM=p(),
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(d) f* is not always non-degenerate.

Further, we introduced the following subset of X in [8], which corresponds
to the pole of meromorphic functions when n=1.

X(O)Z {a=(01, ceey an+l)EX: an+l=0}'

It is easy to see that #X(0)<n as X is in general position.
Let ey, ..., e,,, be the standard basis of C**!, Then, we have

THEOREM C. For any a,, ..., a,€X—X(0) 1=g< ),
q
Elm(n a,, )sm@r, e,.1, f*+S, 1)
(see Theorem 1 in [8] and [9]).

When X(0) is empty, we can easily obtain Theorem A from Theorem B,
(a) and Theorem C, but Theorem C does not contain Theorem A when X(0) is
not empty. It is desirable for us to give a result which contains Theorem A.
To that end, we shall introduce some new notions in Section 2, and in Section
3 we shall give a refinement of Theorem A and an improvement of the defect
relation. In Section 4 we shall give an improvement of the second main
theorem for moving targets obtained by M. Ru and W. Stoll ([4]), which is the
second purpose of this paper.

2. Preliminaries and lemmas

Let f=[f1, ..., fasrd, T(r, f), X and X(0) etc. be as in Section 1.
DerINITION 1. We put
u(z)= max | f;(z)|
15757
and

_ 1 (2= 16 _~L on 6
1(r, f)_z?so log u(re**)d ano log u(e**)d8 .
It is easy to see the following properties of #(r, f).

PROPOSITION 1. (a) {(r, f) is independent of the choice of reduced represen-
tation of f.

) tr, N=T(, )H+OQ).

(© N, 1/fp=sttr, H+01) (=1, ..., n).

As an improvement of Theorem B, (a) (=Lemma 3([7])), we can prove the
following
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LEMMA 1. T(r, fHST(@, f)+nt(r, f)—N@r, 1/d)+S(@, f).
Proof. From the inequality

I/*@NP= {1 [L@P "D 4 [ fa(@) PP+ WS, oy fra)@1% /142

Ue? .. o
< U@+ 1 @)

\W(fs, ..., fn+1)(z)|2}
[f1@) fra(2)]?
W o FoaO)

u(e nt

+1f1@) - fo@)]*
RUC
= |d@)|*
and from the fact that

1 AWy oon, fasd(re'®)]
“So o 7 et F e

2r
(see [1], p. 12-p. 15), we easily obtain our lemma by (1).

A

d0=5S(, f)

DEFINITION 2. We put

IR TI t(r, f),‘ RT) t(r) f)‘
a)—-llp} ;nfrT ) and Q_llrzljoup T, 1)

PROPOSITION 2. 0<w<Q<1.

Suppose now that X(0) is not-empty and that X(0)={b,, ..., b} (1=v<n).
Put
(b, )=G, (=1, ..., v).

DEFINITION 3. We express the holomorphic curve induced by the mapping
(Gl"‘Gyf117'+l—y, ceey Gl Gyfz+l_v; W(flr ey fﬂ+l)): C -—> Cn+l
by fi.

It is easy to see that f¥ is independent of the choice of reduced represen-
tation of f as in the case of f*.
Let d, be an entire function such that the functions

Gy G f1"d, (G=1, ..., n) and W(fy, ..., fau)/d,
are entire functions without common zeros. Then we have the following
LEMMA 2.

T(r, fOZT(@, f)+m—w)C, f)+1‘; N(r, 1/G)—N(r, 1/d,)+S@, f).
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Proof. We suppose without loss of generality that by, ..., b,, e,,4, ..., €,
e, are linearly independent because b, ..., b, are linearly independent vectors
in X(0).

Now, put I/=G,---G, and [=n—y. Then, we have the inequality
I fx@II?
={[11(2)|% @) 2P+ - +|TT(2)|*] fn(2)|PTD 4+ |W(2) %}/ du(2)|?

_@|* | fyn(2) - fn+1(Z)W(z)|2}
ldy(2)[* T@f (@ - fra@)]?

@1, o s W)
=g V@@ (v e FaaT)

where W=W(f,, ..., fns1). From this inequality we easily obtain our lemme
as in the proof of Lemma 1 since

W(fl; ey fn+1)=cvW(Gl; ey Gv; fv+1, ey fn+l) (C,,:#O, conStant)-

As in the case of (b) and (c) of Theorem B, we can prove the following
properties of f}F.

{Ir@1ren+ 1 fa@ 1204

PROPOSITION 3. (a) f¥ is transcendental,
) p(fH=p().

To prove this proposition we use the relation

W(fs, ooy fard) _ f1 1 Wy ooy faud)

Gy G.ft" G G, i

=ge (7). - (52))

and the fact that for G=a,f,+ - +a.f»

Lo {rational if so are f;/f1(j=2, ..., n);

Gt 2 a
-4 A of order <p(f) if p(f;/fu<p(f) (=2, ..., n).

f1

3. Fundamental inequality

Let f=[fy, ..., faal, T(r, f), X and X(0) etc. be as in Section 1. Suppose
that X(0) is not empty and that

XO0)=1{by, ..., b}  (I=v=n).
We put

b, =G, =1, ...,).

We suppose without loss of generality that b, ..., b,, e,,,, ..., €,, €,,, are
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linearly independent as in the proof of Lemma 2.

THEOREM 1. For any a,, ..., a,€X—X(0) (1=g<),

2, @, HSM, enn, SH+S0, 1)

<T(r, H)+n—u)it@, )+ ]Z:‘,lN(r, 1/G;)—N(r, 1/W)+S@, f).
where W=W(f, ..., fus1)

Proof. We have only to prove this theorem for ¢=n-+1. Put
(a,, HH)=F, (=1, ..., 9.
For any z(+0) arbitrarily fixed, let
|F)@|=|F)@| < SI|F, @1 (=7, ..., Ji=q).

Then there is a positive constant K such that

(3) If@ISKIF, (&)  (p=n+l, ..., q),

(4) |F, ,@I=KIf@I (=1, ..,

and since the n+1-th elements of vectors a, are different from zero,
(5) [fra@l=sK{u@+I|F, @1 (=1, .., 9.

(From now on we denote by K a positive constant, which may be different
from each other when it appears in different places.) '

(i) The case when u(z)<|F,,(2)].

Since |f(2)|<K|F,(2)| in this case by (5), we have

¢ Ja,lf @l
e, feyr =%

(ii) The case when |F, (2)| <u(2).
In this case, by using (5) we have

If @I =Ku(z)

(6)

and by (3) we obtain

@l _pn w@) . 1G@) - G@lu@
M@, 1o =ETF, &1 =5 6@ - 6k, @ - Bl

Here, we put

(7)

G.=H, (=1, ..., ), F,p:H,,+p (p=1, ..., n)
and let
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|H, (@) = |H@) < - =|H,,,(2)1

Then for k=2, ..., v
u(@)<K|H,,, (2)|

and we have for W=W(f,, ..., fa.) and =G, --- G,
IU(Z)Iu(Z)"“‘”

(7) =K

[H, @) H,,.,@]
_ g I@lu@ W)
W@l TH,@ - H.,,@)
_ g H@ @™ \WH,, ., Hi, @1
W) [H,\@) -~ H,,,,@)]

since H,,, ..., H

tp+1

are linearly independent and
W(H,, ..., H. ., )=cW(f,, ..., far)  (c#0, constant).

From (6), (7) and (7’) we obtain the inequality

{é llasllll f @) <log (@) u(z)
7= I(a;, F@)| [W(2)|
+ (WH,y, ., H L)@ .
T B 8 LD B, ] T8
where X,...,,.p iS the summation taken over all combinations (7, ..., fns1)

chosen from {1, ..., q} which appear in the above argument when we vary z
in 0<|z| <o, and integrating this inequality from 0 to 2z with respect to 8,
where z=re'’, we obtain the inequality

2, @, NS, enns, FH+SE, H=(e0)

since, by applying (1) to f¥ and to the following equality

@ @™ Wl . W)
log* e =log max{F R, o —log 1)
—log - ld( S A UA@ @I, o, 1TT@ fa) 17, W)
W)
—log g
we have

(" tog LICeNUTeT ™ 4g— T, f1)—Ner, 1/ )+00)

27 Jo |W(re'®)|
=m(r, e, fH+0Q)
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by using N(», e,.,, f¥)=N(, 1/W/d,)) and we have for each (jy, ..., Jn.1)

1 SZ"I + IW(Hlly ess 3 th+1)(rei0))

57—{ 0 0g tH”(reio) e H1n+l(rei0)‘ dﬂ:S(T’y f)

as in the proof of Lemma 1 (see [1], p. 12-p. 15), and by Lemma 2
() ZT(r, f)+(n—uv)i(r, f)+)2:1‘N(7, 1/G)—N@, 1/W)+S(@, f).

THEOREM 2. Let ay, ..., a; be any vectors of X such that the number of
elements of the set X(0)N\{a,, ..., ag} is equal to p (0=p=n). Then, we have

]ém(r, a, H=(p+LTe, H+m—wir, /)—N@E, 1/W)+S@, 1),
where W=W(f1, ..., fn.)-

Proof. We easily obtain this theorem from Theorem C and Lemma 1 for
#=0. When 1<pu<n, put

X0 ia,, ..., a={a, ..., a,}

and
(an f):GJ (]:1, veey y)

Then, from Theorem 1 we have
33, me, @, DETC, H+n=itr, N+ SN, 1/G)=Ne, LW+, £).
Adding 34.,m(r, a,, f) to both sides of this inequality we have this theorem as
m(r, a,, f)+N(r, 1/G)=T(@r, H+0Q1)  (G=1, ..., ).

Remark 1. (p+1T(r, /)+n—mir, NS(n+DT(, f)+01)

since t(r, f)<T(r, f/)+0O(1), and so Theorem 2 is an improvement of Theorem A.
COROLLARY 1 (Defect relation). Under the same circumstances as in Theorem 2,
é dulay, H=p+lt(n—wQ.
In fact, from Theorem 2 we obtain the inequality

G—p=DT(, NS ZNC, @, H+n—p)tr, HH—Ner, 1W)+Se, f)

< 3Nor, @, H+n—p)tr, )+, 1)

by (2) for the first inequality and by the method used in [1], p. 14 for the
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second inequality, which reduces to our corollary as usual.

Remark 2. (i) p+l+@m—p)2<n+1 and the equality holds if and only
if p=n or 2=1.
(ii) If p(f) is finite, we can change 2 to @ in Corollary 1.

The number “p+1+(n—p)2” increases with g (0<p<n) when Q<1. If p
increases to n when ¢ tends to oo, the bound “u+14(n—p)2” of this corollary
increases to n+41 for any £2<1. There exist, however, examples of X for
which g does not increase to n even when ¢ tends to o and examples of
holomorphic curves with 2<1 and, by using the following notion introduced in
[10], we obtain a refinement of the defect relation as follows.

DEeFINITION B ([10], Definition 1). We say that

(i) X is maximal (in the sense of general position) if and only if for any
Y in general position such that XcYcC"*, X=Y.

(ii) X is y-maximal if X is maximal and #X(0)=v.

PROPOSITION 4. For any v 1<y<n), there is a v-maximal subset of C"** in
the sense of general position ([10], Theorem 1).

COROLLARY 2 (Defect relation). Let X be a v-maximal subset of C™*! in the
sense of general position. Then, we have

.,ezxa"(“’ H=v+1+n—)82.

In fact, when #{a = X: d,(a, f) >0} < o, there is nothing to prove by
Corollary 1. When #{asX: d.(a, f)>0} =co, it is countable by Corollary 1.
Let

facX: d.(a, /)>0={a, a, ...},

and without loss of generality we put
X(O)f\ {al, a,, } = {al, ceey ap} (0§p§y).
Then, by Corollary 1, for any ¢>0
gan(aj, AEp+1+n—p)R=<v+1+(n—)2
and letting ¢ tend to c we have
3 dala, /)= 3 6u(a,, HSy+1+(n—2)2
acEX =1

since v is independent of gq.
We here give some examples of f for which 2<1. Let a,(j=1, ..., n) be
real numbers satisfying 0<a,<a,< - <a,.1<an.



NON-DEGENERATE HOLOMORPHIC CURVES 199

Example 1. A holomorphic curve for which 2<1.
We consider the following holomorphic curve

=01, e*s* e®¥, ..., e®n*].
Then, for z=ret(»>0),
T 3
1 ('2— §0§ -2—71')
U= r 3
exp(ra,cos @) (0§0<—2—, —2-7:<0S27r)

and by (1) we have
T, H="2r+0().

On the other hand

it 3
1 (5=0=5n)
u(z)=
exp(ra,_.,cos @) (O<0<£ —7r<0<27r)
n-1 = 2’ 2 =

and we have
r, H="21r+0().
We have w=82=a,_,/a,, which is smaller than 1.

Example 2. A holomorphic curve for which £2=0.
We consider the following holomorphic curve

f=I[1, e%r?, ..., e*n-1%, ¢°°].
Then, by a simple calculation we have
r? 1
>
T(r, iz iz 70D

and #(r, f) is the same as that given in Example 1, so that £2=0.

4. Extension of the second fundamental theorem
Let f=[fs, ..., fnard, If@I, T(r, f) and U(z) be as in Section 1. We set
I'={a: meromorphic in |z|<oo, T(r, a)=S, f)},
where So(r, f) is any quantity satisfying
So(r, N=0(T(, f))  (r— o).
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Note that I is a field. Further we set
I''={p(la;|+|a:|+ - +lan))*: a;el'; >0, constant; m, N},

where N is the set of positive integers. Observe that

_21_52n10g+(la1(rgi0)l+ v A lanret®)))do £ 3 m(r, a,)+0(l)
z Jo 2

< % T(r, a;)+00)=Sr, f).

From now on, we use K(z) as a representative for any functions of I'* for
brevity, and so K(z) may be different from each other when it appears in dif-
ferent places. Note that

S:nlog+K(re"”)d0=So(7, .

From now on throughout the section we suppose that f is linearly non-
degenerate over I'. Let

. . holomorphic curve from C into P™(C),
So(f)—'{A—‘[al’ ey an+l] . T(r, A):SQ(T', f) }

and let X be a subset of Sy(f). We suppose that #X=n+1 and X is in general
position ; that is to say, for any n+1 elements

Ajz[alj; ) an+1;] (]-_—'1, ooy n+1)

of X, det(a,,) is not identically equal to zero (see [10], §4). This is inde-
pendent of the choice of reduced representations of A;,X. It is clear that

So(f)DP™C).
Put
XO0)={A=[ay, ..., @z, JeX! an,,=0}.

DerFINITION C ([10], Definition 2). We say that X is yp-maximal in the
sense of general position if and only if it satisfies the following conditions (i)
and (ii):

(i) X is maximal in the sense of general position; that is to say, for any
subset Y of S,(f) in general position such that XCYCS,(f), X=Y;

(ii) #XO0)=v.

Remark 3. 0Lv<n.

PROPOSITION 5. For any v (1=v=<n), there is a y-maximal subset of S(f) in
the sense of gemeral position ([10], Theorem 2).

We use the following notation in this section. For any A=[a,, ..., an,,]
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of Sy(f), we set

(A, i=a,f1+ - +aniifrn
and :
(A4, HE)=a(2)f1(2)+ - +an1(2)fnii(2)

Then we have the following (see [8], Proposition 2):

LEMMA 3. (a) a,/a;el’ if a,+0.
() (4, /)=#0.

We put for 4 of X

ae,

1 S“log [ A@re )1 f(re )l

A D=5 )0 8 I, e

N(r, A, /)=N(@, 1/(A, [))
and
e m, A, )
oA, F)——hrnlolnf~,r—-<r’ n
PROPOSITION 6. (a) m(r, 4, )+N@, A, )=T(, )+Sor, f).

No, A )
T, /)~
These are trivial by definition.

For any A=[a,, ..., a,,,] and B=[b,, ..., bs,1] of Si(f) such that a,+0,
br#0, put (4, /)=F and (B, f/)=G. Then, we have the following lemma.

(b) 0=d(A, f):l—limﬂsup

‘}?/ai
G/bg

For A=[a,, ..., a»,1] of X, let a,; be the first element not identically equal
to zero. Then, we put

LEMMA 4, T(r, <2nT (@, f)+Sor, f). ([8], Lemma 6)

A=(a/a,, ..., Gni/a;)=(gs, ..., nsr),
X={4: AeX}, XO)=1{4: AcX(0)}, |A@|=]14@)]/|a,,2)|
and for (4, f)=F
A N
a

-~ n+1
=4, )=F=3 g.f,.
7o 1=1
Then, it is clear that X is in general position; that is to say, for any n+1
elements
A~l:(gil: ooy g1n+1) (1:1, veey n+1)
of X,
det(g,,)#0
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and g;" by Lemma 3, (a).
Let f and X be those given above in this section. Then, we have the
following extension of the second fundamental theorem.

THEOREM 3. Let Ay, ..., Ay be any elements in X—X(0) (1=<g<) and let
B, ..., B, be in X(0)(0<p<n). Then, for any positive number e,

Sme, 4, HEA+ITC, H+Hn—pie, H+ ZNC, By H+S, 1.
Proof. We suppose without loss of generality that g=n-+1. Put for j=
1, ..., ¢q
A=la5 s Gunds A= s gne), (A, N)=F,
and for /=1, ..., p
Bi=[agu, ) Goinn)s  Bi=(gaurs oo, Gasinss)y By, /)=G1.

We may suppose without loss of generality that flx, ey 1},,, €uity oov s €ny €nyy

are linearly independent over I' since l~?1, v IZ,, are linearly independent over
I' and belong to X(0).
For any integer p, let V(p) be the vector space generated by

{n+1q
k=1

+
"

n+1q+p . . .
gyrr . g};‘l p(j, B)=p, p(J, k)=0 and mteger}

[
-

over C and
d(p)=dim V(p).

Then, V(p) is a subspace of V(p+1) and

(8) lirr;jnf d(p+1)/d(p)=1
by the reduction to absurdity since d(p)§((n+1)(qp+# )+p )(see [5], [61).
Let
bly veey bd(p), bd(p)+l, ey bd(p+1)

be a basis of V(p+1) such that
by, ...y baw
form a basis of V(p). Then, it is clear that the functions
bfr:t=1, ..., d(p+1); k=1, ..., n+1}
are linearly independent over C. We put for convenience

W-__W(blfb bzfn ceey bd(p+l)fn+1)-
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Note that N(r, W)=S,(, f).
_ Let z be a point of C— {0} where none of {F;}9_, has poles. We rearrange
{F;(2)}%-, as follows:

|F@I<F @< <|F, (@< <IF, @),

where 1<7,, ..., /.=q.
We have for k=n+1

(9) If@DI<K@)|F,, )
and for k=1, ..., ¢
(10) |F, @I <K@l f@)

We then have the following from (9):

¢ J4@IF@IND o AN @\
(D (I rmr) (50
a s @I Y@ 1 1@y
_(,l;l 14, )”) (_1 | F, (z)|) (k a1 |ﬁ‘ (z)|)
nf@ \ew
sK@(15, o)

We note that by Lemma 3, (a)
(12) fan@ =K F, (@ +u@}  (k=1, .., q).

since a,,,,;#0 for any 4,€X—X(0).
(I) The case when u(z)gm,l(z)l.
In this case we have from (12)

If@ISKR)IF,, @ (k=1 .., n)

and we have
(13) (ﬁ ILf @I )d(p)éK(z).

(I) The case when |F, ()| <u(2).
In this case we have from (12) for =1

If@I<K(@)uz)
and we have for /1,=|G,-- G,| and ﬁﬂzlé, 5,,!(;121), II0=170:1
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n | f@) e u(@) v em
14 L B <
(k=l 'ij(z)| (z) (H?—_fl"ﬁ;k@)l)d“’)
e G L A

(L@ F, ()
by (10). Here, we put

G.=H G=1, .., pw, F,=H,.(k=1, .., n+D)
and let

~

A&y < <IH,,,. Gl
Then, for £=2, ..., p+1

u()=K@) 4,
and we have

L @) -} ¢ (TR K () | B, (@)} 4P

(14) ¥=K(z) =
I+ H, (2)| ¢
< () Hldu@ 12w
I3 H, (2)] 2P
Now 17,1, v ﬁtnﬂ are linearly independent over /" and it is easy to see
that

A, 0.0, ..., banH.,,}

are linearly independent over C. Since ﬁjz(fi,, f) or ﬁ,:(ﬁ,, f), these func-
tions can be represented as linear combinations of

befe: 1StSd(p+1), 1Sksn+1}
with constant coefficients:
b, B, o ban o )=(0f 1 baf s o bapan fred) Dy

where D, is an (n+1)d(p+1)xX(n+1)d(p) matrix whose elements are constants.
The rank of D, is equal to (n+1)d(p). Let D, be an (n+1)d(p+1)X(n+1)
{d(p+1)—d(p)} matrix consisting of constant elements such that the (n+1)
d(p+DX(n+1)d(p+1) matrix

D=[D,D,]
is regular. Put
Ky, oo, KD=0:11, beof sy ooy bapins fra)Ds,y
where L=mn+1){d(p+1)—d(p)}, then
G, . bamH, Ky o KD=0uf1, ...y bapen fas)D,
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from which we obtain
(15) W, H,, ..., K, ..., K)=(det D)W,
where W=W(b.f, ..., bapsvyfns1). We put

WA, ..., Ky, ..., KD=W(Q, ..., Ja)

as I—.Nfll, ey ﬁtnﬂ are determined after (jy, ..., Fn.1).
We then have from (15)

(16) 1 WGy e, an)@) 1
e A,@n e IW@ldet DI s A, )]+
1 L WGy, s Taad@]

“ldetD] W @) {21 A, 2) |} 2@

{u(z)}L . lW(]b ey jn+1>(z)l
W@ 6,8, (2)-0.,,(2) - Ki(2)]

<K(2)
since |K;(z)| K@) f@I(G=1, ..., L) and |[f(2)|<K(z)u(z) in this case.
Further, by using the following inequalities for j=1, ..., L
T(r, K;/bH,)<20T(r, [)+Sdr, £),

which we can prove as in Lemma 4 since b,=I"(1<t<d(p+1)), and by Lemma
4, we have

1 (e W oy Jae)re™)]
17 5o\ logt = d9=S(,
4 Z”S" o |b,H, (re'®) - Ki(re'?)| r, 1)

as usual (see [1], p. 12-p. 15).
From (11), (13), (14), (14’) and (16), we obtain

[EVCIFLC) - [ (2t ® (@) v -nam
(4, N ~ W)

(18) d(p) 3} log

W3y oy Jre)(@)]
+log*K(z)+ X log* s R
g K@) I [6,H,,(2) - K1 (2)]

where X, ..;,.p is the summation taken over all combinations (Ji, ..., ja.1)
chosen from {1, ..., ¢} which appear in the above argument when we vary z
in 0<|z] <oo.

Integrating both sides of (18) with respect to # from 0 to 2x(z=re'?), we
obtain the inequality

. ﬁ#(re”’)‘“”’u(re”)““’i
|W(re'?)|

+So(r, /)+S(r, f)

q 1 (en
(19 dp) Zmir, A, S5 log
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by (17), where a(p)=(n+1)d(p+1)—pd(p). Here,

1 (e . ﬁ#(reiﬂ)d(p)u(reiﬂ)a(p)
@0) %Solg W(re®)|

<5 Tog (1,2 P |24 | £ @)+ W[4 1¥ret)d

1 (e .
——S log |W(re'?)| d84+0(1)
277.' 0

and as in the proof of Lemma 1 (when p=0) or Lemma 2 (when p>0)

@) TR P £ £y )4 W e )0
< {4+ D)d(p+D—nd(P} T(r, )+(n—pd(pHr, f)

+d(9) ZNG, Bi, )+Sr, N+, 1),

For any positive number ¢, let p be so large that
d(p+1)/d(p)<14e/(n+1)
by (8). Then, from (19), (20) and (21) we obtain

@ B, A, NEA+ITC, H+n—pi, N+ ZNC, By, H+SC, )

since N(r, W)=S,(r, f).

As direct consequences of this theorem we have the followings as in

Theorem 2, Corollaries 1 and 2.

COROLLARY 3 (Defect relation). Under the same assumption as in Theorem

3, we have

]é a4, NH+ 12:15(31, NEp+1+n—p2.

COROLLARY 4. Let X be a v-maximal subset of Sy(f) and ¢ be any positive

number. Then,
(1) Forany A4, .., A;in X

2 m(r, A,, HS@+1+Tr, Hl+n—v)ir, H+Se, f).
() Z04, NS+ +Hr—)2.

Remark 4. y+14+(n—v)2=<n-+1 and the equality holds if and only if 2=1

or y=n.
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