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MODULI OF RING DOMAINS OBTAINED BY A
CONFORMAL WELDING
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Abstract

We are concerned with ring domains which are conformally welded along
a pair of opposite sides of a square. Oikawa studied moduli of these ring
domains and left some problems. We shall answer one of these open problems.

1. Introduction

Welding of polygons and the type of Riemann surfaces were considered by
Nevanlinna, Oikawa and others (cf. [3], [4]). We are concerned with the rela-
tion of weldings and the moduli of Riemann surfaces. Oikawa studied this
subject and got some results which he didn’t publish (cf. [5]). We follow him.
A square in the complex plane can be conformally welded into various ring
domains by a specific kind of identification of a pair of opposite sides. We
consider the range of these moduli. Oikawa gave an estimate for the range of
these moduli and asked whether it is the best possible or not. We shall show
a certain identification which give conformally welded ring domains with arbi-
trary small moduli. In addition, we shall show that the moduli of ring domains
conformally welded by an unnatural identification never meet to a neighborhood
of the module of ring domains conformally welded by the natural identification.

Consider the square Q@={x+iy: 0<x<1, 0<y<1} in the complex plane,
and put

L.={x+iy: 0<x<1, y=1}, L_={x+iy: 0<x<1, y=0}.

Let @o(x+7)=x(0<x<1) and ¢: L,—L_ be a homeomorphism such that ¢-@3'(x)
is strictly increasing. Let G be a ring domain and C be a Jordan curve in G
joining two boundary components of G. Let f be a continuous mapping from
QUL,UL_onto G. We say the triple (G, C, f)is a conformal welding obtained
by ¢ if f is conformal in Q, fe¢=f on L,, and f(L,)=f(L.)=C. And we
call ¢ a welding function. We say a conformal welding by ¢ is unique, if, for
any two conformal weldings (G,, C,, f.)i-1,» obtained by ¢, f,°f7i' is a con-
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formal mapping from G, to G..

If a ring domain G is conformally equivalent to an annulus {z: R, <|z|<
R,}, then the quantity M(G)=log(R./R,) is called the modulus of G. The M(G)
is represented by means of extremal length. Let A(G) be the set of Borel
measurable conformal densities on G and I(G) be the set of rectifiable closed
curves in G separating the boundary components of G. For p=A(G), set

Ao, O=(( o@rdxdy, @=x+iy)

L(p, IG)= inf | o@)|dzl.
Then

_ L(p, I'(G))?
ATGCN= sup — 450
is called the extremal length of I(G) on G. We know M(G)=2xn/A(G)).
For a welding function ¢, put

My;={M(G): (G, C, f) is a conformal welding obtained by ¢@}.

If a conformal welding by ¢ is unique, then My consists of a single point. On
the other hand, if the 2-dimensional measure of C is positive, then a conformal
welding by ¢ is not unique. In fact, by using a variational formula (cf. Gar-
dinar [1]), we know that My contains an interval. Oikawa remaked that there
is a welding function ¢ which has two conformal weldings (G, C, f) and (G’,
C’, f") such that the area [C| of C is positive but the area |[C’| of C’ is
zero. So the following Oikawa’s problem is interesting for us.

Is there a welding function ¢ such that a conformal welding by ¢ is not
unique, but M, consists of a single point?

Now Oikawa [5] proved the following three theorems.

THEOREM A. My={2x} if and only if ¢=d,.

THEOREM B. Let @ be the set of welding functions ¢, then
U My=(0, 27].
$c0

For the sake of simplicity, we will often denote ¢o@5'(x) by ¢(x).

THEOREM C.
! min(¢’(x), 1)
o 1+(p(x)—x)?

Further Oikawa [5] presented the following problem.
Find a welding function ¢ satisfying

M¢C[27zg dx, 27:].
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t min(¢’(x), 1)
M¢D(2”S0H1+(¢(x)—x)2 dx, 271:).
In this paper, we shall show the following theorems, which answer this
problem.

THEOREM 1. There are a welding function ¢ and >0 such that
M;D(0, ¢).
THEOREM 2. For any @¢+#¢,, there is an m<2z such that

M, (0, m].

2. An example of a welding function which yields ring domains with
arbitrary small moduli

In this section we prove Theorem 1. Let A be an annulus. Then, for any
¢>0 we can construct a Jordan curve K in A and a quasiconformal (=q.c.)
mapping h from A onto a ring domain G, such that

(1) K joins two boundary components of A,

(2) h is conformal on A—K and M(G,)<e.

Take a closed rectilinear triangle K,=Aa,a,a; such that K,—{a,, a;}CA and
a,, G, lie on the different boundary components of A. Choose a vertex a, and
take a segment [b,, b,] on the edge [a, a,] which contains the midpoint of
[a,, as]. Delete the open triangle A,=Aa.b,b, from K, and put K,=K,—A,=

I UJK2 where Ki(j=1, 2) is the closed triangle Abja,a,,,. Next take an open
triangle A%=Abjc;ic; on Ki(j=1, 2), where ¢;, and c,, lie on the edge [a,, a,,,]
and the edge [c;, ¢;»] contains the midpoint of the edge [a,, a,,,]. Set K,=

a, a,

as as Q; bl bg as a; b| bg as
K, K, K,
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\U,=1,2(%2—A%). We repeat these processes to get a decreasing sequence of
connected compact sets {K,}. Then K=K, becomes a Jordan curve, which
is a kind of Koch curve. To attain our result, we must choose the deleted
triangles in a certain manner, which is descrived after Lemma 1.

LEMMA 1. Let A be an annulus and K, be constructed as above. For any
>0, there exists a q.c. mapping h on A which is conformal on A—K, and satis-
fies M(h(A)<e.

Proof. Set [=2""', The interior of K, consists of disjoint / open triangles
{02} mor.e...1. Take a set of closed triangles {T,}(m=1, 2, ..., [) such that each
T is contained in OF. Let K7 be the closure of OF. Then K,=\UL_ K2
Let g be a conformal mapping from (/42)-connected domain A—\UT, to an
annulus 2=82({T.}) such that 2—g(A—\UT,) consists of concentric circular

slits. The boundary components of £ are denoted by C,, C,, ..., C;,;, and the
radius of the circle on which C, lies are denoted by R,, where R, <R, < - <
R1<Rl+l-

Suppose that there exists a positive number a such that

Rl+l
Bl 23
log R, =a

for 2({T.}) made by arbitrary choosen {T,}. We can choose p so that

Ry > _ @

Y8R, ZTHL

Let 7:G=0, 1, ..., p—1, p+1, ... 1) be a set of Jordan curves such that each 7,
joins C, to C,,1, 7:((<p—1) is contained in {z: R,<|z|<R,} and 7,G=p+1) is
contained in {z: R,,1<|z|<R;,}. We can get a ring domain ﬁ:fl({Tm}, {rsh)
=g (R —\U,xpy,)- It is proved in [2] that if the spherical diameters of the
boundary components of A are larger than d and if their spherical distance is
smaller than d, then

M(ﬁ)gn”(log tan—g- —log tan %>_1 .

Hence
M(A)=M(9—l\;}prz)
tends to zero if dist(T,, T,,,) tends to zero. On the other hand,

R
log —"* =M({z: R,<|2| <R, NSMER— 7).
R, A

This is a contradiction. Hence there exists {T,} such that log(R,,,/R,) with
respect to 2({T,}) is arbitrarily small.
Next take a set of simply connected domains {B,} such that each B, con-
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tains T, each 0B, is real analytic and B,\U0B, is contained in the interior
of K. Let g, » and g, » be conformal mappings from B, and g(B,—Tn)\J
Cn to the unit disk D respectively. Then f,=g, n°g°g:r'n has a conformal
extension to a neighborhood of dD. Hence

a% log fo(e ")*z g g 28 fo(et?)#0.

Therefore 7(f)=arg f(¢‘?) is real analytic and 5’(f) satisfies 5’()=e>0. We
define a mapping F,: D—D by Fyrei®)=re*7®, where x+iy=re'’. Put F=
(log)-F,e(exp) i.e., F(x+iy)=x+in(y). Therefore

rl=lwrolshwl<

Consider
\ {g£1m°(exp)°F°(10g)°gl.m on UB,
- g on A—UB,

Then h: A—£ is a q.c. mapping which is conformal in A—K, and satisfies
m(h(A)<e. q.e.d.

We construct a Jordan curve K and a q.c. mapping h satisfying (1), (2).
By Lemma 1, there exists a q.c. mapping A, on A which is conformal on A—
K, and satisfies

M(A)

Let p,=(h,);/(h,), be the Beltrami coefficient of h,. Since

IA)S (A)P(w)zdudv
M(h(A)=2x f L
(hi(4) rPE/}(r'ln(A)) (infrer m, wn §yp(w)|dw|)?

in I540(Ri(2))*|(h1),(2) 2|1 —pu(2) | *d xd y
eedmnyan (infrer w §y0(hi(2))1(h0)2)| | dz+pm(2)dz|)*’
we can choose a conformal density p,< A(h,(A)) so that

A(pi, hi(A)) < M(A)
L(py, I'(hy(A)))* 26

In our above construction, by choosing the segment [b,, b,] sufficiently short,
we can take a compact set K, so that

=2n

2z

[ o B 1Ll ] dxdy < 5] b hu 11—l Pdxd.

Again, by Lemma 1, there exists a q.c. mapping h, on A which is conformal
on A—K, and satisfies
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M(A)
AN
Let po=((hs);/(h;),) be the Beltrami coefficient of h,, We can take a conformal
density p,= A(hy(A)) such that
o A(ps, he(A)) M(A)
L{py, Tho( ) ~ " 28 -

Now suppose that for n=3, {Ki}isn-1, {hi}isa-1, {ttt}isn-1, {01} 1sn-1 satisfy the
following :

M(hy(A)<

<

Wi, g, ot i)l sy xdy

1
= 75&!’!-1(’11-;)”(hL-J)zl2] l—p-;|%dxdy,

for 1<;<10-1,

M(4) _ (h)s

M) Alpi, hi(A) _ M(A)
= BT <

L(pi, I'(h(A))* ~ 2072 7

Then we can take a compact set K, such that

M(h(A)< 2n

e onmshass|has)) sy *dxd

1
= —27SSAPn-f(hn-j)2!(hn-,),l 2| 1—pn-;1%dxdy,

for 1<j<n—1. By Lemma 1, we can get h,, g, and p, such that

MA (b, Alpw ha(A) _ M(A)

MOV o™ = 2% Lo, Ty < 205

Thus we can get a Jordan curve K=K, which satisfies

[, codmith.timitdxdy< (] pdh i hl*11—pldxdy

for every 7. This K joins two boundary components of A and has positive
2-dimensional measure.
Let f=f, be a q.c. mapping on C such that

fs { Un on K

=7 V0 on Cok.
Let
ha)(f71
ﬁ"(w)zpn(hn°f_x(w))t(f—zfq—l(%)—)_ .

We have
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_ . $Tap(f@)| f(2)1*(0—|v(2)|®)dxdy
MpAy=2r ol Gnfrer o) F4@)] [dzto@)dz )

o AJapaf@PIf )"0~ |u@)|*)dxdy
— (infrerw§rp(f@) f(2)| | dz+v(2)dZ])?

— o 3540a(ha(@)1(ha), (D) "L~ |u(2) |)d xdy
(infrer w §r0n(ha(@) | (ha):(2) | | dz+u(2)dZ|)*

On one hand,

SSApn(hn(z))ﬂ (h)(2)1 21— v(@)|Ddxdy
:SSA-(K,,-K,P"”M(Z»?' (Ba)i@) "L~ | ga(2) | Dd xdy
] o o () xdy
=({ pa(ha@*1 k@) 1~ | )19y
] @ @1 o P xdy
<[ oa(ha@) 1 ()21 | @) Dy
+{{ prtha@)1(hu@) 11— | ra(2) 9wy

=25§A!’n<hn<z»2l (ha)(@) A= | a(2)|Hd xdy .

On the other hand,

grpn(hn(z))l(hn)z(z)l | dz+(2)dZ|

<, L@ (ha)i(2)| | dz+ pa(2)d2]

ST/\(C'(Kn—

+Srr\(,{n_K)p"(hn(z))l(hn)z(z)| l dZ]

v

Srn(c-(xn_K))pn(hn(z))l(hn)z(z)l [dz-hun(z)dg]
1
+ -E—grn(Kn—K)‘o"(hn(z))I(hn)z(z)l |d2+;1n(2)d§|
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2 5 | 2a(ha(@) | (h0) 142+ a2
Therefore
20 Tapa(ha(@) 1 () M~ | pa(D)|Ddxdy
M 2m e (/25,0 hn@) (B | d2F n(@) BT
L Alpw ha(A) . M(A)
=1 Lo, Tlha(A)F <20

which shows (2).

Proof of Theorem 1. Let f, be a q.c. mapping on A which satisfies

By using the variational formula [1], we know

(M7 Ay ; osts1y o M2 M.

Let g; be a conformal mapping from A—K to a rectangle Q, whose hori-
zontal sides correspond to K, g, be a q.c. mapping from Q to @, which preserve
the vertical and horizontal sides. There exists a q.c. mapping g; on A into C
such that gsegs'eg, is conformal on Q. Let k=esssup|(gs):/(gs).|<1. Set g=
g5og3'° g4, 85(A)=G, gs(K)=C. Since g has a continuous, injective extension
g to the boundary, we can define ¢=g"'-g: L . —L_. Then (G, C, §) becomes
a conformal welding obtained from @ by ¢. It follows that for sufficiently
large n,

A+BMA)  (1—k)M(A)
M¢3[—(’1—k>2n C AR ]

Hence M, contains (0, (1—2)M(A)/1+k)].

Remark. Let a welding function ¢ satisfy Theorem 1. Then by Theorem
C, we have

tmin(¢’(x), 1) ,
S0E1+(¢(x)—x)2 dx=0.
Hence ¢’(x) vanishes almost everywhere on (0, 1). Contrary, we don’t know

whether the vanishing of ¢’ a.e. on (0, 1) implies that M,D(0, ¢).

3. Upper bound of the moduli for a welding function

In this section we prove Theorem 2. Suppose that there exists a welding
function ¢ such that the closure of M, contains 2z. There exist conformal
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weldings (G., C,, f,) such that »,=M(G,) increases monotonously to 2z. Here
we may assume G,={z: 1<|z|<e™}. Let G={z: 1<|z|<e®™}, f=e?"z and C
be an open interval (1, ¢*"). Then (G, C, f) is the conformal welding by the
welding function ¢o(x+7)=x. Each f, and f have continuous extensions to
the boundary of @ by Carathéodory’s theorem, which are denoted by the same
symbols. Set

1 1
wn—z—t—loglfnl, w—gloglfl-

Since each f, is univalent and uniformly bounded, we can take a subsequence

f {f.} which converges to a conformal mapping f, uniformly on each compact
set in Q. We may assume that f, converges to f, uniformly on each compact
set in Q. We can show the following.

LEMMA 2. f,=e'*“f, where a is a real constant.

Proof. Set L,={x+ia: 0<x<1}, where 0<a<l. We have

2ns| !dlogfol—g :;:1 dx.
Hence
ws([ {7 ) sl f =l
Furthermore,
o 0 ] st
] 8 908t ms

It follows that for almost all a in (0, 1)
2n=( ldlogf,

and fo(L,) lies on a line through 0. Since

ngo(Q)_cli%%;j_ :SSG%’

Fo(L,)=fL_) lies on a line through 0 with an argument @ and
fo@)={z: 1<]z| <e*"} — {z: argz=a, 1<|z| <e*}.

Let g, denote the inverse mapping f3*' from fo(L,) to L, and g, from fo(L.)
to L_. Set ¢,=g,ogs". Since M(f(Q))=2r, Theorem A implies ¢,=¢,. Thus
foef7! is a conformal mapping on G. Hence f,=e**f. q.e.d.
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LEMMA 3. The Dirichlet norm [[dw,|q=+§Sedw,Adw, converges to [[dwll,.

Proof. Set L ={iy: 0<y<1} and L*={l+4iy: 0<y<1}. Each conformal
mapping f, on @ has a conformal extension to a neighborhood of L*, L-,
We denote the extension by the same symbol. For any positive number ¢ there
exists a rectangle Q.= {x+7y: 0<x<1, 0<b.<y<h,<1} such that

Area (fo(Q))—Area(fo(Q:)=¢.

Since {f.} converges to f, uniformly on Q., there exists an integer N such
that for all n=N

Area(fo(Q.)—Area(f.(Q))=¢.
Then

Area(f,(Q—Q.)=Area(f.(Q))—Area(f(Q.)
<Area(fo(@)—Area(f(Q.))
<Area(fo(Q)—Area(fo(Qo)+ex2e.

Since w,=rz'log|f.|, dw,=rz*R(df./f»). We have

1
ldwal§=ldwalg, +ldwnls-. =N dwnld,+ 5 14 fnllé-q.

=dw, g+~ Area (/2@ Q)] dw, o, +2¢.

Therefore
ldwlid=lim|ldw, | <Iim(lldw.,|,+2¢)

=|dwl|3,+2e<||dwn§+2¢. q.e.d.

Proof of Theorem 2. By the parallelogram law
ldwa—dwal§=2(dwa 1§+ dwnll§)— | dwn+dwnl
=2{ldwa g+ ldwnlé—ldw|§ —> 0.

Hence {dw,} is a Cauchy sequence and converges to a differential dws. Since
{wn} converges to w uniformly on every compact set in Q, dws=dw.

Let g be a conformal mapping from the unit disk D to Q. Then g has a
continuous extension to the boundary of D by Carathéodory’s theorem, which
is denoted by the same symbol. Set

Wn:wn°g_wn°g(0)) W:w°g—‘W°g(0).

Then {dW,} converges to dW with respect to Dirichlet norm on D. Since
W,—W 1is harmonic on D, we can write it as
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WamW= 3 (au(m)z*+Tmz").
We see that {W,} converges to W on @D in L,-norm, because
IWa=Wiko=4z 3 |as(m)|*<dx 33 klasm)|*=]dW,—dW]3.

Now for every n, W,eg te¢p=W,og' on L,. The left hand side converges to
Weg te¢ and the right hand side converges to Weog~! almost everywhere on
L,. Hence ¢=¢, if the closure of M, contains 2z. This shows Theorem 2.
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