THE SPECTRAL GEOMETRY OF HARMONIC MAPS INTO $H P^{n}(c)$

XiaoLi Chao

§0. Introduction

The spectral geometry of the Laplace-Beltrami operator has developed greatly during the last twenty years. Recently, H. Urakawa use Gilkey's results about the asymptotic expansion of the trace of the heat kernel of a certain differential operator of a vector bundle to research the spectral geometry of harmonic maps into S^{n} and $C P^{n}$. In this paper, inspired by these, we firstly determine a spectral invariant of the Jacobi operator of harmonic maps into $H P^{n}$ (corollary 3). Using this we obtain some geometric results distinguishing typical harmonic maps, i.e., isometric minimal immersions and Riemannian submersions with minimal fibres.

§1. The spectral invariants of the Jacobi operator

Let (M, g) be a m-dimentional compact Riemmanian manifold without boundary and (N, h) an n-dimentional Riemannian manifold. A smooth map $\phi:(M, g) \rightarrow(N, h)$ is said to be harmonic if it is a critical point of the energy $E(\phi)$ defined by

$$
\begin{align*}
E(\phi) & =\int_{M} e(\phi) v g \tag{1}\\
e(\phi) & =\frac{1}{2} \sum_{i=1}^{m} h\left(\phi_{*} e_{i}, \phi_{*} e_{i}\right) \tag{2}
\end{align*}
$$

where ϕ_{*} is the differential of ϕ. Namely, for every vector field V along ϕ

$$
\left.\frac{d}{d t}\right|_{t=0} E\left(\phi_{t}\right)=0
$$

Here $\phi_{\mathrm{t}}: M \rightarrow N$ is a one parameter family of smooth maps with $\phi_{0}=\phi$ and

[^0]$$
\left.\frac{d}{d t}\right|_{t=0} \phi_{t}(x)=V_{x} \in T_{\phi(x)} N
$$
for every point $x \in M$.
The second variation formula of the energy $E(\phi)$ for a harmonic map ϕ is given by
\[

$$
\begin{equation*}
\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} E\left(\phi_{t}\right)=\int_{M} h\left(V, J_{\phi} V\right) v_{g} \tag{3}
\end{equation*}
$$

\]

Here J_{ϕ} is a differential operator (called the Jacobi operator) acting on the space $\Gamma(E)$ of sections of the induced bundle $E=\phi^{-1} T N$. The operator J_{ϕ} is of the form

$$
\begin{equation*}
J_{\phi} V=\tilde{\nabla} * \tilde{\nabla} V-\sum_{i=0}^{m} R_{h}\left(\phi_{*} e_{i}, V\right) \phi_{*} e_{i}, V \in \Gamma(E) \tag{4}
\end{equation*}
$$

Here $\tilde{\nabla}$ is the connection of E which is defined by

$$
\tilde{\nabla} V=\nabla_{\phi_{*} X}^{h} V
$$

for $V \in \Gamma(E), X \in T M$, and the Levi-Civita connection ∇^{h} of $(N, h) . R_{h}$ is the curvature tensor of (N, h) whose sign is the same as $R \tilde{\nabla}$. Note that $\tilde{\nabla}$ is compatible with the metric h. Define the endomorphism L for our E by

$$
\begin{equation*}
L(V)=\sum_{i=0}^{m} R_{h}\left(\phi_{*} e_{i}, V\right) \phi_{*} e_{i}, \quad V \in \Gamma(E) \tag{5}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\operatorname{Tr}(L)=\operatorname{Tr}_{g}\left(\phi^{*} \rho_{h}\right) \tag{6}
\end{equation*}
$$

We denote also the spectrum of the Jacobi operator J_{ϕ} of the harmonic map ϕ by

$$
\begin{equation*}
\operatorname{Spec}\left(J_{\phi}\right)=\left\{\lambda_{1} \leq \lambda_{2} \leq \cdots \lambda_{t} \leq \cdots \uparrow \infty\right\} \tag{7}
\end{equation*}
$$

Then the $\operatorname{trace} Z(t)=\exp \left(-t \lambda_{i}\right)$ of the heat kernel for the Jacobi operator J_{ϕ} has the asymptotic expansion

$$
Z(t) \sim(4 \pi t)^{-m / 2}\left\{a_{0}\left(J_{\phi}\right)+a_{1}\left(J_{\phi}\right) t+a_{2}\left(J_{\phi}\right) t^{2}+\cdots\right\} .
$$

Moreover we have
Theorem 1 ([U]). For a harmonic map $\phi:\left(M^{n}, g\right) \rightarrow\left(N^{n}, h\right)$,

$$
\begin{align*}
& a_{o}\left(j_{\phi}\right)=n \operatorname{Vol}(M) \\
& a_{1}\left(j_{\phi}\right)=\frac{n}{6} \int_{M} \tau_{g} v_{g}+\int_{M} \operatorname{Tr}_{\mathrm{g}}\left(\phi^{*} \rho_{h}\right) v_{g} \tag{8}\\
& a_{2}\left(j_{\phi}\right)=\frac{n}{360} \int_{M}\left(5 \tau_{g}^{2}-2\left\|\rho_{g}\right\|^{2}+2\left\|R_{g}\right\|^{2}\right) v_{g}
\end{align*}
$$

$$
+\frac{1}{360} \int_{M}\left(-30\left\|\phi^{*} R_{h}\right\|^{2}+60 \tau_{g} \operatorname{Tr}_{g}\left(\phi^{*} \rho_{h}\right)+180\|L\|^{2}\right) v_{g}
$$

where, for $X, Y \in T_{x} M,\left(\phi^{*} R_{h}\right)_{X, Y}$ is the endomorphism of $T_{\phi(x)} N$ given by (ϕ^{*} $\left.R_{h}\right)_{X, Y}=R_{h \phi . X, \phi . Y}$.

From now on, we assume that the target manifold is quaternionic space form $Q(c)$ with quaternionic sectional curvature c. The Riemannian curvature tensor R of $Q(c)$ is of the form

$$
\begin{align*}
R(X, Y) Z & =-\frac{c}{4}\{h(Y, Z) X-h(X, Z) Y \tag{9}\\
& \left.+\sum_{t=1}^{3}\left[\left(Z, J_{t} Y\right) J_{t} X-\left(Z, J_{t} X\right) J_{t} Y+2\left(X, J_{t} Y\right) J_{t} Z\right]\right\}
\end{align*}
$$

where $\left\{J_{1}, J_{2}, J_{3}\right\}$ is a canonical local basis of quaternionic Kähler structure of $Q(c)$. Then for a harmonic map $\phi:\left(M^{n}, g\right) \rightarrow Q(c)$, we obtain

$$
\begin{equation*}
\operatorname{Tr}(L)=2(n+2) c e(\phi) \tag{10}
\end{equation*}
$$

since $\rho_{h}=(n+2) c h$. Moreover let $\left\{e_{1}^{\prime}, \ldots, e_{n}^{\prime}, J_{1} e_{1}^{\prime}, \ldots, J_{1} e_{n}^{\prime}, J_{2} e_{1}^{\prime}, \ldots, J_{2} e_{n}^{\prime}\right.$, $\left.J_{3} e_{1}^{\prime}, \ldots, J_{3} e_{n}^{\prime}\right\}$ be a local orthonormal field on $Q^{n}(c)$. Then since

$$
\begin{aligned}
& \left\|R^{\tilde{\nabla}}\right\|^{2}=\sum_{i, j=1}^{m} \sum_{k=1}^{n}\left\{\left\|R_{h \phi_{*} e_{i}, \phi_{*} e_{l}}\left(e_{k}^{\prime}\right)\right\|^{2}+\left\|R_{h \phi_{*}, e_{*}, e_{1}}\left(J_{1} e_{k}^{\prime}\right)\right\|^{2}\right. \\
& \left.+\left\|R_{h \phi_{*} e_{i}, \phi_{*} e_{1}}\left(J_{2} e_{k}^{\prime}\right)\right\|^{2}+\left\|R_{h \phi_{*} e_{i}, \phi_{*},}\left(J_{3} e_{k}^{\prime}\right)\right\|^{2}\right\} \\
& \operatorname{Tr}\left(L^{2}\right)=\sum_{i, j=1}^{m} \sum_{k=1}^{n}\left\{h\left(R_{h \phi_{*} e_{i}, e_{k}^{\prime}}\left(\phi_{*} e_{i}\right), R_{h \phi_{*} e_{j}, e_{k}^{\prime}}\left(\phi_{*} e_{j}\right)\right)\right. \\
& \left.+\sum_{t=1}^{3} h\left(R_{h \phi_{*} e_{i}, J J_{k}^{\prime}}\left(\phi_{*} e_{i}\right), R_{h \phi_{*} e_{j}, J e_{k}^{e_{k}}}\left(\phi_{*} e_{j}\right)\right)\right\}
\end{aligned}
$$

by a straightforward computation we obtain

$$
\begin{align*}
& \left\|R^{\tilde{\nabla}}\right\|^{2}=\frac{c^{2}}{2}\left(4 e(\phi)^{2}-\left\|\phi^{*} h\right\|^{2}+(2 n+1) \sum_{t}\left\|\phi^{*} \Phi_{t}\right\|^{2}\right) \tag{11}\\
& \operatorname{Tr}\left(L^{2}\right)=\frac{c^{2}}{4}\left(4(n+4) e(\phi)^{2}+7\left\|\phi^{*} h\right\|^{2}+3 \sum_{t}\left\|\phi^{*} \Phi_{t}\right\|^{2}\right)
\end{align*}
$$

where $\Phi_{t}(X, Y)=h\left(X, J_{t} Y\right)$, for vector field X, Y on $Q(c)$. Hence we have
Theorem 2. Let ϕ be a harmonic map of a compact Riemannian manifold (M, g) into a quaternionic space form $Q(c)$. Then the coefficients $a_{0}\left(J_{\phi}\right), a_{1}\left(J_{\phi}\right)$ and $a_{2}\left(J_{\phi}\right)$ of the asymptotic expansion for the Jacobi operator J_{ϕ} are

$$
\begin{align*}
& a_{0}\left(J_{\phi}\right)=4 n \operatorname{vol}(M) \\
& a_{1}\left(J_{\phi}\right)=\frac{2 n}{3} \int_{M} \tau_{g} v_{g}+2(n+2) c e(\phi) \tag{12}\\
& a_{2}\left(J_{\phi}\right)=\frac{n}{90} \int_{M}\left(5 \tau_{g}^{2}-2\left\|\rho_{g}\right\|^{2}+2\left\|R_{g}\right\|^{2}\right) v_{g} \\
& +\frac{1}{12} \int_{M}\left\{2(3 n+11) c^{2} e(\phi)^{2}+11\left\|\phi^{*} h\right\|^{2}-(n-4) \sum_{t}\left\|\phi^{*} \Phi_{t}\right\|^{2}\right\} v_{g} \\
& +\frac{1}{3}(n+2) c \int_{M} r_{g} e(\phi) v_{g} .
\end{align*}
$$

Corollary 3. Let ϕ, ϕ^{\prime} be two harmonic maps of a compact Riemannian manifold (M, g) with constant scalar curvature into $Q(c)(c \neq 0)$. Assume that

$$
\operatorname{Spec}\left(J_{\phi}\right)=\operatorname{Spec}\left(J_{\phi^{\prime}}\right)
$$

Then we have

$$
E(\phi)=E\left(\phi^{\prime}\right)
$$

and

$$
\begin{align*}
& \int_{M}\left\{2(3 n+11) c^{2} e(\phi)^{2}+11\left\|\phi^{*} h\right\|^{2}-(n-4) \sum_{t}\left\|\phi^{*} \Phi_{t}\right\|^{2}\right\} v_{g} \tag{13}\\
= & \int_{M}\left\{2(3 n+11) c^{2} e(\phi)^{2}+11\left\|\phi^{*} h\right\|^{2}-(n-4) \sum_{t}\left\|\phi^{*} \Phi_{t}\right\|^{2}\right\} v_{g}
\end{align*}
$$

For analogous results for the Jacobi operator associated with minimal submanifolds or Riemannian foliations see [D] [H] and [NTV].

§2. Isometric minimal immersions into $H P^{n}(c)$

Let M be a submanifold of $H P^{n}(c)$
(1) M is called quaternionic if $J T_{p} M \subset T_{p} M$ for all $J \in \mathscr{T}_{p}, p \in M$.
(2) M is called totally real if $J T_{p} M \perp T_{p} M$ for all $J \in \mathcal{T}_{p}, p \in M$.
(3) M is called totally complex if there exists a one-dimensional subspace V of \mathscr{T}_{p} such that $J T_{p} M \subset T_{p} M$ for all $J \in V$ and $J T_{p} M \perp T_{p} M$ for all $J \in V^{\perp} \subset \mathscr{T}_{p}$, $p \in M$.
Where \mathscr{T} is a quaternionic Kähler structure of $H P^{n}(c)$, i.e., a rank 3 vector subbundle of $\operatorname{End}\left(T H P^{n}(c)\right)$ with the following properties:
(1) For each $p \in Q(c)$ there exists an open neighborhood $U(p)$ of p and sections J_{1}, J_{2}, J_{3} of \mathscr{T} over $H P^{n}(c)$ such that for all $i \in\{1,2,3\}$:
(i) $J_{\imath}^{2}=-i d,\left\langle J_{i} X, Y\right\rangle=-\left\langle X, J_{i} Y\right\rangle \forall X, Y \in T U(p)$
(ii) $J_{i} J_{\iota+1}=J_{i+2}=-J_{\iota+1} J_{i}(i \bmod 3)$
(2) \mathscr{T} is a parallel subbundle of $\operatorname{End}\left(T H P^{n}(c)\right)$.

Theorem 4. Let ϕ, ϕ^{\prime} be isometric minimal immersion of a compact Riemmannian manifold (M, g) into quaternionic projective space $\left(H P^{n}(c), h\right)$. Assume that $\operatorname{Spec}\left(J_{\phi}\right)=\operatorname{Spec}\left(J_{\phi^{\prime}}\right)$. If ϕ is totally real (resp. quaternionic), then so is ϕ^{\prime}.

Proof. Since ϕ and ϕ^{\prime} are isometric immersions, we have.

$$
\begin{gathered}
e(\phi)=e\left(\phi^{\prime}\right)=\operatorname{dim}(M) / 2 \\
\left\|\phi^{*} h\right\|^{2}=\left\|\phi^{\prime *} h\right\|^{2}=\operatorname{dim}(M)
\end{gathered}
$$

Then, by Corollary 3 , the condition $\operatorname{Spec}\left(J_{\phi}\right)=\operatorname{Spec}\left(J_{\phi^{\prime}}\right)$ yields

$$
\int_{M} \sum_{t}\left\|\phi^{*} \Phi_{t}\right\|^{2} v_{g}=\int_{M} \sum_{t}\left\|\phi^{*} \Phi_{t}\right\|^{2} v_{g}
$$

(i) If ϕ is totally real, i.e. $\left\|\phi^{*} \Phi_{t}\right\|^{2}=0,(t=1,2,3)$, then we have

$$
\left\|\phi^{\prime *} \Phi_{t}\right\|^{2}=0, \forall t
$$

On the other hand, from the definition of Φ_{t}, we get

$$
\begin{aligned}
& \begin{aligned}
0=\left\|\phi^{\prime *} \Phi_{t}\right\|^{2} & =\sum_{t, j=1}^{m} h\left(\phi_{*}^{\prime} e_{j}, J_{t} \phi_{*}^{\prime} e_{j}\right)^{2} \\
& =\sum_{j=1}^{m} h\left(P J_{t} \phi_{*}^{\prime} e_{j}, J_{t} \phi_{*}^{\prime} e_{j}\right) \\
& =\sum_{j=1}^{m} h\left(P J_{t} \phi_{*}^{\prime} e_{j}, P J_{t} \phi_{*}^{\prime} e_{j}\right), \forall t
\end{aligned} \\
& \Leftrightarrow P J_{t} \phi_{*}^{\prime} e_{j}=\dot{0}, j=1, \ldots, m, \forall t \\
& \Leftrightarrow h\left(\phi_{*}^{\prime} X, J_{t} \phi_{*}^{\prime} Y\right), \text { for all } X, Y \in T M, \forall t \\
& \Leftrightarrow \phi^{\prime} \text { is totally real }
\end{aligned}
$$

where $\left\{e_{i}, i=1 \ldots, m\right\}$ is an orthonormal basis of $T_{x} M, x \in M, \operatorname{dim}(M)=m$. P is the orthogonal projection of $T_{\phi^{\prime}(x)} N$ onto $\phi_{*}^{\prime} T_{x} M$ with respect to h.
(ii) If ϕ is quaternionic, then

$$
J_{t} \phi_{*} T M \subset \phi_{*} T M, \forall t
$$

Hence

$$
\int_{M} \sum_{t}\left\|\phi^{*} \Phi_{t}\right\|^{2} v_{g}=\int_{M} \sum_{t}\left\|\phi^{*} \Phi_{t}\right\|^{2} v_{g}=3 m \operatorname{vol}(M)
$$

On the other hand, since

$$
\begin{aligned}
0 & \leq\left\|\phi^{\prime *} \Phi_{t}\right\|^{2}=\sum_{t, j+1}^{m} h\left(P J_{t} \phi_{*}^{\prime} e_{j}, P J_{t} \phi_{*}^{\prime} e_{j}\right) \\
& \leq \sum_{t, j+1}^{m} h\left(J_{t} \phi_{*}^{\prime} e_{J}, J_{t} \phi_{*}^{\prime} e_{j}\right)=m, \forall t
\end{aligned}
$$

we get, for each t

$$
\begin{aligned}
& \left\|\phi^{\prime *} \Phi_{t}\right\|^{2}=m \\
\Leftrightarrow & P J_{t} \phi_{*}^{\prime} e_{j}=J_{t} \phi^{\prime} e_{j}, j=1, \ldots, m \\
\Leftrightarrow & J_{t} \phi_{*}^{\prime} e_{j} \subset \phi^{*} T_{x} M, \forall x \in M .
\end{aligned}
$$

Then ϕ^{\prime} is also quaternionic.

3. Spectral characterization of harmonic Riemannian submersions

In this section, we study spectral characterization of harmonic Riemannian submersions among the set of all harmonic morphisms.

A smooth map $\phi: M \rightarrow N$ is a harmonic morphisms if for every harmonic function r on open subset U in $N, v \circ \phi$ is a harmonic function on $\phi^{-1}(U)$ provided that $\phi^{-1}(U) \neq \phi$.

Lemma 5 ([F] or [I]) (i). If $\operatorname{dim}(M)<\operatorname{dim}(N)$, every harmonic morphism is constant.
(ii) If $\operatorname{dim}(M)>\operatorname{dim}(N)$, a smooth map $\phi:(M, g) \rightarrow(N, h)$ is a harmonic morphism if and only if ϕ is horizontal weakly conformal and harmonic.

Here a smooth $\phi:(M, g) \rightarrow(N, h)$ is horizontal weakly conformal if (i) the differential $\phi_{* x}: T_{x} M \rightarrow T_{\phi(x)} N$ is surjective at the point x with $e(\phi)(x) \neq 0$, and (ii) there exists a smooth function λ on M such that if $e(\phi)(x) \neq 0$, the pull back $\phi^{*} h$ satisfies

$$
\phi^{*} h(X, Y)=\lambda^{2}(x) g(X, Y), X, Y \in H_{x}
$$

where H_{x} is the orthogonal complement of the kernel of the differential $\phi_{* x}$ with respect to $g_{x}, x \in M$. It is known that the set $\{x \in M: e(\phi)(x) \neq 0\}$ is open and dense in M and the function λ^{2} is given by

$$
\lambda^{2}=2 e(\phi) \operatorname{dim}(N)^{-1}
$$

and $\left\|\phi^{*} h\right\|^{2}=\operatorname{dim}(N) \lambda^{4}$. A smooth map $\phi:(M, g) \rightarrow(N, h)$ is a Riemannian submersion if it is horizontal weakly conformal with $\lambda=1$, i.e., $e(\phi)=\operatorname{dim}(N) / 2$, everywhere M.

Now we have
Theorem 6. Let (M, g) be a compact Riemannian manifold whose scalar curvature is constant. ϕ, ϕ^{\prime} be harmonic morphisms of (M, g) into $\left(H P^{n}, h\right)$ with $\operatorname{Spec}\left(J_{\phi}\right)=\operatorname{Spec}\left(J_{\phi^{\prime}}\right)$. If ϕ is Riemannian submersion, then so is ϕ^{\prime}.

Proof. At each point $x \in M$ with $e(\phi)(x) \neq 0$, we can define a linear transformation \tilde{J}_{t} of H_{x} into itself such that $J_{t} \circ \phi_{*}=\phi_{*} \circ \tilde{J}_{t}$ and $\tilde{J}_{t}^{2}=-I, t=1,2$, 3 , where $\left\{J_{1}, J_{2}, J_{3}\right\}$ is a canonical basis of quaternionic Kähler structure of $H P^{n}$. Then

$$
\begin{aligned}
g\left(\tilde{J}_{t} X, \tilde{J}_{t} Y\right) & =g(X, Y) \\
g\left(\tilde{J}_{X} X, Y\right) & =0, X, Y \in H_{x}, \forall t \\
\tilde{J}_{t} \circ \tilde{J}_{t+1} & =\tilde{J}_{t+1} \circ \tilde{J}_{t}=\tilde{J}_{t+2},(t \bmod \quad 3)
\end{aligned}
$$

So we can choose $\left\{e_{i}, \tilde{J}_{1} e_{i}, \tilde{J}_{2} e_{i}, \tilde{J}_{3} e_{i}, i=1, \ldots, n\right\}$ as an orthonormal basis of (H_{x}, g_{x}). Then we have

$$
\begin{aligned}
\left\|\phi^{*} \Phi_{1}\right\|^{2}= & \sum_{i, j}\left\{\phi^{*} \Phi_{1}\left(e_{i}, e_{j}\right)^{2}+2 \phi^{*} \Phi_{1}\left(e_{i}, \tilde{J}_{1} e_{j}\right)^{2}+\phi^{*} \Phi_{1}\left(\tilde{J}_{1} e_{i}, \tilde{J}_{1} e_{j}\right)^{2}\right. \\
& +2 \phi^{*} \Phi_{1}\left(\tilde{e}_{i}, \tilde{J}_{2} e_{j}\right)^{2}+2 \phi^{*} \Phi_{1}\left(\tilde{J}_{1} e_{i}, \tilde{J}_{2} e_{j}\right)^{2}+\phi^{*} \Phi_{1}\left(\tilde{J}_{2} e_{i}, \tilde{J}_{2} e_{j}\right)^{2} \\
& +2 \phi^{*} \Phi_{1}\left(\tilde{e}_{i}, \tilde{J}_{3} e_{j}\right)^{2}+2 \phi^{*} \Phi_{1}\left(\tilde{J}_{1} e_{i}, \tilde{J}_{3} e_{j}\right)^{2}+2 \phi^{*} \Phi_{1}\left(\tilde{J}_{2} e_{i}, \tilde{J}_{2} e_{j}\right)^{2} \\
& \left.+\phi^{*} \Phi_{1}\left(\tilde{J}_{3} e_{i}, \tilde{J}_{3} e_{j}\right)^{2}\right\} \\
= & \sum_{i, j}\left\{h\left(\phi_{*} e_{i}, \phi_{*} \tilde{J}_{1} e_{j}\right)^{2}+2 h\left(\phi_{*} e_{i}, \phi_{*} e_{j}\right)^{2}+h\left(\phi_{*} \tilde{J}_{1} e_{i}, \phi_{*} e_{j}\right)^{2}\right. \\
& +2 h\left(\phi_{*} e_{i}, \phi_{*} \tilde{J}_{3} e_{j}\right)^{2}+2 h\left(\phi_{*} \tilde{J}_{1} e_{i}, \phi_{*} \tilde{J}_{3} e_{j}\right)^{2}+h\left(\phi_{*} \tilde{J}_{2} e_{i}, \phi_{*} \tilde{J}_{3} e_{j}\right)^{2} \\
& +2 h\left(\phi_{*} e_{i}, \phi_{*} \tilde{J}_{2} e_{j}\right)^{2}+2 h\left(\phi_{*} \tilde{J}_{1} e_{i}, \phi_{*} \tilde{J}_{2} e_{j}\right)^{2}+2 h\left(\phi_{*} \tilde{J}_{2} e_{i}, \phi_{*} \tilde{J}_{2} e_{j}\right)^{2} \\
& \left.+h\left(\phi_{*} \tilde{J}_{3} e_{i}, \phi_{*} \tilde{J}_{2} e_{j}\right)^{2}\right\} \\
= & \left\|\phi^{*} h\right\|^{2} .
\end{aligned}
$$

Similarly, we have $\left\|\phi^{*} \Phi_{2}\right\|^{2}=\left\|\phi^{*} h\right\|^{2},\left\|\phi^{*} \Phi_{3}\right\|^{2}=\left\|\phi^{*} h\right\|^{2}$. Since $\operatorname{Spec}\left(J_{\phi}\right)=$ $\operatorname{Spec}\left(J_{\phi^{\prime}}\right)$ and ϕ is a Riemannian submersion, then, by Corollary 3, we have

$$
\begin{gathered}
E\left(\phi^{\prime}\right)=E(\phi) \\
\int_{M}\left\{2(3 n+11) c^{2} e\left(\phi^{\prime}\right)^{2}+11\left\|\phi^{\prime *} h\right\|^{2}-(n-4) \sum_{t}\left\|\phi^{\prime *} \Phi_{t}^{\prime}\right\|^{2}\right\} v_{g} \\
=\int_{M}\left\{2(3 n+11) c^{2} e(\phi)^{2}+11\left\|\phi^{*} h\right\|^{2}-(n-4) \sum_{t}\left\|\phi^{*} \Phi_{t}\right\|^{2}\right\} v_{g} \\
e(\phi)=2 n,\left\|\phi^{*} h\right\|^{2}=4 n \\
e\left(\phi^{\prime}\right)=2 n \lambda^{2},\left\|\phi^{\prime *} h\right\|^{2}=4 n \lambda^{4} .
\end{gathered}
$$

From these, we get

$$
\begin{aligned}
& \int_{M} \lambda^{2}=\int_{M} v_{g} \\
& \int_{M} \lambda^{4}=\int_{M} v_{g} .
\end{aligned}
$$

Therefore we get $\lambda=1$ everywhere M by the Cauchy-Schwarz inequality.

References

[B] I. Berndt, Real hypersurfaces in quaternionic space forms, J. Reine Angew. Math., 419 (1991), 9-26.
[BGM] M. Berger, P. Ganduchon and E. Mazet, Le Spectre d'une Variété Riemannienne, Lecture Notes in Math., 194, 1971.
[D] H. Donelly, Spectral invariants of the second variation operator, Illinois J. Math., 21 (1977), 185-189.
[F] B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble), 28 (1978), 107-144.
[G] P. Gilkey, The spectral geometry of a Riemannian manifolds. J. Differential Geom, 10 (1975), 601-618.
[H] T. Hasegawa, Spectral geometry of closed minimal submanifolds in a space form, real or complex, Kodai Math. J., 3 (1980), 224-252.
[I] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19 (1979), 215-229.
[NTV] S. Nishikawa, P. Tondeur and L. Vanhecke, Spectral geometry for Riemannian foliations, Ann. Global Anal. Geom., 10 (1992), 291-304.
[U] H. Urakawa. Spectral geometry of the second variation operator of harmonic maps, Illinois J. Math, 33 (1989), 250-267.

Department of Mathematics
Hangzhou University
Hangzhou, 310028, China
My current address:
Department of Mathematics and Mechanics
Southeast University
Nanjing, 210oi8, China

[^0]: 1980 Mathematics Subject Classification (1985 Revision). 53C42, 58E20.
 Key words and phrases. spectral, harmonic map, $H P^{n}$.
 Received May 15, 1996; revised September 19, 1996.

