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1. Introduction

Let M and N be compact connected Riemannian manifolds. We say M is
isospectral to N if the associated Laplace Beltrami operator have the same
eigenvalue spectrum. Does the spectrum of M determine the Riemannian
structure of the manifold? Milnor [5] gave first counter example for the problem,
16-dimensional tori which are isospectral but not isometric. Many examples have
appeared in the past decade. For recent references, refer to [2].

In [3] and [4], we gave many examples of isospectral non-isometric spherical
space forms, lens spaces in [3] and spherical space forms with non-cyclic funda-
mental groups of type I in [4]. There are another space forms of Riemannian
symmetric spaces. Let GqfH(R) be the real Grassmann manifold consisting of all
^-dimensional linear subspaces of Rn. Note that the dimension of Gq>n(R) is
q(n — q). In this paper we consider space forms Γ\Gq>n(R) for constructing
isospectral non-isometric examples. The space forms of real Grassmann manifolds
are classified by Wolf in [7]. There are only a few even dimensional space forms
Γ\Gq>n{R), so in this paper we consider odd dimensional space forms
Γ\Gqy2d(R) where q is odd. The classification states that there is a one to one
correspondence of odd dimensional spherical space forms P\S2d~1 and odd
dimensional space forms of real Grassmann manifolds Γ\Gqf2d(R), ΓCθ(2d)
(there are more space forms of real Grassmann manifolds when q — d). The
correspondence is given by Γ\S2d~1 -> Γ\Gq>2d(R)

We raised the following question;
For isospectral spherical space forms Γi\S 2 r f ~\ Γ2\S2d~1 given in [3] or

[4], corresponding space forms A X G ^ W * Γ2\Gq>2d(R) ore isospectral?

The main result in this paper is that the above question is yes in cases Γl9 Γ2

are non-cyclic fundamental groups of type I given in [4].

THEOREM 5. Let A \ ^ , 2 ^ ( ^ ) and Γ2\Gqt2d(R) be odd dimensional space
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forms of real Grassmann manifolds with non-cyclic fundamental groups of type I
and i"i, Γ2CO (2d). Suppose Γλ and Γ2 are irreducible and I\ is isomorphic to
Γ2. Then Γ^G^dW « isospectral to Γ2\Gqt2d(R).

2. Isospectral manifolds

In [6] Sunada gave a method of a general construction for isospectral
manifolds. In this section we give a variation of Sunada's Theorem for constructing
isospectral space forms of real Grassmann manifolds.

Let M be a compact Riemannian manifold and Δ the Laplacian acting on
the space of smooth functions on M. We denote Eλ(M) the eigenspace with
eigenvalue λ of Δ. Let I(M) be the isometry group of M. Let G be a finite
subgroup of /(M). We say G is fixed point free if for each g{Φidentity) EG, g
acts fixed point freely on M. For a fixed point free finite group G, we have a
smooth compact Riemannian manifold G\M with induced metric from M. Let
Gi and G2 be finite subgroups in /(M). We say Gt is almost conjugate to G2 if
there is a bijection φ of Gi onto G2 satisfying that φ(g) is conjugate to g in I(M)
for each gE:Gχ.

THEOREM 1. Lei Gi and G2 be finite fixed point free subgroups of I(M).
Suppose Gx is almost conjugate to G2. Then G{\M is isospectral to G2\M.

Proof We consider Eλ(M) as a representation space of /(M).

π: I(G) -> Aut(Eλ(M))

We denote E\{M){i= 1, 2) the subspace of Eλ(M) consisting of functions fixed
by the G, . Then the eigenspace Eλ{Gχ\M) (resp. £' λ (G 2 \M)) can be naturally
identified with E\{M) (resp. Έ%(M)). Then

dim E«M) = 7^7 Σ T r a c e d ) ) (i = l, 2).

l G U
Let φ be an almost conjugate map of Gt onto G2. Since g is conjugate to φ(g),
we have

Trace (π(g)) = Trace (;r(

Thus

dim £l(M) = dim E2

λ(M),

which means

dim JEλ(Gi\M) = dim £ λ ( G 2 \ M ) .
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3. Spherical space form with non-cyclic fundamental groups of type I

In this section, we review spherical space forms with non-cyclic fundamental
groups of type I according to [7] and describe the pairs of almost conjugate non-
cyclic groups of type I obtained in [4].

DEFINITION 1. A finite subgroup G of the orthogonal group O(n) is said to
be fixed point free if for any g G G(g Φ ln)g has not 1 for eigenvalue. A finite
fixed point orthogonal representation of a finite group is fixed point free if it is
faithful and its image is a fixed point subgroup of the orthogonal group. A finite
group K is said to be fixed point free if K has a finite fixed point free orthogonal
representation.

The following proposition is a fundamental property for the classification
program of spherical space forms.

PROPOSITION l(See [7]). Let K be a finite fixed point free group. Let πx

and κ2 be fixed point free representations of degree Id. Then the spherical space
forms πi(lΓ)\S 2 ί ί - 1 is isometric to π2(K)\S2d~1 if and only if πt is equivalent
to π2 modulo automorphisms of K.

A finite fixed point free group G is said to be of type I if all the Sylow
subgroups of G are cyclic. A finite fixed point free group of type I is not so
special becourse of the following.

PROPOSITION 2 (See [7]). The fundamental group of every (4k + ΐ)-dimensional
spherical space form is of type I.

For any integer m, Km denotes the multiplicative group of residue classes
modulo m of integers prime to m. The order of Km is denoted by φ(m), so
called Euler function. For two integers a and b, we denote by (a, b) the greatest
common divisor of a and b.

We describe finite fixed point free groups of type I. Let m, n, d, n' and r be
positive integers satisfying

(1)

((r - I K m) = 1,
rn = 1 (mod m),
d is the order of the residue class of r in Kn

n = rid,
ri is divisible by any prime divisor of d.

For such integers m, n, d, ri and r, we have the finite group Γd(m, n, r) of
order N = mn generated by two elements A and B with defining relations

(2) Am = Bn = 1 and BAB'1 = Ar.
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Remark. The following four conditions are equivalent for the Γd(m, n, r)
(i) Γd(my n, r) is cyclic, (ii) A = l, (iii) r^l (mod m), and (iv) d=l. π

We define automoφhisms of Γd(m, n, r). Whenever s, t and u are integers
with (s, m) = 1 = (ί, rc) and ί = 1 (mod d), we put

(3) % , ^ ( ^ ) = ^ * and ψMu(B) = B' Au.

Then we can see easily ψstu defines an automorphism of Γd(m, n, r).

PROPOSIΉON 3 (see [7]). Let K=Γd(m, n, r), and let R(θ) denote the
rotation matrix on the plane;

(4) R(θ) =
cos 2πθ sin 2π&

- sin 2πθ cos 2πθ/'

Given integers k, I with (k, m) = \ = (/, ή), let πkJ be the representation of
degree 2d of K defined by

(5)

and

(6)

R(k/m) 0
0 R(krlm)

0

0
0

πk,ι{B) =

0

0

0 ... 0
/ 0
• . o

••• 0 0

where each matrix is a block matrix consisting of 2 x 2-matricesf I is the unit
2 X 2-matrices and all other components are zero. Then the πkj is irreducible
and a real representation of K is fixed point free if and only if it is equivalent to
a sum of these representations πkj. πkj is equivalent to πk>iV if and only if there
exist numbers e = ±1 and c = 0, 1, . . . , d — 1 such that k' = kr° (mod m) and
V = el (mod n') . πk / <> ψs t u is equivalent to πsk tί where ψs t u is the automorphism
ofK.

Remark. Any irreducible fixed point free representation of Γd(m, n, r) has
the same degree 2d. •

The following two Lemmas are obtained in [4]. Their proofs are necessary
for constructing explicit examples of isospectral non-isometric space forms of
real Grassmann manifolds. So we give their proofs.

LEMMA 1 (See [4]). Let K = Γd{m, n, r) be a finite fixed point free group of
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type I with n' — d. Then the number of isometry classes in (2d — ί)-dimensional
spherical space forms with the same fundamental groups K is at least 2 if and only
ifd=5ord>6.

Proof Let πkyi and πk>tV be fixed point free representations of K. Then πkj
is equivalent to πk'tV modulo automorphisms if and only if there exists an integer
t with {t, ή) = 1, t i 1 (mod d) and €= ±t€' (mod n'). Since n1 = d, the number
of isometry classes in (Id - l)-dimensional spherical space forms with the funda-
mental groups K is φ(d)!2. Let d=peι pe2 . . . pek be the prime decomposition of
d. It is well known that

φ(d) = (p*1 - p ^ W 2 - P62-1) . . . (Pek - Pek-\

From this formula, it is easy to see that φ(d)/2 > 2 if and only if d = 5 or d > 6.
D

Remark. The proof of Lemma 2.5 in [4] is incorrect.

LEMMA 2 (See [4]). For fixed d>2, there are infinitely many finite fixed
point free groups Γd(m, n, r) of type I with n' = d.

Proof It is well known that there are infinitely many prime numbers of the
form kd+1. Let m = W + l b e a prime number. Then Km is a cyclic group of
order kd. So there exists an integer r whose order in Km is d. Put n = d2, then
we have a finite fixed point free group of type I, Γd(m, n, r) = Γd(m, d2, r).π

THEOREM 2. Let G, Gf be finite fixed point free non-cyclic groups of type I
in O(2d). Suppose G, G' are irreducible and that G is isomorphic to Gr. Then G
is almost conjugate to G\

Proof By Proposition 3, G, Gf are isomorphic to a finite fixed point free
group Γd(m, n, r). We may assume G = ̂ ^(K) and G' = Jtιiχ(K), where πltl

and πli€ are fixed point free representations of K as in Proposition 3. We define
the map φ of G into G' by

Then φ is clearly one to one onto map. Then by the proof of Theorem 1 in [7],
for each g E. G the characteristic polynomial of g is identical to the characteristic
polynomial of φ{g)\

(7) det(zl2 d - g) = dct(zl2d - Φ(g))

This means that g is conjugate to φ(g) in O(2d). α

Combining Lemma 1, Lemma 2 and Theorem 2, there are many pairs of
almost conjugate but not conjugate non-cyclic groups of type I.
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4. Odd dimensional space forms of real Grassmann manifolds which are
isospectral but not isometric

The classification of space forms of real Grassmann manifolds is obtained in
[7]. Let n and q be integers with n > 4, 0 < q < n. Then Gqfft(R) denotes the real
Grassmann manifold over R of all g-dimentional linear subspaces of Rn. The
orthogonal group O{ή) acts naturally on Gqjn{R). Furthermore we always have
an isometry β:

(8) β : Gq>n(R) -> Gn-q,n(R) by β(P) = P x .

In particular, β E I(Gdf2d(R)). There are only a few space forms of real Grassmann
manifolds in even dimension, so we consider odd dimensional space forms
Γ\Gq,n(R) Since the dimension of Γ\Gq>n(R) is q(n - q), we denote an odd
dimensional real Grassmann manifold by Gq>2d{R) where q is odd.

THEOREM 3 (See [7]). The isometry group I{Gq>2d(R)) of odd dimensional
real Grassmann manifold Gqf2d(R) is

β

THEOREM 4 (See [7]). Let M be an odd dimensional real Grassmann manifold.
Then the isometry classes of manifolds Γ\M, ΓG O(2d), are in one to one
correspondence with the isometry classes of (2d — l)-dimensional spherical space
forms. The correspondence is given by Γ\M'-* Γ\S2d~1.

By Theorem 3 and Theorem 4, if q Φ d then the isometry classes of odd
dimensional space forms Γ\Gq,2d(R) are in one to one correspondence with the
isometry classes of spherical space forms ΓXS2^"1. If q = d, there are another
space forms Γ\Gqy2d(R) with Γnot containing in O(2d). For details, see [7]. In
this paper, we consider only Γ\Gq}2d(R) with ΓC O(2d).

Combining Theorem 1, Theorem 2 and Theorem 4, we have

THEOREM 5. Let Γ{\Gqt2d(R) and Γ2\Gqf2d(R) be odd dimensional space
forms of real Grassmann manifolds with non-cyclic fundamental groups of type I
and Γh Γ2 C O(2d). Suppose Γt and Γ2 are irreducible and Γx is isomorphic to
Γ2. Then Γ1\Gqad(R) is isospectral to Γ2\Gqad(R).

THEOREM 6. Let Γ{\Gqj2d(R) and Γ2\Gqf2d(R) be odd dimensional space
forms of real Grassmann manifolds with non-cyclic fundamental groups of type I
and Γl9 Γ2Cθ(2d). Suppose J\ is isomorphic to Γ2 and d is odd prime. Then
Γ{\GqM{R) is isospectral to Γ2\Gq,2d(R).

Proof If d is odd, then 2d - 1 = 1 (mod 4). Combining Proposition 2 with
Theorem 4, Γl9 Γ2 are of type I. Moreover if d is odd prime and J\, Γ2 are not
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cyclic, then Γi, Γ2 are irreducible by Proposition 3. Hence by Theorem 5, we
have Γ2\Gqf2d(R) is isospectral to Γ2\Gqy2d(R). D

Combining Theorem 5 with Lemma 1 and Lemma 2, we have

THEOREM 7. Let d = 5 or d>6 and let q be an odd number with l<q<d.
For fixed such integers d and q, there are infinitely many pairs of space forms

)> Γ2\Ggf2d(R) which are isospectral but not isometric.

5. Examples

Using proofs of Lemma 1 and Lemma 2, We can easily construct explicit
examples of pairs of space forms of real Grassmann manifolds which are isospectral
but not isometric. Here we give two examples.

(1) d = 5 and q = 3, 5.
Put ϋC = Γ5(ll, 25, 3), Γχ = π1Λ (K) and Γ2 = πly2(K).
Then rt\Gqtlo(R) is isospectral to Γ2\GqΛ0(R) (q = 3, 5).

(2) d = l and # = 3, 5, 7.
Put K = Γ7(29, 49,"4), Γt = JΓ l f l(ί0, Γ2 = πia(K) and Γ3 = jr l ϊ 3 (£).
Then the three space forms of real Grassmann manifolds Γ1\G^ ji4(/?), Γ 2 \
GqM{R) and Γ3\GqM(R) (q = 3, 5, 7) are mutually isospectral but not isometric
to each other.
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