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TOTALLY GEODESIC SUBMANIFOLDS OF RIEMANNIAN

MANIFOLDS AND CURVATURE-INVARIANT SUBSPACES

KAZUMI TSUKADA

1. Introduction

An isometric immersion φ: S —» M of a Riemannian manifold S into another
Riemannian manifold M is called totally geodesic if the geodesies in S are carried
into geodesies in M. We call such a pair (S, φ) a totally geodesic submanifold
of M. Nevertheless, identifying S and the image φ(S), we often call the subset
φ(S) in M a totally geodesic submanifold. Local problems are generally discussed
in such a way. Among submanifolds of a Riemannian manifold, totally geodesic
ones are fundamental.

Totally geodesic submanifolds of Riemannian symmetric spaces have been
well investigated and it has been shown that they have beautiful and fruitful
properties. In particular, due to the (M+, M_)-theory by B. Y. Chen and T.
Nagano ([3]) this subject has made great progress. The author has a wish to
understand well totally geodesic submanifolds of "general" Riemannian manifolds
and obtained a few results in this paper.

We are concerned with three problems in this paper.

PROBLEM 1. For a given subspace V in a tangent space TPM, find good (or
practical) criteria to conclude that there is a totally geodesic submanifold through
p whose tangent space at p is V.

For this problem, we recall a theorem of E. Cartan is section 2 (Theorem
2.1 in this paper), which becomes a remarkable criterion if M is a Riemannian
symmetric space. That is, there is a totally geodesic submanifold whose tangent
space is V if and only if V is a curvature-invariant subspace with respect to the
Riemannian curvature tensor R, i.e.,

(1.1) R(x, y)z(ΞV for any x, y, z^V.

Is there such a criterion as above for a wider class of Riemannian manifolds?
For example, for homogeneous Riemannian manifolds does there exist a finite
number d such that a condition similar to (1.1) for R, VR, ••-, VdR implies the
existence of totally geodesic submanifolds ? In this paper we will show this for
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naturally reductive homogeneous spaces (Theorem 2.3). And in section 7, with
the same sense as the above question, we make "experiments" classifying totally
geodesic surfaces in 3-dimensional Lie groups with left invariant Riemannian
metrics (Theorem 7.2 and its observations).

In section 3, to understand totally geodesic submanifolds in another point
of view, we introduce a distribution © on the Grassman bundle over a Rie-
mannian manifold, which is an extension of the notion of geodesic spray on
the unit sphere bundle. We show the relation between totally geodesic sub-
manifolds and integral manifolds of © (Theorem 3.1). Applying this relation,
we consider the global existence problem of totally geodesic submanifolds
(Theorem 3.5 and Theorem 3.6). These results are reformulations of a theorem
of H. Reckziegel ([11]) and a theorem of R. Hermann ([7]).

It is a natural idea that "general" Riemannian manifolds will not have any
r-dimensional totally geodesic submanifolds for 2<r^n — 1. In fact, M. Spivak
states in his book ([12], p. 39) as follows: "It seems rather clear that if one
takes a Riemannian manifold (N, < ,» "at random", then it will not have any
totally geodesic submanifolds of dimension >1. But I must admit that I don't
know of any specific example of such a manifold". This yields our second
problem.

PROBLEM 2. Show that "general" Riemannian manifolds do not have any
r-dimensional totally geodesic submanifolds for 2^r^n—l. Give specific examples
of Riemannian manifolds which do not have any totally geodesic submanifolds.

Our results related to this problem are Theorem 5.4, examples after Prop-
osition 6.6, and an observation of Theorem 7.2.

The following algebraic problem is motivated by Theorem 2.1 and it will
play an important role in investigating totally geodesic submanifolds of Rie-
mannian manifolds.

PROBLEM 3. Given a curvature tensor R on Rn, classify curvature-invariant
subspaces with respect to R.

In sections 4 and 5, we study curvature-invariant subspaces. Let Gr(R
n) be

the Grassmann manifold of r-dimensional subspaces in Rn. How are r-dimen-
sional curvature-invariant subspaces characterized in Gr(R

n) ? Some answers to
this question are given as Theorem 4.1, Theorem 4.4, and Corollary 4.5. In the
case of hyperplanes, such characterizations are stated as Proposition 4.6, Prop-
osition 4.7, and Theorem 4.8. Theorem 4.8 is a variation of so-called axioms
of planes. That is, the existence of many curvature-invariant subspaces implies
that its curvature tensor is of constant sectional curvature. As an application
of Theorem 4.8, a slight generation of Theorem 1 in B. Y. Chen ([2]) is obtained
as Corollary 4.9. In section 5, we will classify curvature-invariant subspaces
with respect to curvature tensors of special form (Propositions 5.1, 5.2 and 5.3).
Applying these results, we construct examples of curvature tensors which don't
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have any r-dimensional curvature-invariant subspaces of 3<Ξ>^n— 1 (Theorem
5.4). Comparing with Corollary 4.2, we see that it is different from 2-dimen-
sional case

In sections 6 and 7, we will classify totally geodesic submanifolds of specific
and simple Riemannian manifolds. It also has the meaning of testing adequacy
of our problems and our results. In section 6, we classify totally geodesic
submanifolds of hypersurfaces in Rn+ί defined by the equations: a1(x1)2jτaz(xz)2

+ - + an+l(xn+1)2=l (α,=£θ ί=l, 2, -, n+1) or (xy+(x*γ+ ... +(*n+1)8=l
(Theorem 6.5 and Theorem 6.7). In section 7, Totally geodesic surfaces of
3-dimensional Lie groups with left invariant Riemannian metrics are classified
(Theorem 7.2).

2. Preliminaries — A theorem of E. Cartan on the existence of totally
geodesic submanifolds of Riemannian manifolds

In this section, we shall recall a theorem of E. Cartan on the existence of
totally geodesic submanifolds of Riemannian manifolds and state related results.

Let M be an w(^3)-dimensional Riemannian manifold. We introduce some
notation. For a vector u in the tangent space TPM at p<^M, we denote by γu

the geodesic through p whose tangent vector at p is u and denote by Ru(t) the
(1, 3)-tensor on TPM obtained by the parallel translation of the curvature tensor
at γu(t) along the geodesic γu. We define a (1, 2)-tensor ru(f) on TPM by
rw(0(*, y)=Ru(t)(u, x)y, x, y^TpM. Now we can give an answer to Problem
1 in section 1. The following theorem is fundamental in our study, which is
due to E. Cartan (cf. R. Hermann ([7])).

THEOREM 2.1. Let V be a subspace of TPM. Then the following three
conditions are equivalent.

(1) There is a totally geodesic submanifold of M through p whose tangent
space at p ^s V .

(2) There is a positive number ε such that for any unit vector u^V and
any ίe(— ε, ε), the following holds:

(2.1) Ru(t)(x, y}ztΞV for any x, y, ze=V.

(3) There is a positive number ε such that for any unit vector u^V and
any ίe(— ε, ε), the following holds:

(2.2) ru(t)(x, y)^V for any x, y^V.

Remark. The third condition in Theorem 2.1 is evidently weaker than the
second one. The formulation of the third condition is due to K. To jo ([13]).

The following is immediately seen.
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COROLLARY 2.2. Let M be a real analytic Riemannian manifold and V be
a subspace of TPM. Suppose that for 0^z<oo, the following holds:

(2.3) (7'/?)(w, -, u u, x, y)^V for u, x, y<ΞV,

where ΨR denotes the i-th covariant derivative of R. Then there is a totally
geodesic submanifold of M through p whose tangent space at p is V .

In view of Corollary 2.2, we have the following question : Does there exist
a finite number d such that the condition (2.3) for Q<i<ίd implies the existence
of a totally geodesic submanifold? We shall show that there exists such
number for naturally reductive homogeneous spaces. Let M—K/H be a naturally
reductive homogeneous space with an Ad(//>invariant decomposition f— ϊj+m
and with the Ad(#)-invariant inner product < , > on m such that

(2.4) <[*, ;y]m, z>+<y, O, z]m>=0 for x, y, z^m

(cf. S. Kobayashi and K. Nomizu [8] Chapter X). As usual, we identify m
with the tangent space T0M at the origin o (—the coset H) of M. We denote
by τ(A) the diffeomorphism of M induced by h^K. We put A: m X m - ^ m by
Λ(x}y=l/2\_x, y"]m for x, y em. Then (2.4) means that Λ(x) is a skew-symmetric
linear endomorphism of (m, <,». Therefore eA(X) is a linear isometry of
(ro, < > »• Since the Riemannian connection is a natural torsion-free connection
on K/H, the following properties hold ([8], Ch. X) :

( i ) For each x<=m, the curve γx(t)=τ(exptx)(o) is a geodesic with ^(0)— o,

rί(θ)=*.
( ii ) The parallel translation along γx is given as follows

(iii) The (1, 3)-tensor Rx(t) on m obtained by the parallel translation of the
curvature tensor along γx is given as follows :

In the above, R0 denotes the curvature tensor at the origin o and etΛ(x}- denotes
the action of etΛ(x} on the space Sft(m) of curvature tensors on m. The formulas
(ii) and (iii) are explicitly proved in K. To jo ([13]). For each went, we denote
by 3ft tt the smallest subspace of 8ft(m) which satisfies #0e3ftM and Λ(w) 3ftwC3fttt.
We define d(u) by d(u)~άim ϊdu. Trivially we have d(u)<ίάim

THEOREM 2.3. Let M=K/H be a naturally reductive homogeneous space and
V be a subspace of m (— T0M). Suppose that for each unit vector u<=V, the
following holds:

(2.5) (V'FMX " , w ; u, x, y)<ΞV for Q^i^d(u\ and x,
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Then there is a totally geodesic submanifold of M through o whose tangent space
at o is V.

Proof. At first, we recall the fundamental fact on the curve in the
ra-dimensional Euclidean space Rm. Let c:I-*Rm be a curve defined on an
open interval I of R into Rm. We say that c has constant osculating rank r if
for all ίe/, its higher order derivatives c'(t\ •••, c(r)(ί) are linearly independent
and c'(t\ ••., c(Γ+1)00 are linearly dependent in Rm. It is a fundamental fact
that if c has constant osculating rank r, there exist smooth functions a ί f •••, aτ:
I-*R such that

• + 0r(ί)c(r)(0) for all ίe/.

We return to a naturally reductive homogeneous space M. For a unit vector
Ru(t)=etΛ(u>'R0 is a curve in Sfl(m). Since e^<M) is a 1-parameter subgroup

of the group of linear isometries of Sft(m), the curve #«(£) has constant osculating
rank r. Therefore we have

We note that Rΰ>(0)(x, y)z=(γiR)(u, •••, u; x, y, z). Hence from the condition
(V*R)(u, "., u; u, x, y)^V for O^z^r and x, y^V, it follows that ru(t)(x, y)^V
for x, y^V and all t. On the other hand, since R(

u^(Q)=Λ(u)l'R0, %iu coincides
with the subspace of Sfl(m) spanned by R0, Λ(u) R0, •••, Λ(ry(u)'R0. In particular,
we have r—ά(u)—\. or d(w). D

3. An extension of geodesic spray and the existence of
totally geodesic submanifolds

Let M be an n-dimensional Riemannian manifold and P be the bundle of
orthonormal frames over M with structure group 0(n). We fix an integer r,
l^r<n—1 and denote by Gr(Rn)=O(n)/O(r)xO(n—r) the Grassmann manifold
of r-dimensional subspaces of Rn. Let GΓ(M) be the set of all r-dimensional
subspaces of the tangent spaces at all points of M, i.e.,

Gr(M) ={(/>; V)\pe.M, V is an r-dimensional subspace of TPM}.

Then it is the associated fibre bundle with P with standard fibre Gr(Rn) which
is expressed by Px0(n)Gr(Rn) or by P/O(r}xO(n-r}. The bundle Gr(M) is
called the Grassmann bundle over M and sometimes simply denote by E in this
section. We use the following symbols for associated projections:

πE: E—>M,

μ:P—>£.



400 KAZUMI TSUKADA

Here the projection μ is explicitly described as μ(u)=(π(u); {u(βι\ •••, u(er)}R}
for weP, where {elf •••, en} is the natural basis of Rn and {u(d\ •••, u(er)}R

denotes the subspace of Tπ(w)M spanned by orthonormal vectors w(#ι), •••, u(er).
Let α> and θ be the Riemannian connection form and the canonical form

on P, respectively; ω is an o(n)-valued 1-form and θ is an /^-valued 1-form.
With respect to the natural basis βi, •••, en of -β71, we write 0=232=10*0*. We
define a distribution φ of dimension r on P as follows: For each weP, we set

Φw is characterized as the subspace of TUP which satisfies ®MC^ΓU and
= {M(«I), •••, u(er)}R, where Mu denotes the horizontal subspace of TUP with
respect to the Riemannian connection ω. We denote by Ra the right action on
P by αeθ(n). We remark that for αeO(r)Xθ(n— r), /?α*Φu=Φuα and hence
A**uΦtt=μ*uαΦιια. For each σ— (£ V)<=E= Gr(Aί), we choose weP such that
μ(u)=σ and set Sk=μ*,ιΦu By the preceding remark it follows that ©σ is
independent of the choice of wePsuch that μ(u)—a and hence it is well-defined.
Moreover we have πE^0—π^u={u(el)) ••-, u(er)}R— V. Thus a distribution ©
of dimension r on the Grassmann bundle Gr(M) has been defined. We consider
the case of r=l. Let ί/M be the unit tangent bundle over M and G be the
geodesic spray defined on UM. We denote by p the bundle homomorphism of
UM onto Gι(M) which is naturally defined. Then we have <£>pζχ) = {p*Gx}ιι for
all x^UM. So we can view the distribution © on Gr(M) as an extended
notion of geodesic spray.

We shall show that integral manifolds of the distribution © on Gr(M) are
in one to one correspondence with r-dimensional totally geodesic submanifolds
of M. It is an analogous property to that of geodesic spray.

THEOREM 3.1. Let f : S— *M be a totally geodesic imbedding of an r-dimen-
sional connected Riemannian manifold S into M and g be the mapping of S into
the Grassmann bundle Gr(M) defined by g(p)=(f(p) f*TpS) at p<=ΞS. Then the
image g(S) is an integral manifold of the distribution ©.

Conversely let S be an integral manifold of © on Gr(M). The restriction
of the projection πE : Gr(M ) —>• M to S is a totally geodesic immersion of S into M.

Proof. We will review the theory of submanifolds for the proof of Theorem
3.1. For this we follow [8] Chapter VΠ and describe submanifolds using the
notion of frame bundles.

Let / : 5 — > M be an imbedding of an r-dimensional connected manifold 5
into M. We identify 5 with the image f(S) by / if there is no danger of
confusion; for any point p of 5 we shall denote /(/>)eM by the same letter
p. Then the tangent space TPS is a subspace of TPM. Let P\S and E\S be
the principal fibre bundle and its associated fibre bundle over S induced by /
from the orthonormal frame bundle over P and the Grassmann bundle E—Gr(M)
over M, respectively. P|5 and E\S are given by
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P\S={u<=P\

We denote by the same letter j the injective homomorphism of P\ S into P and
that of E\S into E. Associated with the imbedding /, the mapping g: S-+E
=Gr(M) is defined by g(p)=(f(p) /*TPS) (=(/> TPS) under the preceding
identification). Clearly we have πE°g=f and we can view g as a cross section
of S into £|S. A frame u<=P\S at £eS is said to be adapted if {u(d\ •••,
w(er)} is a basis of TPS and hence {u(er+l\ •••, w(βΛ)} is a basis of the normal
space TpS. The set <? of adapted frames forms a principal fibre bundle over
S with structure group O(r)Xθ(n—r). Q is the subbundle of P\S. It corre-
sponds to the cross section g of E\S ([8] Chapter I Proposition 5.6). That is,
the following holds: Q—{u^P\S \ μ(u)=g(π(u))}, where π and μ denote the
projections of P\S^S and that of P\S->E\S, respectively. We denote by i
the injective homomorphism of Q into P\S. Then we have the following
diagrams :

E

Let ω'—j^ω be the connection on P\S which is the restriction of the
Riemannian connection ω on P. We note that the connection ω' on P|S is
reducible to a connection on the subbundle Q if and only if S is a totally
geodesic submanifold of M (cf. [8] Chapter Vfl Proposition 3.5 or Proposition
8.2). Let M' be the horizontal distribution on P\S defined by ωf. A distribution
SD' of dimension r on E\S is defined as follows. For each σ<^E\S we choose
u<=P\S such that μ(u}—σ and set ©ί=^JΓί. Now we recall that Q is the
subbundle of P\S corresponding to the cross section g: S~^E\S. It is known
that the connection ω' on P\ S is reducible to a connection on Q if and only if
at any point p&S, g*TpS=<$)'gip) holds ([8] Chapter Π Proposition 7.4). We
see that j*&'u=&u for each u&Q. In fact, we have ω(j*JC'u)=ω'(JC'u)=Q and

f*π*Mu=f*Tπ<u>S={u(eι), •••, w(er)}Λ. Also we see that /*®i(l» =
for each ^>e5. In fact, choosing u<=Qc\π~l(p], we have μ(u)=g(p) and
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Now we shall prove Theorem 3.1. Let f:S-*M be a totally geodesic
imbedding. Then the connection ωf on P\S is reducible to a connection on the
subbundle Q. From this it follows that for each point p&S, g*TpS=Si<p)
holds. Since /*©i(p)=®*(p>, the image g(S) is an integral manifold of the
distribution ©.

Conversely let S be an integral manifold of the distribution ©. We denote
by / the restriction of πE to S. Since for each σ<=Gr(M), πE* restricted to
the subspace ©„ is injective, / is an immersion. For each σ—(p F)eScGr(M),
we have f(σ)=πE(σ)=p and /#(T1

p5)=π^ll!(©er)=V. Therefore the mapping
g : S -*• Gr(M) associated with / is exactly an inclusion mapping. We proceed
backward and see that / is totally geodesic. D

Now we shall study the global existence problem of totally geodesic sub-
manifolds. Our results stated here have been already obtained by H. Reckziegel
([11]) and R. Hermann ([7]). We will state them by another way, applying
the preceding theorem.

We need to consider integral manifolds of a distribution which is not
necessarily involutive. Even in this case, we can show the existence of maximal
integral manifolds, exactly following the proof in the case of an involutive
distribution (performed in C. Chevalley [4] Chapter ffl § Vffi). Let TV be a
manifold and © be a distribution of dimension r on N. We don't assume that
© is involutive. We state the following preparatory lemma which is essentially
a consequence of 2.1 Affinity lemma in P. Dombrowski ([5]).

LEMMA 3.2. Let S be an integral manifold of ©. For each point
there exists a neighborhood U of p in N which satisfies the following property.
If I is an open interval of R containing 0 and γ : I — > N is a C°° -curve in N such
that γ(0)=p, γ(I)dU, and p'(0^®r(t> for any t<=I, then γ(I) is contained in S
and γ is a C^-mapping of I into S.

By this lemma, we obtain the following proposition, which corresponds to
Chapter IΠ § VΠ Proposition 1 in [4].

PROPOSITION 3.3. Let S and S' be two integral manifolds of © containing
a point p in common. Then there exists an integral manifold containing p such
that it is an open submanifold of both S and S'.

After preparing this proposition, we can proceed by the same way as the
case of an mvolutive distribution. Let J be the subset of N defined by

<3—{p<=N I there exists an integral manifold of © containing p} .

We shall define a topology on J. Let O be the family of those subsets of J
which may be represented as unions of collections of integral manifolds of ©.
O satisfies the axioms of the family of open sets and hence provides a topology
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on S. Since for an arbitrary open subset U in N we have UΓ\<3^O, 3 equipped
with this topology is a Hausdorff space. Let S be a connected component of
S. Then 5 can canonically be equipped with the structure of an r-dimensional
manifold and further it is an integral manifold of ©. Thus we have the
following.

THEOREM 3.4. Let © be a distribution of dimension r on N which is not
necessarily involutive and <3 be the set of points of N which are contained in
integral manifolds of ©. Then for each p^J, there exists a maximal integral
manifold containing p, i.e., an integral manifold which is not a subset of any
larger integral manifold. Any integral manifold containing p is an open sub-
manifold of this maximal integral manifold.

Applying Theorem 3.4, we shall show the existence of maximal totally
geodesic submanifolds. H. Reckziegel in [11] proved the existence of maximally
expanded isometric immersions with parallel second fundamental form. Our
assertion is evidently a consequence of his result. In this paper we construct
maximal totally geodesic submanifolds by another way. Let © be the distri-
bution of dimension r on the Grassmann bundle Gr(M) which is defined in
Theorem 3.1. We denote by J the set of points of Gr(M) which are contained
in integral manifolds of Φ. By Theorem 3.1, J coincides with the set of
elements σ=(p V) in Gr(M) which satisfy one of the equivalent three conditions
in Theorem 2.1. Then we have the following.

THEOREM 3.5. For each σ—(p V)&J, there exists a maximal totally geodesic
immersion φ : S — > M of an r-dimensional connected Riemannian manifold S into M
in the following sense: Let f:N—>M be any totally geodesic immersion of an
r-dimensional connected Riemannian manifold N into M through p whose tangent
space at p is V. Then there exists an isometric immersion g:N—*S such that
Φ°g=f>

Proof. By Theorem 3.4, we take a maximal integral manifold 5 of ©
containing σ. Let φ be the restriction to S of the projection πE: Gr(M)-»M.
Then by Theorem 3.1 φ is a totally geodesic immersion of S into M. Let
/: N -*M be a totally geodesic immersion which satisfies the assumption of
our theorem. We set g: N-*Gr(M) as g(q)—(f(q); f*TqN) for q<=N. For each
q^N, we take a connected neighborhood U of q such that / ! # : £ / — >M is
imbedding. Then by Theorem 3.1 g(U) is an integral manifold of ©. Hence
by Theorem 3.4, g(U) is an open submanifold of some maximal integral manifold.
From the connectedness of N, it follows that g(N) is contained in S and that
g:N-^S is an immersion. Clearly we have φ°g~f. This implies that g is
an isometric immersion of N into S. Π

From now on we assume that M is a complete Riemannian manifold. We
shall consider a necessary and sufficient condition that given a point p<=M and
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an r-dimensional subspace V of TPM, there exists a complete totally geodesic
submanifold of M through p whose tangent space at p is V. Our statement
is an another formulation of R. Hermann's result in [7]. We will prepare the
notation. Let σ=(p; V)<=Gr(M) be given. For v^V, we denote by γυ:R-*M
the geodesic of M such that γυ(ty=P and ^(0)= v and denote by V(t) the
subspace of Trv(t)M obtained by parallel translating V along γv to the point
γυ(f). Evidently we have γί(t)<=V(f). We put συ(f)=(γυ(f) V(0). Then σ υ:
R-*Gr(M) is a horizontal curve of Gr(M) with respect to the Riemannian
connection with συ(0)=σ. Moreover since πE^σ'v(t)=γί(t)GV(t)f we have σ'v(t)&
®<τυ(ί). Using the notation, we formulate the following.

THEOREM 3.6. Let M be a complete Riemannian manifold. For σ=(p; V]
eGr(M), the following two conditions are equivalent:

(1) There is a complete totally geodesic submanifold of M through p whose
tangent space at p is V.

(2) For all v<=V and fe/Z, συ(f)^Jf where <3 denotes the subset of Gr(M)
defined in Theorem 3.5.

Proof. The implication (l)-»(2). Let 5 be a complete Riemannian manifold
and /: S-»M be a totally geodesic immersion with a point 0eS which satisfies
f(o)=p and f*T0S=V. For v^V, we take u<=T0S which satisfies f*u=v.
Let γu: R-+S be the geodesic of S through o whose tangent vector at o is u.
Then we have f(γu(t))=γv(t) and f*TTuωS=V(t). Here V(t) denotes the subspace
of Tΐv(t)M obtained by parallel translating V along γv to the point γv(t). Hence
we see that £(r«(0)=(/(r«(0) f*TruωS)=(γv(t) 7(0)=σβ(0. For each ίeiϊ,
we take a connected neighborhood £7 of γu(f) in S such that / 1 u U — » M is
imbedding. Then by Theorem 3.1, ^(£7) is an integral manifold of SD which
contains g(γu(t)):=^v(t) From this it follows that σv(t)<^J.

The implication (2)-»(l). By the assumption, we have σeJ. We take a
maximal integral manifold 5 of © containing σ. Then ^=^|s is a totally
geodesic immersion of 5 into M. We shall prove that σv(t)^S for any v^V
and ίe/Z. By Lemma 3.2 we see that for each ί0<Ξ^ there exists a positive
number ε such that ffυ(£) for \t— tQ\<ε are contained in a maximal integral
manifold containing σv(tQ). From the connectedness of R, it follows that σ9(ΐ)^S
for all t^R. Since φ(συ(f))=γv(f), σΌ is a geodesic of 5. Noticing that 0*(tf£(0))
=^(0)=t; and that φ*σ is a linear isomorphism of TσS onto V, we see that the
exponential mapping expσ at σ^S is defined on all of TσS. Hence S is a
complete Riemannian manifold. Π

We define subsets <3(k) and Jk of Gr(M) for ^—0, 1, •-• as follows:

(V*/?)(κ l f - M* *, y, *)

for any MJ, •••, ukt x, y,
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Then 3^ and 3k are closed subsets of Gr(M). Evidently we see that

and that Π£=o^*^^ Corollary 2.2 implies that Γ\^=Q<3k—^ for a real analytic
Riemannian manifold M. In particular S is a closed subset of Gr(M). By
Theorem 2.3 we see that for a naturally reductive homogeneous space, there
exists a finite integer d such that Jd=J.

Applying Theorem 3.6, we have the following.

COROLLARY 3.7. Let M be a real analytic complete Riemannian manifold.
For σ~(p', V}^3, there is a complete totally geodesic submanifold of M through
p whose tangent space at p is V.

Proof. We follow the notation of Theorem 3.6. For v^V let σv: R-»
Gr(Af) be a curve defined in Theorem 3.6. We put I={t(ΞR\σv(t)(Ξ<3} . Since
J is a closed subset of Gr(M) for a real analytic Riemannian manifold, / is
closed in R. On the other hand, as it has been seen in the proof of Theorem
3.6, / is open in R. Since <τv(0)— σej, / contains 0. Consequently / coincides
with R. From Theorem 3.6, Corollary 3.7 is thereby proved. D

4. Characterizations of curvature-invariant subspaces

Let Rn be an n-dimensional real vector space equipped with a standard
inner product < , >. We denote by ϊfi(n) the space of curvature tensors over
Rn. Given a curvature tensor R<^$i(n), we call an r-dimensional subspace V
of Rn curvature-invariant with respect to R if it holds that

(4.1) R(x, y}z^V for any x, y,

Here we assume that 2^r<n — 1 when we have no reference. Viewing Theo-
rem 2.1, we recognize that it is an important problem for investigating totally
geodesic submanifolds to classify curvature-invariant subspaces with respect to
a given curvature tensor. In this section we shall study characterizations of
curvature-invariant subspaces.

Let Gr(Rn) be the Grassmann manifold of r-dimensional subspaces of Rn.
We want criteria that V^Gr(Rn) is curvature-invariant with respect to a given
curvature tensor. In the case of r=2, we recall a result of R.S. Kulkarni. A
curvature tensor R defines the sectional curvature

K(R) : G2(Rn) — > R

by /£(/?)( V)=<#(0ι, 62)^2, βι>, where {elf e2} is an orthonormal basis of V . The
following has been shown by R.S. Kulkarni [9] as Corollary of Proposition 5.1.
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THEOREM 4.1. V<=G2(Rn) is a curvature-invariant subspace with respect to
a given curvature tensor R if and only if V is a critical point of K(R).

Immediately the following two corollaries yield.

COROLLARY 4.2. For every curvature tensor R, there are always curvature-
invariant 2-dimensional subspaces with respect to R.

We note that in the higher dimensional case a different phenomenon from
this occurs. See Theorem 5.4 in the next section.

The following is well-known as the axiom of planes which is due to E.
Cartan.

COROLLARY 4.3. // every 2-dimensional subspace is curvature-invariant with
respect to R, then the curvature tensor R has constant sectional curvature.

We shall consider a generalization of Theorem 4.1 to the case of higher
dimensional subspaces. First we represent the Grassmann manifold Gr(Rn} as
Riemannian symmetric pair. The rotation group S0(n) acts on Gr(Rn) transi-
tively. Let £ι, ••-, en be a natural basis of Rn and V0—{el> •••, er}R be the
r-dimensional subspace linearly spanned by e l f •••, er. We define a mapping
π: SO(ri)-*Gr(Rn} by π(a)= a V0={aeίf •••, aer\R={aί, ••-, ar}R, where α —
(aίf •••, αr, αr+ι, •••, αn)eSO(n) is written as the row of column vectors
ax, •••, ar, ar+ι, ~- , an. The isotropy group at V0<=Gr(Rn) consists of all
matrices of the form

where αeθ(r) and β<=O(n-r).

Denoting this subgroup by S(0(r)Xθ(n— r)), we have Gr(Rn)=SO(n)/S(0(r)X
O(n—r)\ Hereafter denote simply by G and K, SO(n) and S(0(r)Xθ(n— r)),
respectively. We regard G as the total space of the principal fibre bundle
G(Gr(Rn\ K} over Gr(Rn) with structure group K and projection π. Let g and
! be the Lie algebra and the Lie subalgebra of g corresponding to G and K,
respectively. The complement p of the canonical decomposition g^f+J) is
given by

where Mn_r,r(jR) denotes the space of all real matrices with n— r rows and r
columns. The tangent space TVoGr(Rn) is identified with $ by the differential
π*.

Let Fr be the natural r-dimensional vector bundle over Gr(/2n). Namely Fr

is the vector subbundle of the trivial bundle Gr(Rn)xRn defined as follows:

Fr={(V;v) I V<=ΞGr(Rn\
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Fr can be viewed as a vector bundle with standard fibre Rr associated with
the principal fibre bundle G(Gr(Rn\ K) which corresponds to the Lie group
homomorphism of K onto 0(r) :

o
In fact defining a mapping of GxRr onto Fr by

we have GXKRr=Fr. In particular we can regard αeG as a linear isomor-
phism of Rr onto the fibre (Fr)a.Vo at a V0<=Gr(Rn). We introduce the invariant
connection on the principal fibre bundle G(Gr(Rn), K) which corresponds to the
canonical decomposition g=ϊ+j>. We denote by D the covariant differentiation
in Fr defined by the connection. Let ΓFr be the space of sections of Fr and
expίA" be the 1-parameter subgroup of G generated by X&lp. Then under the
identification of TVoGr(Rn) with }>, we have the following formula:

(4.2) Dxφ=In(~

for φ^ΓFr and X<=TVoGr(Rn)=$. Here 7n denotes the unit matrix. Moreover
is regarded as a linear isomorphism of Rr onto (Fr)(exptχ).Vo and

(eX p ίjn.F0 is understood as a curve in /2r.
Let TKFr)=F?®F?<8)F??{8)Fr be the vector bundle of type (1, 3) tensors of

Fr. We shall define a mapping 0 of Sfl(w) into the space ΓT\(Fr) of sections of
TJ(Fr). For fleffi(n) and FeΞGrCRn), we define a (1, 3)-type tensor ψ(R)v on
(Fr)FsF by restricting 7? to V, i.e.,

φ(R)v(x, ;y)ε— the F-component of j?(#, ;y)z, for x, y, z<^V,

where we take the F-component with respect to the orthogonal decomposition
.β^F+F-1-. Evidently φ is a linear homomorphism of ffi(n) into ΓT}(Fr).
Moreover we see that ^ is injective. In fact, if φ(R)v=Q for all FeGr(J2TO),
then R has constant sectional curvature 0 and hence R~Q (Note that 2<r^n— 1).

Now we show the following.

THEOREM 4.4. FeGr(/2π) /s α curvature-invariant subspace with respect to
a given curvature tensor R if and only if Dφ(R)=Q at FeGr(/2n).

Proof. We can discuss the above assertion at F0— {elf •••, er}R without loss
of generality. Let E{ be the nXn matrix such that the entry at the i-th
column and the /-th row is 1 and other entries are all zero. We put £$=££— Ek

a

(α=r+l, •••, n, k=l, •••, r). Then {<f?f α=r+l, •••, n, fe=l, •••, r} forms a
basis of }). The 1-parameter subgroup expί<ί?f of G generated by <£? is given
as follows : Put
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as the row of column vectors ^(f), •••, βr(ί), £r+ι(0> •••, βnGO Then we have

ei(t)—el for *'=£&, α

eft(i)=cosi βfc+sinf ea

ea(t)= — sin

For l^ί'i, 22, is, i^r, we see that

The formula (4.2) implies that

<R(etl(t),
_d_
dt

Therefore if F0 is a curvature-invariant subspace with respect to #, we have
Dφ(R)=Q at F0. Conversely suppose that Dφ(R)=Q at F0. We devide it into
the three cases according to the values of r.

Case 1, r^4. For l^iΊ, *"2, ίs^^ we choose k such that l^k^r and ^^
2*1, ί2, **3 For each α (r+l^α^w), we have

Therefore we see that V0 is curvature-invariant with respect to R.
Case 2, r=3. For each α (4^α^n), we get

and similarly <J?(β2, «8)βι, eα>+ <^(^2, «ι)β8, eα>=0. Therefore we have

The others are same. Hence we see that V0 is curvature-invariant with respect
to R.
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Case 3, r— 2. For each a (3<a^n), we get

a, e2)ez,

βl9 e2)e2, eay.

Therefore we see that V0 is curvature-invariant with respect to R. D

Given a curvature tensor J?eSfl(w), we can define various functions on
Gr(Rn}. For example, we have the following :

τ(φ(R))(V)= £ <R(e
%,) = l

l\ρ(φ(R)W(V)= 53
ι,j, J f e , 1 = 1

\\φ(R)f(V)= 53 </?(?,,, e,2)e,3, Stt><R(gtl, eH)eh, elt>
=

where {βi, •••, ^r} denotes an orthonormal basis of F.
Using Theorem 4.4, we can prove the following.

COROLLARY 4.5. // V^Gr(Rn) is a curvature-invariant subspace with respect
to R, then V is a critical point of functions τ(φ(R}\ \\p(φ(RW, \\Φ(R)\\2,

In the rest of this section, we shall discuss the case of r=n—l, i.e.,
hyperplanes. By simple computation, we obtain the following which will be
used in section 7.

PROPOSITION 4.6. // V^Gn-ι(Rn] is a curvature-invariant hyperplane with
respect to a curvature tensor R, then the orthogonal complement V± is an eigen-
space of its Ricci curvature p. When n—3, the converse also is true.

Proof. We take an orthonormal basis {eίf •••, en} of Rn such that V is
linearly spanned by e ί f •••, en-ι Since

p(gn, ej)=^<R(eJf eτ)et, en> for /=!, -, n-1,
1=1

the first part of the above proposition holds.
When n=3, let {eίf ez, eB} be an orthonormal basis of Rs such that es is an

eigenvector of the Ricci tensor p. Since

and
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V={eίf ez}R is curvature-invariant with respect to R. D

Let Λ2Rn be the space of 2-vectors of Rn. For a given curvature tensor
R, we define a symmetric endomorphism R on Λ2Rn, which is called a curva-
ture operator. Namely put

<R(x/\y\ u/\vy~<R(x, y)u, v> for x, y, u,

(cf . J. P. Bourguignon and H. Karcher [1]). The existence of curvature-invariant
hyperplanes has an effect on the spectral data of the curvature operator R.
Namely the following holds.

PROPOSITION 4.7. Let V^Gn-ι(Rn) be a curvature-invariant hyperpίane with
respect to a curvature tensor R and ξ be a unit vector of Rn which is orthogonal
to V. Then there is an orthonormal basis {elf ••-, en~ι} of V such that ξ/\el

(ί=l, " , n—T) are eigenvectors of the curvature operator R. In particular the
curvature operator R has at least n — l decomposable eigenvectors which are
linearly independent.

Proof. Let V and ξ be the ones which satisfy the condition in Proposition
4.7. For R and ξ, we define a symmetric endomorphism Kς of Rn by (Rξ(x\ y~>
=</?(£, *)£ y> for x, y(ΞRn. Evidently we have Rξ(V)c:V. We take an
orthonormal basis {elf •••, ^_J in V such that el (i=l, ••-, n—l) are eigen-
vectors of Rξ, i.e., Rξ(eί)=λieί. Then we see that ξ/\eτ (ί=l, ••-, n — l) are
also eigenvectors of the curvature operator R with eigenvalues λt. In fact,
we get

and
8^ f>=0. D

Applying Proposition 4.7, we obtain the following which is an analogous
result to the axiom of planes.

THEOREM 4.8. Let H be the connected Lie subgroup of SO(n) which acts
irreducibly on Rn and R be an invariant curvature tensor by the action of H.
If there is a curvature-invariant hyperplane V^.Gn-\(Rn) with respect to R,
then R has constant sectional curvature.

Proof. Let §o(n) be the Lie algebra which corresponds to SO(n) and ΐ) be
the Lie subalgebra of So(n) which corresponds to H. By the assumption, Ij acts
irreducibly on Rn. Let V^Gn~ι(Rn) be a curvature invariant hyperplane with
respect to R and ξ be a unit vector of Rn which is orthogonal to V. Let
γ—V^ -" +VS be the orthogonal decomposition of V into the eigenspaces of
Kξ and λt (ι=l, •--, s) be the eigenvalues of Rξ on the eigenspaces Vτ. It is
assumed that λ1} •••, λs are mutually distinct. From Proposition 4.7, it follows
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that R(ξ/\v)=λiξ/\v for v^Vt. Now we shall prepare the following lemma.

LEMMA. For each X^§ and v^Vlt the following formulas hold'.
(1) R(ξ/\Xv)=λiξ^Xυ)

(2) R(Xξ/\v)=λlXξ/\v.

Proof of Lemma. Let exp tX be the 1-parameter subgroup of H generated
by X^. Since the curvature tensor R is invariant by the action of H, we
have R°exρtX=exptX°R on Λ2Rn. Hence

v))=λt exp tX(ξ/\v) .

Differentiating this equation at t=Q, we have

We note that R(A2V)dΛzV and R(ξ AV)dξ f\V , since V is curvature-invariant
with respect to R. Since Xξ&V, we obtain R(ξ/\Xv)=λiξ/\Xv and R(Xξ/\v)
=λiXξ/\v. Thus Lemma has been proved.

By Lemma (1), we see that for each eigenspace V r

t and any Λfeΐ j ,
Vi+R ξ. If Xξ^Q for any A'eϊj, it contradicts to the irreducibility of ϊj.
Therefore there exists some X0^ such that X0ξ ^0. Accordingly, for some
I'e {1, ••-, s} and v0^Vl we have OY0f, ^0)^0. For this /, we shall show that
Xξ^Vt for any X^. We take an arbitrary vector v'^V3 for ^/. By Lemma
(2), X0ξ f\v' and ^Γ| /\v0 are eigenvectors of ^ with distinct eigenvalues λ} and
λt, respectively. Therefore they are mutually orthogonal. Hence

=<X0ξ, Xξ><vf, Vo>-

Since <X0ξ, v0y^Qf we have (Xξ, v'y=Q. From this it follows that
This together with the preceding fact implies for this / Vi+R-ξ is an invariant
subspace by the action of ϊ). By the irreducibility of ϊj, we have Fί+jR f— Rn.
This means that the whole V is an eigenspace of Rξ, whose eigenvalue will
be denoted by λ. In particular it holds that

Λ(f, x)y=*{<ξ, y>x-<x, y>ξ} for any x, y^Rn.

Now we define a curvature tensor R0 of Rn by R0(x, y}z=(y, zyx—(x, zyy
for x, y, z^Rn. For the preceding eigenvalue λ of Rξ, put a subspace 91 of Rn

as follows :

Here i(x)(R-\-λR0) denotes the (1, 2)-tensor on Rn given by
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i(x)(R+λR0)(u, v)=(R+λR0)(x, u)v for u,

Since R and R0 are invariant by the action of H, ft is an invariant subspace
of Rn by the action of H. By the preceding discussion, we have feϋft. From
the irreducibility of H, it follows that 9?— Rn. Therefore it holds that R(x, y)z=
— λ{(y, zyx—(x, z^y} for x, y, z^Rn. Thus our assertion has been proved. D

As an application of Theorem 4.8, we obtain the following, which is a
slight generalization of Theorem 1 in B. Y. Chen [2],

COROLLARY 4.9. Let M—G/H be a Riemannian homogeneous space such that
the identity component H0 of H acts irreducibly on the tangent space (dim M^3).
// M admits a totally umbilical hypersurface S, then M has constant sectional
curvature.

Remark. B. Y. Chen in [2] investigated the case when M is an irreducible
Riemannian symmetric space and showed the same conclusion as above. J.A.
Wolf ([15]) investigated and classified Riemannian homogeneous spaces which
satisfy the assumption stated in Corollary 4.9.

Proof of Corollary 4.9. We can prove this corollary following the same
process as the proof of Theorem 1 in [2]. The coset H is denoted by o. We
can assume that the totally umbilical hypersurface 5 is through o. M is
Einsteinian and hence from the equation of Codazzi, it follows that the mean
curvature of S is constant. Using the equation of Codazzi once more, we see
that the tangent space T0S is a curvature-invariant hyperplane of T0M. The
curvature tensor R at o is invariant by the linear isotropy action of H0. By
Theorem 4.8 we obtain our conclusion. Π

5. Curvature-invariant subspaces — consideration of examples

In this section, we shall classify the curvature-invariant subspaces for
curvature tensors of special form. Let A and B be symmetric endomorphisms
of Rn with respect to the standard inner product < , >. We define a (1, 3)-tensor
Λ/\B by

(5.1) A/\B(x, y)z=(By, zyAx-(Bx, zyAy + <Ay,

(cf. J.P. Bourguignon and H. Karcher [1]). Then A/\B is a curvature tensor
on Rn. We try to classify curvature-invariant subspaces with respect to A/\B.
First we fix notations. Given a subspace V in Rn, we have the orthogonal
decomposition Rn=V+V* . For v<^Rn, we denote by va and vb the F-component
and the VL -component of v, respectively. For a symmetric endomorphism A of
Rn, we define a mapping Aa : V-+V and Ab : V-*V^ by Aax=(Ax)a and Abx
=(Ax)b for x^V, respectively.
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The following is easily shown.

PROPOSITION 5.1. Let R=A/\I be a curvature tensor given by a symmetric
endomorphism A and an identity transformation I of Rn and V be a subspace of
Rn with dim V^>2. Then V is curvature-invariant with respect to R if and only
if V is an invariant subspace of the symmetric endomorphism A.

Remark. If a Riemannian manifold M is conformally flat, its curvature
tensor R has the form Af\I for some symmetric tensor field A.

PROPOSITION 5.2. Let R=A/\A be a curvature tensor given by a symmetric
endomorphism A of Rn and V be a subspace of Rn with dim V^2. Then V is
curvature-invariant with respect to R if and only if one of the following holds :

(1) V is an invariant subspace of the symmetric endomorphism A.
(2) V is a null-subspace with respect to A, i.e.,

(Ax, ;y> — 0 for any x, y<=V

(3) The image A(V) of V by A is of l-dimensional .

Proof. Let V be a curvature-invariant subspace with respect to R. Then
we have

(Ay, zyAbx — (Ax, zyAby=Q for any x, y,

We discuss dividing into the following three cases :

Case 1, keτAb=V

Case 2, ker Aa=V

Case 3, kerAaΦV and kerAb^V,

where ker^4α and ker/lδ denote the kernel of Aa and that of Ab, respectively.
Case 1 means that V is an invariant subspace of A and Case 2 means that

V is a null-subspace with respect to A. Therefore we consider Case 3.

ASSERTION 1. ker^4α— ker^4δ. In particular they coincide with kerAr\V.

Proof of Assertion 1. First we shall prove ker Abdker Aa. We take a
non-zero vector y which belongs to the orthogonal complement of ker Ab in V.
Then Aby is not zero. For ;teker^4δ, we have — (Ax, zyAby=Q and hence
(Ax, zy=Q for any z^V. This implies that *eker Aa.

Next we shall prove ker ^4αcker Ab. We take a non-zero vector y which
belongs to the orthogonal complement of ker Aa in V. Then Aay is not zero.
For xeker Aa, we have (Ay, zyAbx=Q. Putting z— Aay, we obtain Abχ = 0.

We put F/=ker/lα=ker^4δ=:ker^4nF and denote by V" the orthogonal
complement of V in V.
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ASSERTION 2. dim Vf/—l.

Proof of Assertion 2. We fix non-zero x^VΛ '. Then Λax and Abx are
both not zero. For arbitrary y<=V", (Ay, AaxyAbx—<Ax, Aax)A*y=Q and
hence ,46;y:=«,4a;t, Aayy/\\Aaxl\^Abx. Therefore we have άimAb(V)=l. Since
Ab is injective in V", dim F"-l.

From these, it follows that in Case 3, dim A(V)=1.
Conversely, it is evident that if one of the three conditions in Proposition

5.2 holds for V, then V is curvature-invariant with respect to R=A/\A. D

Remark 1. Let M be a hypersurface immersed in a real space form M(c)
of constant sectional curvature c and A be its shape operator for a unit normal
vector field. Then by the equation of Gauss, the curvature tensor R of M has
the form R= l/2{cI/\I-\-A/\A] . Therefore we can apply Proposition 5.2 to the
classification of its curvature-invariant subspaces. In fact, this Proposition will
be used in section β.

Remark 2. If A is non-singular, the case (3) in Proposition 5.2 does not
occur. Moreover if A is positive-definite, the case (1) only may occur.

PROPOSITION 5.3. Let R—AΛB be a curvature tensor given by the positive-
definite symmetric endomorphisms A, B of Rn and V be a subspace of Rn with
dim V^>3. Then V is curvature-invariant with respect to R=A/\B if and only
if one of the following holds :

(1) V is an invariant subspace by both A and B.
(2) There exists a positive number λ such that

Ba=λAa and Bb=-λAb on V.

(3) There exist a positive number λ and a subspace V of codimension 1 in V
such that the following holds :

(i) A(V')<Σ.V, B(V')C.V and Bx=λAx for x<=V

(ii) B*y = -λA*y for yϊΞV",

where V" denotes the orthogonal complement of V in V.

Proof. Let V be a curvature-invariant subspace of Rn with respect to
R=A/\B. We assume that dim

ASSERTION 1. For each %eF, there exists a positive number λ (which may
depend on x) such that Bbx = —λAbx. In particular we have ker Ab— ker Bb and
Ab(V)=Bb(V).

Proof of Assertion 1. Since dim V^3, there exists a non-zero vector
such that (Ax, zy = <Bx, z>— 0. From (5.1), it follows that (By, z>Ax +



TOTALLY GEODESIC SUBMANIFOLDS 415

(Ay, zyBxtΞV. Hence (By, z^Abx+(Ay, z>βδ%=0. We put y=z. Since A
and B are both positive-definite, <Az, £»0 and (Bz, *»0. Putting λ=
(Bz, zy/(Azf z\ we have Bbx = -λAbx.

Owing to Assertion 1, we define a subspace V of F by 7'=ker .4δ=ker Bb

and denote by V" the orthogonal complement of V in V.

ASSERTION 2. // dimF"^>2, there exists a positive number λ such that
Bax=λAax and Bbx =—λAbx for any

Proof of Assertion 2. Let x and y be linearly independent vectors in V" .
By Assertion 1, we have Bbx = -λ(x)Abx and Bby =—λ(y)Aby, where λ(x) and
λ(y) denote positive constants depending on x and y, respectively. We shall
prove that λ(x)~λ(y). We have

On the other hand,

Hence

Since Abx and Aby are linearly independent, we see that λ(x)= λ(x+y)=λ(y).
From this, it follows that the constant λ does not depend on the choice of
vectors in V" '.

Again, let x and y be linearly independent vectors in V" . By (5.1), it
holds that

(By, zyAbx-(Bx, z>Aby+(Ay, zyBbx-(Ax, zyBby=Q

for any z<ΞV. Hence (By—λAy, zyAbx-(Bx-λAx, zyAby=Q. Since Abx and
Aby are linearly independent, we have (Bx—λAx, z>— 0. Since z is an arbitrary
vector in V, we see chat Bax=λAax.

Finally, let x and y be a vector in V and a non-zero vector in V" ',
respectively. Then we have —(Bx, z)Aby—(Ax, zyBby=0 and hence (Bx —
λAx, zyAby=Q. Since Abyφΰ, Bx—λAx. Therefore it has been shown that
there exists a positive number λ such that Bax—λAax and Bbx =—λAbx for
any x^V.

ASSERTION 3. // dim V"=l, there exists a positive number λ such that
Bx^λAx for x^V and Bby = -λAby for

Proof of Assertion 3. From Assertion 1, it follows that Bby ——λAby for
a non-zero vector y^.V". Then we have Bx—λAx, for x^V. It is shown by
the same way as Assertion 2.
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The case when dim Vff=Q means that Λ(V)dV and B(V}dV. This, together
with Assertions 2 and 3 implies that if V is curvature-invariant, one of three
conditions in Proposition 5.3 holds.

Conversely, it is easily shown that if one of three conditions in Proposition
5.3 holds for F, V is curvature-invariant with respect to R= Af\B. Π

Applying Propositions 5.2 and 5.3, we shall construct examples of curvature
tensors which do not all have curvature-invariant subspaces of dimension not
less than 3. We denote by {eίf •••, en} the natural basis of Rn. Let A be a
positive definite symmetric endomorphism of Rn such that each el (z— 1, •••, n)
is an eigenvector of A with mutually distinct eigenvalue a% fy = l, •••, n). For
such an A, we choose a symmetric endomorphism B which satisfies the follow-
ing two conditions :

(5.2)-(i) Let (bij)i, J=1,...t n be the raXn-matrix which represents B with respect
to the natural basis. Then each entry bi3 is not zero.

(5.2)-(ii) Each eigenspace of A~1B is of dimension 1.

Here we shall make a remark about the endomorphism A~1B of Rn. Denote
by g a new inner product on Rn which is defined by g(x, y)=(Ax, 3>> for
x, y^Rn. Then A~1B is a symmetric endomorphism with respect to this inner
product g. In fact we have

=<*, AA-lBy>=<Ax, A

Thus A~1B has real eigenvalues and mutually orthogonal eigenspaces with
respect to g.

THEOREM 5.4. Let A and B be symmetric endomorphisms of Rn taken as
above. We define a curvature tensor Rε by Rε=A/\(A-{-εB) for ε^R. Then
for sufficiently small ε (=£0) the curvature tensor Rs does not at all have curvature-
invariant subspaces of dimension not less than 3.

Proof. We fix an integer r with 3^r^n — 1. First we shall classify
r-dimensional curvature-invariant subspaces with respect to R0—A/\A. By
Remark 2 of Proposition 5.2, each r-dimensional curvature-invariant subspace
with respect to R0 is invariant by A. Since each eigenspace of A is of dimension
1, an r-dimensional invariant subspace by A is linearly spanned by βtl, •••, elr,
?ι< ••• <ir, where {elt •••, en} denotes the natural basis of Rn. Consequently
each r-dimensional curvature-invariant subspace is given by {etl, •••, eτr}R for
some iι< •- <ir. We note that for sufficiently small ε, curvature-invariant
subspaces with respect to Rε= A/\(A-\-εB) lie near those with respect to RQ—
A/\A if they exist. Applying Theorem 4.4, we can easily show this fact.
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Since A+εB is a positive definite symmetric endomorphism for sufficiently
small e, we can apply Proposition 5.3 to the curvature tensor Rε. We shall
show that if non-zero ε is sufficiently small, neither of three cases in Proposi-
tion 5.3 holds for any r-dimensional subspace V.

ASSERTION 1. The case (1) in Proposition 5.3 does not hold for any r-dimen
sional subspace V.

Proof of Assertion 1. If V is an invariant subspace by both A and A+εB,
then V is invariant by B. An r-dimensional invariant subspace V by A is
given by {etl, •••, elr}R for some *Ί< ••• <ιr. On the other hand, since Betl=
'Σ?=ιbjt1eJ and bjtlΦ^ for jφilf •••, ir owing to (5.2)-(i), Be%l is not contained
in V. Therefore the case (1) does not hold.

ASSERTION 2. The case (3) in Proposition 5.3 does not hold for any r-dimen-
sional subspace V.

Proof of Assertion 2. Suppose that there exist a positive number λ and
r—1-dimensional subspace V in V such that (A+εB)x=λAx for any
Accordingly, we have Bx=((λ—l)/ε)Ax and hence A~1Bx=((λ—ϊ)/ε)x for
Therefore V is a subspace of the eigenspace of A~1B with eigenvalue (λ—ΐ)/ε.
Since dim F'^2, it is contrary to (5.2)-(ii). Therefore the case (3) does not
hold.

ASSERTION 3. The case (2) in Proposition 5.3 does not hold for any r-dimen-
sional subspace V if ε is sufficiently small.

Proof of Assertion 3. First recalling section 4, we prepare some notations.
Let Ena(Fr)=F%(&Fr be the vector bundle consisting of endomorphisms of the
natural vector bundle Fr over the Grassmann manifold Gτ(Rn} and ΓΈnd(Fr) be
the space of sections of End(Fr). For CeEndCR71) and V^Gr(Rn\ we define
an endomorphism φ(C)v of (Fry=F by restricting C to V, i.e.,

0(CV(#)=the F-component of Cx for x^V,

where we take the F-component with respect to the orthogonal decomposition
Rn=V+V±. Thus we obtain a linear map φ: End(Λw)-^ΓEnd(Fr). For sym-
metric endomorphisms A and B in Theorem 5.4, we define a subset C(A B) of
Gr(Rn) as follows:

C(A; B)={V<=Gr(Rn) \ there exists a number μ such that φ(B)v=μφ(A)v}.

It is easily seen that C(A B) is a closed subset in Gr(Rn\
Suppose that for FeGr(βn), (2) in Proposition 5.3 holds with respect to

Rε=A/\(A+εB). That is, there exists a positive number λ such that (A+εB)a

=λAa and (A+εBγ=-λAb on V. Accordingly, it holds that Ba=((λ-l)/ε)Aa
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on V, i.e., φ(B)v=((λ-ϊ)/ε)φ(A)v. Therefore V belongs to C(A;B). On the
other hand, we shall show that if ε is sufficiently small, curvature-invariant
subspaces with respect to Rε must belong to Gr(Rn)—C(A B\ Let W<=Gr(Rn}
be a curvature-invariant subspace with respect to RQ=A/\A. Then W does not
belong to C(A B). In fact W is given by (e%l, ••-, elr}R for some zΊ< ••• <ίr.
From our assumptions of A and 5 it follows that φ(A)weιl =allell and φ(B)well

—bi^lell

jrbi^lel2

jr ••• + 6 ί r t le l r. Since &i2t l=£θ, there does not exist μ such that
φ(B)w—μφ(A)w. We recall that for sufficiently small ε, curvature-invariant
subspaces with respect to Rε must lie near those with respect to R0 if they
exist. Noticing that Gr(Rn}—C(A B) is an open subset in Gr(Rn\ we obtain
our claim. D

6. Totally geodesic submanifolds of hypersurfaces in a Euclidean space

Let Mn+ί(c) be an n + 1-dimensional real space form, i.e., a simply connected
complete Riemannian manifold with constant sectional curvature c. Let M be a
hypersurface in Mn+1(c). Here we assume that M is a regular submanifold of
Mn+ί(c). In this section we shall study totally geodesic submanifolds of M
applying Proposition 5.2. In particular, we shall classify totally geodesic sub-
manifolds of hypersurfaces in Rn+1 defined by homogeneous polynomials of
degrees 2 and 3.

We fix some notation. We denote V and V the Riemannian connections of
Mn+1(c) and M, respectively. We denote by ξ, a and A a unit normal vector
field, the second fundamental form, and the shape operator of M, respectively.

PROPOSITION 6.1. Let M be a hypersurface in Mn+l(c) and S be an r-dimen-
sional totally geodesic connected submanifold of M. We assume that dim A(TXS)
:>2 at any point x^S. Then one of the following holds:

(1) There exists an r+1-dimensional totally geodesic submanifold Mr+1(c) of
Mn+1(c) which contains S such that an open subset inMr+1(c)Γ^M containing S is
an r-dimensional regular submanifold of M and S is its open submanifold.

(2) There exists an r-dimensional totally geodesic submanifold Mr(c) of
Mn+1(c) in which S is an open submanifold.

Proof. From the equation of Gauss, it follows that at x^M the curvature
tensor R of M is given by

R(X9 Y)Z=c{<Y, Z)X-<X, Z>F} + {<AF, ZyAX-(AX, ZyAY}

X, Y, Z<=TXM. Since S is a totally geodesic submanifold of M, the tangent
space TXS is a curvature-invariant subspace of TXM at any point x^S. Since
dim A(TXS)^2, by Proposition 5.2 one of the following holds for TXS:

(1) TXS is invariant by A, i.e., A(TxS)dTxS.
(2) TXS is a null-subspace with respect to A, i.e., (AX, F>=0 for any

X,
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We define subsets Si and S2 in S as follows :

Sι={x^S I TXS is invariant by A}

S2={x<^S I TXS is a null-subspace with respect to A}.

Then we have S=SιWS2 and SιΠS2=0 (empty). Clearly, Sx and S2 are both
closed subsets in S and hence open. Since S is connected, we have S=Sι or
S=S2.

Let TM\S be the vector bundle over S induced by the tangent bundle TM
of M. Then we have the orthogonal decomposition :

where T±S denotes the orthogonal complement of TS in TM\S. We have the
following formulas: for X, Y^ΓTS

(6.1) vzr=v*r+<αcγ, n £>£

(6.2) Vzξ=-AX.

We note that VXY<^ΓTS, since S is a totally geodesic submanifold of M.
We consider the case S— Si. TS is an invariant subbundle of TM by ^A.

This, together with (6.2), implies that TS+R ξ is a parallel subbundle of TM\S

with respect to V. Therefore by the well-known reduction theorem (J. Erbacher
[6]), it follows that there exists an r+l-dimensional totally geodesic submani-
fold M r+1(c)of Mn+1(c) such that S isji submanifold of Mr+1(c). In particular,
we have ScMr+1(?)nM. Since TxM

r+1 = TxS+R ξx at an arbitrary point
xeS, Mr+1πM is an r-dimensional regular submanifold of Mr+1 in a neighbor-
hood of S and S is its open submanifold. Since both Mand Mr+1(c) are regular
submanifolds of Mn+1(c), an open subset in Mr+1πM containing S is also a
regular submanifold of M.

If S— S2, by (6.1), S is a totally geodesic submanifold of Mn+1(c\ Hence
we obtain our assertion (2) in Proposition 6.1. D

Now we shall consider the converse of Proposition 6.1. Let S be an
r-dimensional submanifold of M. If S is a totally geodesic submanifold of
Mn+1(c), evidently it is a totally geodesic submanifold of M. Corresponding to
Proposition 6.1 (1), the following is easily seen.

LEMMA 6.2. Let Mr+1(c) be an r+l-dimensional totally geodesic submanifold
of Mn+1(c). Suppose that S—Mr+lΓ\M is an r-dimensional submamfold of Mn+1(c)
(and hence it is also a submanifold of both Mr+1 and M). Let ξ be a unit normal
vector field of M. If ξx<=TxM

r+1 at an arbitrary point x<^S, then S is a totally
geodesic submanifold of M.
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Let Rn+1 be an n + 1-dimensional real vector space with standard inner
product < , >. Let F be a symmetric multilinear form of degree m on jβn+1 and
/ be a homogeneous polynomial defined by f(χ)=F(x, •••, x) for x<=Rn+1. We
set a subset M of Rn+l by M= {χ(=Rn+1\f(x)^l\ . As usual, we identify the
tangent space TxR

n+1 of Rn+1 at x with Rn+1. Under this identification, we
have dfx(v)=mF(x, •••, x, v} for v^TxR

n+1^Rn+1. Since dfx(x)=m^0 at *eM,
M is a smooth hypersurface of Rn+1 if M is not empty. Easily we see that M
is a real analytic and complete Riemannian manifold. We try to classify totally
geodesic submanifolds of such hypersurfaces.

We consider two types of totally geodesic submanifolds :

Type I. We take an r-fl-dimensional linear subspace W of Rn+1 and a
vector C<^WL, where WL denotes the orthogonal complement of W in Rn+1.
We denote by C+W the affine subspace defined by C + w, w<=W. Let S be
one of connected components of (C+W)Γ\M. Now we assume that

(6.3) F(x, ••-, x, WΓJ )=0 at any point χ(=S.

Type Π. We take a point x^M and an r-dimensional linear subspace W.
Now we assume that

(6.4) F ( * , W, •••, W)=0 for O^k^m-1.

PROPOSITION 6.3. (1) Let S be a subset of M given in Type I above. Then
S is an r-dimensional totally geodesic submanifold of M.

(2) Let x and W be a point of M and an r-dimensional subspace given in
Type Π, respectively. Then the affine subspace x+W is contained in M and
hence it is an r-dimensional totally geodesic submanifold of M.

Totally geodesic submanifolds in both cases are maximal in the sense of
Theorem 3.5.

Proof. (1) First we shall show that S is a smooth hypersurface in an
r+1-dimensional affine subspace C+W. Let x be an arbitrary point of 5. We
can identify the tangent space TX(C+W) with W. If dfx(w)=mF(x, ••-, x, w)
=0 for all w^Tx(C+W}^Wy then the condition (6.3) implies that F(x, - x, υ)
=0 for all v<^Rn+1. It contradicts to F(x, •••, #)=!. Therefore there exists a
vector w<=Tx(C+W)^W such that dfx(w)ΦQ. Hence 5 is a smooth hyper-
surface in C+W.

We note that the tangent space TXM is given by

TxM={v<=ΞTxR
n+1^Rn+1 I dfx(v)=mF(xf •••, x, v)=0}.

From (6.3), it follows that WLdTxM at every point x^S. Let ξ be the unit
normal vector field of M in Rn+1. Then at every point x^S, ξx is orthogonal
to WL. Consequently we have ξx<=W^Tx(C+W). By Lemma 6.2, S is a
totally geodesic submanifold of M.
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(2) For an arbitrary vector w^W, the condition (6.4) implies

F(x+w, •••

Therefore the affine subspace x-{-W is contained in M.
Since totally geodesic submanifolds given above are complete Riemannian

manifold and imbedded in M, they are maximal in the sense of Theorem 3.5. D

Remark. Let φ be a linear transformation of Rn+1. We define a multilinear
form Fr by F'=φ F, i.e., F'(vlf ••-, vm)=F(φ-1vl, •••, 0~xι;TO) and denote by M'
the hypersurface of Jβn+1 defined by F'. Then we have φ(M)=M'. Moreover if
an affine subspace x+W is contained in M, then the affine subspace φ(x-\-W)
is contained in M' and vice versa. The existence of totally geodesic submani-
folds of Type Π is a problem which belongs to affine differential geometry.

We add one more assumption to F. We say that a symmetric multilinear
form F is non-singular when F(x, •••, x, ι;)=0 for v^Rn+1 only if x=0.

THEOREM 6.4. Let F be a non-singular symmetric multilinear form of degree
m on Rn+1 and M be a hypersurface defined by F. Let S be an r -dimensional
(2<r^n — 1) connected Riemannian manifold and φ be a totally geodesic immer-
sion of S into M. Then there exists an r -dimensional totally geodesic submanifold
S obtained by Proposition 6.3 such that φ(S)d§. That is, maximal totally geodesic
submanifolds are exhausted by ones given in Proposition 6.3. In particular, a
maximal totally geodesic submanifold of M is imbedded and closed in M.

Proof. We note that S is a real analytic Riemannian manifold and φ is a
real analytic immersion. Let φ~1TM be an induced bundle by φ from the
tangent bundle of M. Then we have an orthogonal decomposition : φ~1TM=
TS+T^S. We denote by A the shape operator of M in JZn+1. We view it as a
section of the endomorphism bundle End^'TM). We put k=
Then the following three cases may occur:

Case 1. *=0.
Case 2. fe=l.
Case 3.

ASSERTION 1. Case 1 does not occur.

Proof of Assertion 1. Since our discussion below is local, we don't distin-
guish S and φ(S) and may assume that S is an imbedded submanifold of M.
We shall show that at a fixed point x^S, the following holds:

(6.5) F(u, - , u, v)=0 for any u<=TxS and veΛn+1.

Therefore it contradicts that F is non-singular. Now we shall prove (6.5). In
our case S is a totally geodesic submanifold of Rn+1. For x<=S and u<=TxS,
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we put γ(t)=x+tu. Then there exists a positive number ε such that
for | f |<e. Since A(TS)=Q on S, the tangent bundle TM is a parallel subbundle

of TRn+1 along p with respect to V. Under a usual identification, we see that
if v(ΞTxM, then v^Tr(t)M for |ί|<e. Therefore we have

•-, x, u, v)+ ••• +ίm'1F(M, •», w, v).

Hence it follows that F(u, •••, M, v)=0 for any v<=TxM. Since γ(t)<=SdM for
|ί|<ε, we have

•-, w).

Hence it follows that F(w, •••, w, #)=0 Consequently we obtain the formula
(6.5).

ASSERTION 2. 7n Case 2 at any point x^S, TXS is a null-subspace with
respect to A i.e., <AX, Y">=0 for any X, Y<=TXS. Therefore S is a totally
geodesic submanifold of Rn+1.

Proof of Assertion 2. Suppose that at a point χ(=S, TXS is not a null-
subspace with respect to A. Then there exists a neighborhood S' of x in 5
such that at each y<^S', TyS' is not a null-subspace with respect to A. We
define a subspace ®tf of TyS

f at yeΞS7 by S)tf={AreT1,S/|Λ^=0}. Then Φ is
a distribution in Sr with codimension 1. ® is exactly a relative nullity distri-
bution when we view S' as a submanifold of Rn+1. Therefore SD is involutive
and each leaf of © is a totally geodesic submanifold of S'. We denote by N
one of leaves of ®. Then N is a totally geodesic submanifold of M which
satisfies A(TyN)=0 at any point yeN. By the proof of Assertion 1, we see
that Assertion 1 is also true when S is a 1-dimensional totally geodesic sub-
manifold of M, i.e., a geodesic. Therefore such a submanifold N does not
exist. It's a contradiction. Hence our assertion has been proved.

Now we consider Case 3. There exists an open subset S' in S such that
dim^4(T^S)^2 at each point x^S'. If there exists an r-dimensional totally
geodesic submanifold S obtained by Proposition 6.3 such that ^(S')CS, then by
the real analyticity of φ it holds that φ(S)d§. Therefore we may discuss,
assuming that S is an imbedded submanifold of M and dim A(TXS)^2 at each
point x^S. By Proposition 6.1, one of the following holds:

Case 3-i. There exists an r+1-dimensional affine subspace Mr+1 which
contains S such that an open subset in Mr+1πM containing S is an r-dimen-
sional regular submanifold of M and S is its open submanifold.
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Case 3-ii. There exists an r-dimensional affine subspace Mr in which S is
an open submanifold.

Now we consider Case 3-i. We note that by the proof of Proposition 6.1
ξx(=TxM

r+1 at any point x<=S. Let S be a connected component of Mr+1πM
which contains 5.

ASSERTION 3. S is an r-dimensional regular submanifold of M and moreover
S is a complete totally geodesic submanifold of M.

Proof of Assertion 3. We fix a point p^S. Applying CoroΠary 3.7 to
TPS, we see that there is a complete totally geodesic submanifold S immersed
in M which contains S as an open submanifold. We denote by φ the totally
geodesic immersion of S into M. By the real analyticity of φ, we have
φ(S)dMr+1 and hence φ(S)dS. In the same manner, by the real analyticity of
£, it holds that ξφ(q)^Tφ(φM

r+l at any point q^S. We put S—φ(S). We shall
prove that S is an r-dimensional regular submanifold of M. We denote by /
the polynomial function on Mr+1 obtained by restricting f(x)=F(x, •••, x) to
Mr+1. Then we have Mr+1ΓΛM={x^Mr+1\f(x}=l}. Since ξφ^TφwM

r+1

at an arbitrary point q<^S, dfφ^^Q in the cotangent space T|(β)M
r+1. There-

fore there exists a neighborhood U of φ(q) in Mr+1 such that Mr\U=
{x^U\f(x)=l} is an r-dimensional_regular submanifold of Mr+1. Hence we
can take a neighborhood U of q in S such that φ is a diffeomorphism of U
onto Mr\V, where V is an adequate neighborhood of φ(q) in Mr+1. From this,
it follows that Sr\V—Mr\V. Consequently it has been proved that S is an
r-dimensional regular submanifold of Mr+1 and hence is also a regular submani-
fold of M. Moreover φ is a Riemannian Covering map of S onto S. Since S
is a complete Riemannian manifold, so is S. In our proof above, it has been
also shown that S is an open subset of S.

Finally we shall show that S is a closed subset of S. If this is shown,
we have S=S and obtain our assertion. Let {pj} and p be a sequence of points
in S and a point of S which ^satisfy lim^pj^p in S. Since ξpj^TPJM

r+1 for
any /, then we have ξp<=TpM

r+1. Therefore there exists a neighborhood V of
p in Mr+1 such that Mr\V is an r-dimensional regular submanifold of Mr+1.
We choose p3 which belongs to a normal coordinate neighborhood ^ of p in
Mr\V. Let γ be a geodesic_from ρ} to p in <V. We parametrize γ such that
^(O)rr^ and γ(ϊ)=p. Since SΓΛV is an open submanifold of Mr\V, there exists
an open interval /c[0, 1] containing 0 such that γ(I) is contained in § and γ \ j
is a geodesic of 5. Since S is a complete Riemannian manifold, we have
/—[0, 1] and hence p=γ(l) belongs to 5. Consequently it has been proved
that S is a closed subset of S.

We continue our discussion on Case 3-i. We denote by W an r-f 1-dimen-
sional linear subspace of Rn+ί which corresponds to the tangent space TxM

r+1

at x(ΞMr+l under the usual identification TxR
n+1^Rn+l and denote by W*- the
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orthogonal complement of W in Rn+l. Let C be a vector of WL which is the
image of Mr+1 by the orthogonal projection of Rn+1 onto WL. Then the affine
subspace Mr+1 is given by C-\-W. As has been shown in Assertion 3, for an
arbitrary point x^S, ξx belongs to TxM

r+1 and is orthogonal to W 1. Therefore
we have F(x, •••, x, WL)=(l/m)dfx(WL}=§ and obtain the formula (6.3).

Finally we consider Case 2 and Case 3-ii. In each case, there exists an
r-dimensional affine subspace Mr in which S is an open submanifold. We denote
by W an r-dimensional linear subspace of Rn+l which corresponds to TXS=TXM

T.
For an arbitrary vector w&W, we take a straight line γ(f)=x+tw. For suffi-
ciently small ί, γ(t) belong to 5 and hence to M. Therefore we have

l=F(γ(t), -,r(0)
k m-k

x\ w, •••, w)+ - tmF(w, . . - , w

Hence we have F(x, •--, x, /, •••, w;)=0 for O^fe^m— 1. Thus ^(0 for all
belong to M and hence the affine subspace x+W=Mr is contained in M. D

In the rest of this section we shall classify totally geodesic submanifolds of
hypersurfaces defined by symmetric bilinear forms and trilinear forms on Rn+ί.
Let F be a non-singular symmetric bilinear form on Rn+1. We use the same
symbol F for the symmetric endomorphism of Rn+1 which corresponds to the
symmetric bilinear form by the standard inner product < , >. Let M be a
hypersurface defined by F. Then the following holds.

THEOREM 6.5. // S is an r-dimensional (2^r^n — 1) maximal totally geodesic
submanifold of M, then S is one of the following :

(1) a connected component of WΓΛM, where W is an r+l-dimensional invar-
iant subspace by F,

(2) an r-dimensional affine subspace of Rn+1 which is contained in M.

Proof. It is sufficient to consider Case 3-i in the proof of Theorem 6.4.
Namely there exist an r+1-dimensional linear subspace W and a vector C^W±

and S is a connected component of (C+W)Γ\M which satisfies F(x, v)= 0 for
any x<=S and any v<Ξ.WL. Let v be an arbitrary vector of W^. We view F

and v as parallel tensor fields with respect to the Riemannian connection V of
Rn+1. For vector fields Ul and £72 over S, we have

-CV^FX*, v)=£/1F(x, v)-F(Ul9 v)

^~F(Uίf υ)
and
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From the above computations, it follows that at point

F(x, v)=0,

F(u, v)=0 for any u(ΞTxS,

F(a(uίf HZ), v)=Q for any uίf

We may assume that a restricted to TXS is not zero. Therefore there are u±
and u2 in TXS such that a(ulf w2)^0. The above last equation implies that
F(ξx, v)=0. Since W=TxS+Rξx, we obtain F(W, TΓ L)=0. Hence W is an
invariant subspace by F. Since F(x, WL)— 0, we have F(C, W *•)=$. On the
other hand, since C<^WL, we have F(C,.WO=0. From the non-singularity of
F, it follows that C— 0. Consequently S is a connected component of WΓ\M. D

By fundamental properties of symmetric bilinear forms we can show the
following.

PROPOSITION 6.6. In Theorem 6.5, we assume that F has the index v. Then
the dimension of an affine subspace contained in M is not greater than the
minimum of u and n—v. Let Si and Sz be affine subspaces of the same dimension
which are contained in M. Then there exists a linear transformation φ of Rn+1

which preserves F such that φ(Sι)=S2.

Examples. Let F be a symmetric bilinear form of Rn+1 given by F—
ΣSα^fCSte?, where {ef, •••, e%+1} denotes the dual basis of the natural basis
K, •••, en+ι} of JRn + 1. If every a% is positive, the hypersurface M defined by
F does not contain any affine subspace of positive dimension. In addition
suppose that alt •••, an+ί are mutually distinct. Then the number of F-invariant

r+1-dimensional subspaces is (^+1)- We put M'={jc = i(x1, ••-, xn+1)^M\xl^Q
for any ι}. Then M' is an open submanifold of M. The Riemannian manifold
M' does not have any r(2<*r<n — l)-dimensional totally geodesic submanifolds.
In fact, the F-invariant subspace which contains a point x^M' is the whole
space JRn + 1.

Next we consider the following symmetric trilinear form F on Rn+l :
F— ΣΓΐ1 £?(S)£*(S)e?. Then F is non-singular in our sense. In the rest of this
section, we denote by Qn the hypersurface of Rn+l defined by F, i.e.,

l \ F(x, x} *)=!}

Let Sn+1 be the symmetric group consisting of permutations of {1, 2, ••-, w
For σe5n+ι, we define a linear transformation Tσ of Rn+1 as follows: Tσ(el)=

Then Tσ is an orthogonal transformation which preserves
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the above trilinear form F. Hence Tσ yields an isometry of Riemannian mani-
fold Qn.

We shall classify totally geodesic submanifolds of Qn. First we present
examples of totally geodesic submanifolds. For 2^m<ίn — 1, Qm can be viewed
as a submanifold of Qn, naturally, i.e.,

Qw= {* = «(**, •••, *n+1)e=Qn \ xm+2= ••• =x»+1=0}.

Let W be an w-hl-dimensional linear subspace of Rn+1 spanned by eίf •••, em+ι
Its orthogonal complement WL is spanned by em+2, •••, en+1. Then evidently it
holds that Qm=Wr\Qn and F(x9 y, v)=0 for A:, yeTF, veJ^1. By Proposition
6.3 (1), Qm is totally geodesic in Qn. Another example is given as follows:
Let ki, •••, kι be integers which satisfy 2<^&ι<; ••• ^& z and kι+ ••• +
We put

— / v — ί/vι ... ^n + l\f=r)n I vl — ... — γkΛ y*ι + ι — ... — r*ι+*2
— J Λ — \Λ, , , Λ ytz:*^/ I Λ> — — Λ L

f A L — — Λ λ ,

Then it is easily seen that 5 is connected and is a submanifold of Qn with
codimension kι+ ••• -\-ki-l. We define cyclic permutations σ l f •-, σ z by #!—
(1, •••, fei), •••, θι~ (^ι+ ••• +feι_!+l, •••, ^ι+ ••• +^z-ι+^z) and a permutation σ
by (7^(7! ... σit Then S is a fixed point set of Qn by Tβ. Therefore S is
totally geodesic in Qn. For convenience, we denote this submanifold by Skl,...,kl

in this section. We shall show that these submanifolds and affine subspaces
exhaust totally geodesic submanifolds of Qn.

THEOREM 6.7. // S is an r-dimensional maximal totally geodesic submanifold
of Qn, then S is congruent to one of the following totally geodesic submanifolds
by an isometry Tσ, σGSn+1:

(1) Sklt...ιkl in Qm for some m-^n, where r=m+l—(k1+ ••• +kι),
(2) an r-dimensional affine subspace of Rn+ί which is contained in Qn.

Proof. Owing to Theorem 6.4, we consider Case 3-i in the proof of Theo-
rem 6.4. Namely, there exist an r+1-dimensional linear subspace W and a
vector C^W^ and S is a connected component of (C+W)fΛQn which satisfies
F(x, x, v)=0 for any JceS and v^WL. Let ξ, A, a, and Vα denote the unit
normal vector field, the shape operator, the second fundamental form and its
covariant derivative of Qn in Rn+l, respectively. We note that at generic
points jte S, a restricted to T'XS do not vanish as it is known by the argument
in the proof of Theorem 6.4.

To prove our Theorem, we prepare some lemmas.

LEMMA 1. For #eS, v&W*-, and u, ulf u^ u3, u4<^TxS, the following for-
mulas hold :
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(1) F(x, u, v)=0,

(2) F(ult u2, v)+F(x, a(ulf M2), v)=0,

(3) F(«(MI, M2), u8, v)+F(α(M2, u8), Ui, v)+F(α(w3, MI), M2, v)

+ F(x, (VM3α)(Wl, z/2), v)=0,

(4) F(α(Mι, M2), α(M8, M4), v)+F(a(uz, MS), α(ttι, M4), v)+F(α(w3, MI), α(w2, H4), v)

+ F((Vttlα)(M2, u,\ u,, ι;)+F((VW2α)(w3, w4), 1̂ , v)+F((Vtt8a)(M4, uj, M2, v)

+ F((VW4α)(w!, MS), MS, v)— FG4α(tt8. t t l)M4, w2, v)— FCAαc t t l > t t 2)M4, MS, v)

— FC4β(tt2i t t8)M4, MI, V)+F(Λ:, 07«4V«8α:)(ttι, M8), v)=0.

Proof of Lemma 1. Differentiating F(^r, A:, z;)=0, we obtain the first for-
mula (1). Succeedingly differentiating one formula, we obtain next one.

We fix a point x^S at which a restricted to TXS does not vanish. We
define a subspace W in WL as follows:

1 I F(jc, ,̂ v)=0}

Then we have next lemma.

LEMMA 2. The following formula holds :

(6.6) F(wlf w2, v)=Q for any v^W and wlf

Proof of Lemma 2. For M, MI, uz<^TxS and v^W, we have

( i ) F(x, *, v)=0, (π) F(x,ί,,t;)=0,
(iii) F(x, M, v)=0, (iv) F(u l f M,, v)=0,
(v) F(M,f,,t;)=0, (vi)

The formula (iii) is exactly Lemma 1 (1) and (iv) is obtained by Lemma 1 (2)
and (ii). Since a restricted to TXS does not vanish, by Lemma 1 (3) and (ii)
we have (v). Similarly, by Lemma 1 (4) and (ii), (iv) and (v), the formula (vi)
holds. Since W=TxS+Rξx, by (iv), (v), and (vi), we have F(wlf w2, v)=0 for
Wi, w2^W. Moreover by (ii) and (iii), we have F(x, w, ι>)=0 for w^W. Since

is written as x = C + w for some w^W, Lemma 2 holds.

Our important step is to prove that the vector C is zero. We suppose that
and will show a contradiction. Moreover we assume that d imW' —

dimPf 1 — 1, where W denotes the subspace of WL defined in Lemma 2 (however
even if W'=WL, arguments below will hold). To present WL, we will choose
an appropriate basis of WL. Let (vlt •••, vq} be a basis of WL (dimPF J = q) such
that {vίt •" , v^} is a basis of W. Placing column vectors vly ••-, vq of Rn+l, we
obtain an (w + 1, ^)-matrix P=(V! ••- vq). We assume that first (#—1, q— l)-matrix
and first (q, <?)-matrix in P are both non-singular. If not so, we take a suitable
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permutation σeSn+1 and transform W, C etc. by a linear isometry Tσ. Then
our assumption will be satisfied. By change of bases, we may assume that the
matrix P=(VI ••• vq) has the form :

(6.7)

1

0

v\

0

i

LEMMA 3. In (6.7), /or each j (/=1, ••-, 0—1), vj, vj+1,
except at most one and if vj^O (i=q, •••, n + 1), ί/iβn v}—~-1.
orthogonal to RC+W.

Moreover W is

Proof of Lemma 3. We prepare some notation. For a vector v=i(v1, υ2,
~, vn+l)^Rn+l, we denote by m+(v) and m_(v), the number of positive compo-

nents v% and the number of negative components vl, respectively. We denote
by Fv a symmetric bilinear form on Rn+1 defined by Fv(x, y)=F(x, y, v), i.e.,
F1,=S?i1vtβf®^*. We note that the dimension of a null subspace with respect
to Fv is not greater than n+1—max{m+(v), m_(v)}.

ASSERTION 1. For each j (/=!, •••, 0—1), vj, vγl, •••, vf+1 are zero except
at most one and if vj^Q (i=q, •-, n+1), then v] is negative.

Proof of Assertion 1. By Lemma 2, RC+W is a null subspace with respect
to F9 for v<=W. Since C^O, we have dim JRC+TF=r+2=n+l-(0-l). We
shall prove our assertion for /=!. The other cases are same. Suppose that
there exists a positive number in v\, vl*1, •••, t>?
choose sufficiently small positive numbers λ*
^g_ιfg_ι>0. Put ^=^1+^2^2+ ••• +^«-ιV«-.ι. Then we have m+(v)^q. Therefore
the dimension of a null subspace with respect to Fυ is not greater than n+l—q.
It is a contradiction. Next we suppose that there exist two negative numbers
in vϊ9 vγl, " , Vι+1. We assume that they are v\ and v{ (q^i<j^n+ΐ). Choosing
sufficiently small positive numbers λ2, •••, λq^ίf we have v\—λ^v\— ••• — Λg_ιt;3_ι<0
and v{—λtf){— ••- — Λg_ι?4_ι<0. Put v=ι;ι—A2v2— ••• — Aβ_ιVβ-ι. Then we have
mJ(υ)^q. Again it yields a contradiction. Hence our first assertion has been
shown.

+1 We assume that vϊ>0. We
_ι such that ^1+^2^2+ ••• +
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Now we take vectors w,, (*'=!, •••, r+1) as follows:

f t —vΓ l \

429

-vq+

0

0

1 <— (#+z)-tίι row.

0

0

Then {wι, •••, wr+ι\ is a basis of W7. We take a vector C'^C+W which has
the form C'=l(c'1, •••, c'5, 0, ••-, 0). Since C^O, we have C'^0. Evidently
c>+w=c+w.

ASSERTION 2. T/i^re emί non-zero ones in v\+l, •••, ι;£+1.

Pr6>σ/ ύ>/ Assertion 2. Suppose that t^+1— ••• — v%+1=Q. For Λ eS, we have
Q=F(x, x, vq)=(xqY and hence xq=Q. Since S is contained in Cf+W, 0=
<vβ, Λ:-Cr>=-c/g and hence cfq=Q. Since for / (l^ ^^-l), 0=F(C', C' ', vy)
=(c'02> it holds that c/<7=0. Consequently we have C'=0. It is contrary to
C'^=0. Therefore there exist non-zero ones in ι$+1, •••, vj+1.

ASSERTION 3. // vj^Q for y=l, ••-, ?—l and ι=^, •••, n+1, ί/zβn v}=— 1.

Prί?o/ o/ Assertion 3. For ι=l, •••, r+1, we have

0=F(u;t, u;t, ^)=(v5^+l-v;+<)a+vj(-vg+i)a+vj+t.

Suppose that vj+l^=0 for some ί (ι=l, •••, r+1). Then by Assertion 1, we have
vj=0. This, with the formula above, implies that vj+t(vj+t+l)=0 and hence
v«+t= — 1. Suppose that vj+ l=0 for all ί=l, ••-, r+1. By Assertion 2, z;|+t^0
for some i (/=!, •••, r+1). From the formula above, it follows that
(vq

q

+ί)Wj(vq +l)=Q. Therefore we have vj=0 or vj=-l.

ASSERTION 4. F^r ; = 1, ••-, q—l, if vj=0, ί/iβn c/ J=0 αwd ι/ vj= — 1, then
c'J=c'q. In particular W is orthogonal to RC'+W=RC+W.

Proof of Assertion 4. From Lemma 2, it follows that 0=F(C;, C7, v3)—
(cfJ)z+(cfqYvq. Therefore if vj=0, then c/J=0. Next suppose that vj= — 1. We
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choose an integer i such that v%+l^Q. Since 0— F(C', wτ, vj)=ι%+v(c'*—c'J\ we
obtain c'3~cfq.

Hence Lemma 3 has been completely proved.

We continue our proof of Theorem 6.7. We use the same notation as
Lemma 3 and its proof. We put vectors wτ (i— 0, •••, r+1) as follows:
wl=

t(-ι%¥l, .-, -vq±l, 0, ••-, 0, 1, 0, ••-, 0), where vq+l (j=l, •-, q-Y) denote
the components of vectors v3 given in Lemma 3 and (q+i)-th row is 1. Then
{w0, Wι, --, wr+1} is a basis of RC+W. In fact, for each i, wτ is orthogonal
to vlt •••, vq_! and hence by Lemma 3, w% belongs to RC-\-W. For y(=RC+W,
we write y=^Σζ~o yίwl. Then S is a connected component of

Here mτ (ί=0, •••, r+1) denote positive integers defined by rat— 1+the number
of {/ |vj+ l=— 1}. Moreover it holds that F(y, y, v^)—^ for all y<=S, i.e.,
(3'0)2+ΣίΛ1Vβ+t(3;i)2=0 From now on, we simply write v* (*'=!, •••, r+1) and
c for ι$+l and c'3, respectively. We note that c— cfq is not zero. In fact, if
c'q=Q, then by Assertion 4 in the proof of Lemma 3, we have C'=0 and it is
contrary to our assumption. We define functions /, g, and h on RC+W by
fW^Σtϊ^mάytY, g(y)=y'+*Σΐ+}v*y\ and /z(^)-(^°)2+ΣtrA1^(^ί)2, respec-
tively.

As is shown in Assertion 2, there exist non-zero ones in vl, •••, vr+1. We
shall show that there exist negative ones in them. Suppose that v1, •••, υr+1

are all non-negative. Since h(y)=Q for y^S, we have g(y)=Q. It is contrary
to g(y)=c^0 for y^S. Therefore there exist negative ones. So we assume
that v1 is negative. We define a projection π of RC+W onto the subspace V
linearly spanned by wz, •••, wr+1 as follows: π(y)=π(Σϊ=Q ylwτ)=^l^ y%wτ for
y<E.RC-\-W. It is easily seen that π restricted to (C+W}Γ\Qn is a homeomor-
phism onto V. Therefore (C+W)Γ\Qn is connected and hence coincides with
5. Next we shall show that there exist non-zero ones in vz, •••, vr+1. Suppose

We put y=cw0

Jry2wz, where yz= ^(1— m^/m^ Then
y belongs to S and h(y)— 6>2^0. It is a contradiction. Therefore there exist
non-zero ones in v2, •••, vr+1. So we assume that V2ΦQ.

We take y 0 and y1 which satisfy y°+v1y1=c and m0(y°Y+m1(y1y=l and
put y—y^w^y^w^. Then y belongs to 5. Since /z^O on S, it holds that
dh=λdf+μdg in T*(/2C+WO for some A, μ^R. At 3/=3;°u;o+^1u;1, we have
df=3m0(y°)2dy°-i-3mί(yl)2dy1

) dg=dy°+T>¥iVldyl and ί/Λ-23;0ί/3;0+2?;
13;1ύ(3;1.

Comparing coefficients of dy2 in both sides, we obtain μ=0. Since dh=λdf,
it follows that 23;°=3^m0(3;0)2 and 2v1y1=3λml(y1)2. Since Λ(^)=0, we have
0=2{(3;

0)2+z;1(3;1)2}-:3>ί{mo(^0)3+m1(3;1)3}-3^ and hence ^=0. From this it fol-
lows that dh=Q and hence 3;°=3;1=0. It is a contradiction. Consequently it
has been proved that the vector C is zero.
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By the argument above, it follows that S is a connected component of
Wr\Qn, where W is an (r+l)-dimensional linear subspace of Rn+1. Since
F(x, x, v)=0 for any x^S and v<=WL, we have F(w1} w2, v)=0 for any wίf wz

^W and v^W 1. By the same consideration as Lemma 3, we see that there
exists a basis {vίf ~ , vq] of WL which has the following form (up to a linear
isometry Ta,

(v,
0

0

7,«+ιVq

Here for each / (/=!, •••, q\ v<}+l, •••, z;?4"1 are zero except at most one and if
vjφQ (i=q+l, . . - , n + 1), then v}— — \. Therefore it has been proved that S is
congruent to Skί,...,kl in Qm for some m^w. D

On case (2) in Theorem 6.7 the following holds:

PROPOSITION 6.8. The dimension of an affine subspace contained in Qn is
not greater than n/2. When n=2q, a q -dimensional affine subspace contained in
Qn is congruent to the following affine subspace S by a linear transformation Tσ,

, q),

Proof. Let 5 be an r-dimensional affine subspace of Rn+1 which is con-
tained in Qn and W be an r-dimensional subspace which corresponds to the
tangent space TXS at x^S. Then the following formulas hold:

( i ) F(x, x, *)=!,
(iii) F(x, wz, Wϊ}—0,

( i i )
(iv)

F(x, x, w
F(ws, w2,

= 0,

for Wι, w2,
We use the same notation as Lemma 3 in Theorem 6.7. The formulas (ii),

(iii), and (iv) imply that an r+1-dimensional linear subspace Rx-\-W is a null
subspace with respect to Fw for any w^W. We may take a basis [vlf •••, vr} of
W which has the following form (up to a linear transformation Tσ, σ<=Sn+ί):

(6.8)

' 1

0

vΓ

0
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We put v—Vι-\- -" +vr. Since m+(ι/)^r, the dimension of a null subspace with
respect to Fv is not greater than n-\-l—r. Therefore we have r+l^w+1—r
and hence r^n/2. Thus the first part of Proposition 6.8 has been proved.

From now on we assume that n=2q and that S is a ^-dimensional affine
subspace of Rn+1 which is contained in Qn. Let {vlf •••, vq} be a basis of W
which has the same form as (6.8). By the same argument as Lemma 3 in
Theorem 6.7, we see that for each j 0 = 1, •••, q), vj+1, •••, vf*1 are zero except
at most one. Since Q=F(vJf vjf v/)=l+Σίίi(^?+ί)8» there exists only one v]+l

such that v«+*=-l. For kΦj, we have Q=F(vk, vk, vJ)=v*+t(vΓiγ==--(vq

k

+iγ
and hence z;£+t=0. Therefore transforming by Tnj σ<=Sn+1, if necessary, we
can take a basis {vlf , vq} of W which has the following form:

/ 1

0
-1

0
V o

0 N

1

0
-1

• 0 )

Since F(x, υ3) v/)=0, we have x3+xq+J=0 0'—1. ••• > <?)• Therefore the
vector e(0, •••, 0, 1) belongs to S=*+W. Consequently the second part of
Proposition 6.8 has been proved. Π

7. Totally geodesic surfaces of 3-dimensional Lie groups
with left invariant Riemannian metric

Let G be a Lie group with left invariant Riemannian metric and let g be
the corresponding Lie algebra with an inner product <, >. We want to clarify
various properties on totally geodesic submanifolds in G. In this paper we will
study the simplest case, i.e., 2-dimensional submanifolds in 3-dimensional Lie
groups. From now on we denote by G a 3-dimensional Lie group. We reduce
the classification problem of totally geodesic surfaces of G to the following
problem: Classify 2-dimensional subspaces in TeG which are tangent spaces
of totally geodesic surfaces in G. Here e denotes the identity of G. As usual,
we identify TeG with g. In this paper we specialize to the unimodular case
and state our results.

First we recall the classification of 3-dimensional unimodular Lie groups
following J. Milnor [10]. Let g be a 3-dimensional unimodular Lie algebra
with an inner product <, >. Then there exists an orthonormal basis elt ez, e%
for which the bracket operation is given as follows:
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According to signs of λlt λ2, λ9, six kinds of Lie algebras are obtained. The
following table is due to J. Milnor [10] :

Table 1.

Signs of λί, λ ,,

+, +, 0
+, -, o
+, 0, 0
0, 0, 0

Associated Lie group

SU(2) or SO(3)
SL(2, R) or 0(1, 2)

£(2)
Γ/VΊ 1 \ZS\-L, 1)

Heisenberg group

Now we give the formulas of the Riemannian connection V and the curvature
properties, which are due to [10]. For convenience, we define numbers μt by

λ2+λs)-λl (ι=l, 2, 3).

LEMMA 7.1. Let e ί f ez, e3 be an orthonormal basis of (g, <, » chosen as (7.1).
(1) The Riemannian connection V is given with respect to e^ e2, e$ as follows :

(2) The orthonormal basis eί} e2, e$ diagonalizes the Ricci curvature tensor
and the principal Ricci curvatures are given by

(3) The covariant derivative of the curvature tensor R is given as follows:

(VezR)(e2, el)e2^

(VezR)(e2, el}e^=

(Vβg/?)(e8, βι)eB=

ί=-2μl(μί-μ2

the others eJ} ek)eι=Q.
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Proof. (1) and (2) are found in [10] and (3) is obtained by the straight-
forward computation. Π

Let Aut(g) and O(g <,» be the group consisting of automorphisms of the
Lie algebra g and that of orthogonal transformations of (g, <,», respectively.
For ΦeAut(g), we take the (local) automorphism φ of the Lie group G such
that φ^e—Φ. Moreover if ΦeO(g;<,», then φ is an (local) isometry of G
with the left invariant Riemannian metric. Therefore a 2-dimensional subspace
V in TeG = g is the tangent space of a totally geodesic surface in G if and
only if so is Φ(V). We will classify such subspaces up to the action of
Aut(g)Πθ(g;<,».

THEOREM 7.2. Let G be a ^-dimensional unimodular Lie group with left
invariant Riemannian metric and let elt ez, es be an orthonormal basis of (g <,»
chosen as (7.1). Then totally geodesic surfaces of G are classified as the follow-
ing table: to describe totally geodesic surfaces, we list up 2-dimensional subspaces
in TeG = g which are the tangent spaces of totally geodesic surfaces. We remark
that the signs of λlf λ2, λ3 in the table below are chosen as Table 1.

metric t.g. surfaces remark

5Γ7(2) ^=^=^3 all 2-dim subspaces (1)

the others none

SL(2, R) λι>λz—λz none

none

E(2) λι>λ2 none
λl—λ2 all 2-dim subspaces (3)

none

(βi—e*),J.I

Heisenberg gr. none

R* all 2-dim subspaces (5)

Remarks:
(1) This metric is of positive constant sectional curvature.
(2) These subspaces are equivalent under the action of Aut(g)Πθ(g <, ».

They are Lie subalgebras of g.
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(3) This metric is flat.
(4) These two subspaces are equivalent under the action of Aut(g)Πθ(g < , ».

They are Lie subalgebras of g.
(5) This metric is flat.

Proof. We shall prove our computation results when G = SL(2, R). The
other cases are similar. We may assume that λι^λ2 without loss of generality.
Since Λ8<0, we have μι = l/2(— Λι+Λ2+Λs)<0, μί=l/2(λι+λt—λί)>Qf and μ2<μ,.
The sign of μ2 is uncertain. We consider the following three cases:

Case I . //2>0.
Case Π. μ2— 0.
Case ffl. μ2<0.

Case I. By Lemma 7.1 (2), the eigenvalues of Ricci curvature tensor are
mutually distinct. Therefore by Proposition 4.6 curvature-invariant subspaces
are {eίf e2\R, {e2) e3}R, and {elt eB}R. Since (VβlR)(elf e2)e1=2μl(μ2—μ3)e3, there
does not exist a totally geodesic surface whose tangent space at e is {elf e2}R.
For subspaces {e2, e3}R and {elt e3}R, the same holds. Hence in this case there
isn't a totally geodesic surface.

Case II. In this case, we have p ( e l f e1)=ρ(e3, e3)=Q and p(ez, 02)<0. There-
fore curvature-invariant subspaces are {elf e3}R and {cos #£ι+sin θez, ez} R for

Case 1, {elf es}R. Since ( V e j R ) ( e ί t e3)el=—2μ\μ3e2) there does not exist a
totally geodesic surface whose tangent space at e is {βίf es}R.

Case 2, {cos 0eι+sin 6e3, e2}R. We put /— cos ^βi+sin Θe3. Making use of
Lemma 7.1 (3), we have

Therefore if cos2^//ι+sin2^/^3^0, there does not exist a totally geodesic surface
whose tangent space at e is {/, e2}R. From now on we choose 0 which satisfies
^r^θ =—μl/μz=—λ^/λl. In this case, we put $={f,e2}R. Then ϊj is a Lie
subalgebra of g. In fact we have

CΛ 02] =— Λi sin 0βι+Λ8 cos θez——λl tan θ f .

Let H be a connected Lie subgroup of G which corresponds to ϊ). Then H is
totally geodesic in G. In fact we have V//=sin θ cos θ(— μι+μ3)e2, Vβ2/— 0,
and Ve/2— 0.

Case III. We devide this case into the following two subcases :
Case 1. λi>λ2.
Case 2. λι=λz.

Case 1. Since μι—μ2=λ2--λl<Q, the eigenvalues of Ricci curvature tensor
are mutually distinct. Similarly to Case I, we see that there does not exist a
totally geodesic surface.
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Case 2. In this case, we have p(elf e1)=p(ez, β2)<0 and p(es, £3)>0. There-

fore curvature-invariant subspaces are {eίf ez}R and {cos 0£i+sin Θe2, es}R for

Moreover it is easily seen that

cos a —sin a 0 ^

sin a cos a 0

0 0 1 ,

cAut(g)nO(g;<,».

Therefore it is sufficient to consider the subspaces {elf ez}R and {elf e$}R. Since

(Vβl#)0ι, e2)e1=2μ2

1(μ2—μ3)e3 and (VβlΛ)(βι, e3)eί=2μl(μz—μ3)e2, there does not
exist a totally geodesic surface whose tangent space at e is {eίt ez}R or {elf es}R. D

Observations of Theorem 7.2. (1) There do not exist totally geodesic sur-
faces in almost all 3-dimensional Lie groups with left invariant Riemannian

metrics.
(2) Except the cases of constant sectional curvature, totally geodesic sur-

faces are Lie subgroups. In particular, the equivariance of such immersions
holds.

(3) After we classified totally geodesic surfaces, we see that given a

2-dimensional subspace V in TeG there is a totally geodesic surface whose
tangent space at e is V if and only if R(x, y)z^V and (Vα/?)(jt, y}z<=V for
u, x, y, z^V. That is, we can conclude that there exists or not a totally

geodesic submanifold by the data of R and VR.
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