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SURFACES WITH 1-TYPE GAUSS MAP

CHANGRIM JANG

0. Introduction

Submanifolds of finite type were introduced by B.-Y. Chen about thirteen
years ago [2], Many works have been done in characterizing or classifying
submanifolds in Euclidean space with this notion. On the other hand, several
authors studied submanifolds with finite type Gauss map. B.-Y, Chen and P.
Piccinni studied compact submanifolds with finite type Gauss map [3]. And C.
Baikoussis, B.-Y. Chen and L. Verstraelen classified ruled surfaces and tubes with
finite-type Gauss map [1]. Recently Y. H. Kim studied surfaces in 3-dimensional
Euclidean space £3 with 1-type Gauss map and he proved that the only co-closed
surfaces in E3 with 1-type Gauss map are spheres and circular cylinders [6].
In this paper we study surfaces in Ez with 1-type Gauss map without the
assumption of co-closedness and obtain the following theorem.

THEOREM. Let M be an orientable, connected surface in EB. Then M has
l-type Gauss map if and only if M is an open part of a sphere or an open part
of a circular cylinder.

1. Preliminaries

Let M be an orientable, connected surface in E*. We now choose eί and
e2 as principal normal vectors of M and let x and y the corresponding principal
curvatures of the shape operator S associated with a unit normal vector es.
Let ω1, α>2, ω3 be the dual 1-forms to eίf e2 and e3 and α>5 the connection forms
associated with ω1, ω2, ω3 satisfying α>2+ α>^=0 and

y=ωl(e2)=h(e2) e2), h(el9 e2)=
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where V and V are the Levi-Civita connections of E3 and M respectively and
h the second fundamental form of M. The indices A, B run over the range
{1, 2, 3} and i, j, k over {1, 2}. The covariant derivative of the second funda-
mental form h of M is given by

(Vekh)(eτ) ej)=ekh(eτ, ej)-h(Vekeif ej)-h(e%, V e k β j ) .

We will use abbreviations htjf hljt k for h(eτ, βj) and (Vβk h)(elf βj) respectively.
The Codazzi's equation hl3tk — hiktj implies that

(1.1) hίlll = e1x, h22>2=e2y,

(1.2) hίt>ι=h21tι=hιι.t=etx=(y

(1.3) hί2,2=h21>2=h22,1 = e1y=(x

We now give the definition of co-closed surface introduced by Y. H. Kim for
later use.

DEFINITION [6], A surface of Euclidean 3-space is called co-closed if the
connection form ω\ is co-closed, that is, trace (Va)f)=0.

For a smooth function / on M, V/, the gradient / and Δ/, the Laplacian
of / are given by

The Laplacian Δ can be extended in a natural way to E3-valued smooth maps
on M. In fact, if v is an E3-valued smooth map on M. Then

(1.4) Av-s {Ve . Ve. j,-(VVe . e. j,)} .

Applying (1.4) to the unit normal vector es, we find

(1.5) Δ03=-V#-trS203,

where H and tr S2 denote the mean curvature function of M in E3 and the
square length of the second fundamental form h respectively. A smooth map
v is said to be of k-type if v can be written as

where v0 is a constant vector, pt, v2ί ••• , vk are non-constant maps satisfying
Avi=XtVi, 2=1, 2, •••, Jfe and all eigen values {Λ, •••, λk} are mutually different.
Suppose that the Gauss map eB : M-^So(l)£E3 of M is of 1-type. Then there
exist a constant a and a constant vector c such that

(1.6) Δ08=α(*8-c).
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Then, (1.5) and (1.6) imply that

(1.7) a(es-c)=-VH-trS2es.

So we have

(1.8) <ac, acy=<VH, V//>+(tr S2+α)2,

where < , > means the Euclidean metric of Es. Comparing the tangential and
normal components in (1.7), we obtain the followings

(1.9) VH=acτ,

(1.10) trS2=a<c, esy-a,

where ( )Γ means the projection to the tangent space of M. By (1.9) and (1.10),
differentiating the mean curvature H in the principal normal vectors eίf ez on
M, we obtain

(1.11)
'+α) .

So we have

(1.12)

(1.13)

(1.14)

(1.15)

since H=x+y and tr S2=%2+3;2. From (1.10), we get

This imply

(1.16)

(1.17)

From (1.5) and (1.10), we find

ΔtrS2=-<V#, V//>-trS2(trS2+α).

This and (1.18) imply

(1.18) A tr S2=α(tr Sz+ a)- a,

where a—(ac, acy. We need to mention a well known identity.
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LEMMA 1 (Simons' identity) [5]. Let M is a surface in E3 with the induced
metric. Let H, S and h be the mean curvature function of M in Es, the shape
operator of M and the second fundamental form of M, respectively. Then, for
given orthonormal frame e^ e2, the value ΔtrS 2 is calculated as follows.

(1.19) Δ tr S*=2 Σ htj(eiβjH-(Vei e,H))+2\ VS\ 2+2#tr S3-2(tr S2)2,
I'}

where |VS| 2 means Σ ι , j , k ( h i j , k Y .

From (1.11), (1.18) and (1.19), we get

(1.20)

2. Proof of Theorem

At first we will prove that the mean curvature function H of M is constant.
We need the following lemmas.

LEMMA 2. // (e^, eιy}=(ΰ, 0) or (e2x, e2y)=(Q, 0) in an open subset U of
M, then H is constant in U.

Proof. Suppose that (e^x, e &)=($, 0) in U. Then from (1.13), we find
e2Hωl(e2)—Q. So we may assume that ω!(£2)— 0. Differentiating (1.14) in the
direction βι and using (1.12), we obtain £ι(ΰ>ι(0ι))— 0. So we have that

trtVω?):̂ ^?^)-^^

This imply that U is a co-closed surface with 1-tyρe Gauss map. Hence, due
to the result of Kim [6], we see that H is constant in U. In case that
(e2x, ezy)=(Q, 0) we can get the same conclusion by similar computation.

LEMMA 3. Let f(u, v) be a nonconstant real polynomial in two variables u,
v. If the principal curvatures x, y satisfy f(u, v), that is f ( x , y)=Q, in a open
subset U of M, then H is constant in U.

Proof. Suppose that H is nonconstant in U. Then

is a nonempty open subset. Since the real polynomial ring R[u, v\ is a UFD,
the polynomial f(u, v} can be factored as /=/ι/2 •••/*, where /t are irreducible
polynomials in R[u, v]. From the condition f ( x , y)=Q on U, we can guarantee
the existence of a nonempty open subset W of U, where x, y satisfy a non-
constant irreducible polynomial fτ. We may assume Λ— Λ without loss of
generality. Differentiating f ι ( x , 30=0 in the direction ely we have

(2.1) (/ι)«(
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where (/ι)tt and (/ι)υ mean partial derivatives of fl with respect to u and v>
If fax, βι3θ=(0, 0) or (02*, β23θ=(0, 0) holds in W, then H is constant in T^ by
Lemma 2. So we may assume that (βix, βιy)Φ(Q, 0) and (e*x, e2y)^(Q, 0) in W.
From (1.16), (1.17) and (2.1) we get

ι)*(*, 30=0,

)w(*, 30=0.

If (3x}(-3y)+(x+2y)(2x+y)=2(x-yY=Q in PΓ, then W is totally umbilical and
hence H is constant in W, which contradicts to the assumption. So we get
(fι)u(x, y)=(fι)v(x, y) — 0 in W. Since /ι(w, t>) is a nonconstant polynomial, both
of (/ι)ιt and (/ι)υ are not zero polynomials. Assume that (/ι)w is not a zero
polynomial. Since /i and (/Ί)M are relatively prime, the system

/ι(κ, v)=0

has only finitely many zeros [4, page 18]. But x, y satisfy this system in W.
Hence x and y must be constant, which contradicts to the assumption. So we
can conclude that H is constant in U.

Suppose that the mean curvature function H of M is nonconstant. Then
there exists an open subset U of M where VH never vanishes. By Lemma 3,
we also assume that y^O, x-\-2y =£θ, x—yφ§ and x+yφΰ in U. We will work
in U. By (1.1), (1.2) and (1.3) we see that
So from (1.20) we have

From (1.16), (1.17) and this we find

After some calculation we get

(2.2)

From (1.8) we obtain

a-(trS2+aγ=(e1xγ+(e2xγ+2(e1x)(eίy)+2(e2x^

Using (1.16) and (1.17) and after some computations, we get



SURFACES WITH 1-TYPE GAUSS MAP 393

(2.3)

From (2.2) and (2.3) we obtain

where

F(x, y)=(

where fj(y) are real polynomials in one variable y. From (2.4) we see that

We will denote βix by G(x, y). Substituting

,
^i^ and, 1 o i Q

x — y x-τLy oy

into (1.13), and after some computations we have

where Gx and G y are partial derivatives of G(x, y) with respect to x and y.
So the following holds

Suppose e2x=Q locally. Then it follows that e^y— 0 from (1.17). This is a
contradiction to the assumption by Lemma 2. Thus the following holds in U,

(2.5) 9(

From (2.4), we have

(2.6)

Differentiating this with respect to x, we get

lower degree terms with respect to x.

Multiplying (x2— y2)(x— y) at both sides of this, we get
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(2.7) 96(x2-y*)(x-yr(2x+y)G*+W(x2-y2)2(x-y)*GGx

— 28;y;t9+S lower degree terms with respect to x.

Similarly we get

(2.8) -W(χ*-y*)(x-yγ(x+2y)G2+96(x2--y2)2(x--yyGGy

=4%10+S lower degree terms with respect to x.

From (2.6), (2.7) and (2.8) we find

(2.9) 96(x2-y2)2(x-y)*GGx=:12yx9+^ lower degree terms to x,

(2.10) 96(x2-y2)2(x-yYGGy=4:X10+^ lower degree terms to x.

Multiplying 96(*2— y2)2(x-yyG at both sides of (2.5), we get

(2.11) 9(x2+xy+y2){96(x2-y2)2(x-y)*G2}

-(x+2y)(2x+y)(x-y){%(x2-y2)2(x-yYGGy\=Q.

Substituting (2.6), (2.9) and (2.10) into (2.11), we can see that the heighest
degree term with respect to x in (2.11) is — 8*13. So x and y satisfy a non-
constant polynomial (2.11). Hence, by Lemma 3, H is constant in U, which
contradicts to our assumption. Consequently H is constant in M. And from
(1.14) and (1.15) we can see that x and y are constant. So M is an open part
of a plane or a sphere or a circular cylinder. But the Gauss map of a plane
is constant. Hence a plane has not 1-type Gauss map. The converse is an
easy computation.
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