SURFACES WITH 1-TYPE GAUSS MAP

CHANGRIM JANG

0. Introduction

Submanifolds of finite type were introduced by B.-Y. Chen about thirteen years ago [2]. Many works have been done in characterizing or classifying submanifolds in Euclidean space with this notion. On the other hand, several authors studied submanifolds with finite type Gauss map. B.-Y. Chen and P. Piccinni studied compact submanifolds with finite type Gauss map [3]. And C. Baikoussis, B.-Y. Chen and L. Verstraelen classified ruled surfaces and tubes with finite-type Gauss map [1]. Recently Y. H. Kim studied surfaces in 3-dimensional Euclidean space E^{3} with 1-type Gauss map and he proved that the only co-closed surfaces in E^{3} with 1-type Gauss map are spheres and circular cylinders [6]. In this paper we study surfaces in E^{3} with 1-type Gauss map without the assumption of co-closedness and obtain the following theorem.

Theorem. Let M be an orientable, connected surface in E^{3}. Then M has 1-type Gauss map if and only if M is an open part of a sphere or an open part of a circular cylinder.

1. Preliminaries

Let M be an orientable, connected surface in E^{3}. We now choose e_{1} and e_{2} as principal normal vectors of M and let x and y the corresponding principal curvatures of the shape operator S associated with a unit normal vector e_{3}. Let $\omega^{1}, \omega^{2}, \omega^{3}$ be the dual 1 -forms to e_{1}, e_{2} and e_{3} and ω_{A}^{B} the connection forms associated with $\omega^{1}, \omega^{2}, \omega^{3}$ satisfying $\omega_{A}^{B}+\omega_{B}^{A}=0$ and

$$
\begin{gathered}
\bar{\nabla}_{e_{i}} e_{j}=\sum_{k} \omega_{j}^{k}\left(e_{2}\right) e_{k}+h\left(e_{i}, e_{j}\right) e_{3}, \quad \nabla_{e_{i}} e_{j}=\sum_{k} \omega_{j}^{k}\left(e_{i}\right) e_{k}, \\
\bar{\nabla}_{e_{i}} e_{3}=\sum_{k} \omega_{3}^{k}\left(e_{2}\right) e_{k}=-S e_{2}, \\
x=\omega_{1}^{3}\left(e_{1}\right)=h\left(e_{1}, e_{1}\right), \quad y=\omega_{2}^{3}\left(e_{2}\right)=h\left(e_{2}, e_{2}\right), \quad h\left(e_{1}, e_{2}\right)=h\left(e_{2}, e_{1}\right)=0,
\end{gathered}
$$

[^0]where $\bar{\nabla}$ and ∇ are the Levi-Civita connections of E^{3} and M respectively and h the second fundamental form of M. The indices A, B run over the range $\{1,2,3\}$ and i, j, k over $\{1,2\}$. The covariant derivative of the second fundamental form h of M is given by
$$
\left(\nabla_{e_{k}} h\right)\left(e_{i}, e_{j}\right)=e_{k} h\left(e_{i}, e_{j}\right)-h\left(\nabla_{e_{k}} e_{i}, e_{j}\right)-h\left(e_{\imath}, \nabla_{e_{k}} e_{j}\right)
$$

We will use abbreviations $h_{\imath \jmath}, h_{\imath \jmath, k}$ for $h\left(e_{i}, e_{j}\right)$ and $\left(\nabla_{e_{k}} h\right)\left(e_{\imath}, e_{j}\right)$ respectively. The Codazzi's equation $h_{\imath \jmath, k}=h_{i k, \jmath}$ implies that

$$
\begin{align*}
& h_{11,1}=e_{1} x, \quad h_{22,2}=e_{2} y, \tag{1.1}\\
& h_{12,1}=h_{21,1}=h_{11,2}=e_{2} x=(y-x) \omega_{2}^{1}\left(e_{1}\right), \tag{1.2}\\
& h_{12,2}=h_{21,2}=h_{22,1}=e_{1} y=(x-y) \omega_{1}^{2}\left(e_{2}\right) . \tag{1.3}
\end{align*}
$$

We now give the definition of co-closed surface introduced by Y.H. Kim for later use.

Definition [6]. A surface of Euclidean 3 -space is called co-closed if the connection form ω_{1}^{2} is co-closed, that is, trace $\left(\nabla \omega_{1}^{2}\right)=0$.

For a smooth function f on $M, \nabla f$, the gradient f and Δf, the Laplacian of f are given by

$$
\begin{aligned}
& \nabla f=\sum_{\imath}\left(e_{i} f\right) e_{\imath} \\
& \Delta f=\sum_{2}\left\{e_{i} e_{\imath} f-\left(\nabla_{e_{i}} e_{2} f\right)\right\}
\end{aligned}
$$

The Laplacian Δ can be extended in a natural way to E^{3}-valued smooth maps on M. In fact, if ν is an E^{3}-valued smooth map on M. Then

$$
\begin{equation*}
\Delta \nu=\sum_{\imath}\left\{\bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{i}} \nu-\left(\bar{\nabla}_{\nabla_{e_{i}} e_{i}} \nu\right)\right\} . \tag{1.4}
\end{equation*}
$$

Applying (1.4) to the unit normal vector e_{3}, we find

$$
\begin{equation*}
\Delta e_{3}=-\nabla H-\operatorname{tr} S^{2} e_{3} \tag{1.5}
\end{equation*}
$$

where H and $\operatorname{tr} S^{2}$ denote the mean curvature function of M in E^{3} and the square length of the second fundamental form h respectively. A smooth map ν is said to be of k-type if ν can be written as

$$
\nu=\nu_{0}+\nu_{1}+\cdots+\nu_{k},
$$

where ν_{0} is a constant vector, $\nu_{1}, \nu_{2}, \cdots, \nu_{k}$ are non-constant maps satisfying $\Delta \nu_{i}=\lambda_{i} \nu_{i}, i=1,2, \cdots, k$ and all eigen values $\left\{\lambda_{1}, \cdots, \lambda_{k}\right\}$ are mutually different. Suppose that the Gauss map $e_{3}: M \rightarrow S_{0}^{2}(1) \subseteq E^{3}$ of M is of 1-type. Then there exist a constant a and a constant vector c such that

$$
\begin{equation*}
\Delta e_{3}=a\left(e_{3}-c\right) . \tag{1.6}
\end{equation*}
$$

Then, (1.5) and (1.6) imply that

$$
\begin{equation*}
a\left(e_{3}-c\right)=-\nabla H-\operatorname{tr} S^{2} e_{3} . \tag{1.7}
\end{equation*}
$$

So we have

$$
\begin{equation*}
\langle a c, a c\rangle=\langle\nabla H, \nabla H\rangle+\left(\operatorname{tr} S^{2}+a\right)^{2}, \tag{1.8}
\end{equation*}
$$

where \langle,$\rangle means the Euclidean metric of E^{3}$. Comparing the tangential and normal components in (1.7), we obtain the followings

$$
\begin{align*}
& \nabla H=a c^{T} \tag{1.9}\\
& \operatorname{tr} S^{2}=a\left\langle c, e_{3}\right\rangle-a,
\end{align*}
$$

where ($)^{T}$ means the projection to the tangent space of M. By (1.9) and (1.10), differentiating the mean curvature H in the principal normal vectors e_{1}, e_{2} on M, we obtain

$$
\begin{align*}
& e_{j} H=a\left\langle e_{\jmath}, c\right\rangle, \\
& e_{i} e_{j} H-\left(\nabla_{e_{i}} e_{j} H\right)=h_{i j}\left(\operatorname{tr} S^{2}+a\right) \tag{1.11}
\end{align*}
$$

So we have

$$
\begin{equation*}
e_{1} e_{2}(x+y)+e_{1}(x+y) \omega_{1}^{2}\left(e_{1}\right)=0, \tag{1.12}
\end{equation*}
$$

$$
\begin{equation*}
e_{2} e_{1}(x+y)+e_{2}(x+y) \omega_{2}^{1}\left(e_{2}\right)=0 \tag{1.13}
\end{equation*}
$$

$$
\begin{equation*}
e_{1} e_{1}(x+y)+e_{2}(x+y) \omega_{2}^{1}\left(e_{1}\right)-x\left(x^{2}+y^{2}+a\right)=0 \tag{1.14}
\end{equation*}
$$

$$
\begin{equation*}
e_{2} e_{2}(x+y)+e_{1}(x+y) \omega_{1}^{2}\left(e_{2}\right)-y\left(x^{2}+y^{2}+a\right)=0, \tag{1.15}
\end{equation*}
$$

since $H=x+y$ and $\operatorname{tr} S^{2}=x^{2}+y^{2}$. From (1.10), we get

$$
\nabla \operatorname{tr} S^{2}=-S(\nabla H)
$$

This imply

$$
\begin{align*}
& 3 x e_{1} x+(x+2 y) e_{1} y=0, \tag{1.16}\\
& (2 x+y) e_{2} x+3 y e_{2} y=0 \tag{1.17}
\end{align*}
$$

From (1.5) and (1.10), we find

$$
\Delta \operatorname{tr} S^{2}=-\langle\nabla H, \nabla H\rangle-\operatorname{tr} S^{2}\left(\operatorname{tr} S^{2}+a\right)
$$

This and (1.18) imply

$$
\begin{equation*}
\Delta \operatorname{tr} S^{2}=a\left(\operatorname{tr} S^{2}+a\right)-\alpha, \tag{1.18}
\end{equation*}
$$

where $\alpha=\langle a c, a c\rangle$. We need to mention a well known identity.

Lemma 1 (Simons' identity) [5]. Let M is a surface in E^{3} with the induced metric. Let H, S and h be the mean curvature function of M in E^{3}, the shape operator of M and the second fundamental form of M, respectively. Then, for given orthonormal frame e_{1}, e_{2}, the value $\Delta \operatorname{tr} S^{2}$ is calculated as follows.

$$
\begin{equation*}
\Delta \operatorname{tr} S^{2}=2 \sum_{i, j} h_{\imath j}\left(e_{i} e_{j} H-\left(\nabla_{e_{i}} e_{j} H\right)\right)+2|\nabla S|^{2}+2 H \operatorname{tr} S^{3}-2\left(\operatorname{tr} S^{2}\right)^{2}, \tag{1.19}
\end{equation*}
$$

where $|\nabla S|^{2}$ means $\Sigma_{i, j, k}\left(h_{i j, k}\right)^{2}$.
From (1.11), (1.18) and (1.19), we get

$$
\begin{equation*}
2|\nabla S|^{2}=-a \operatorname{tr} S^{2}-2 H \operatorname{tr} S^{3}+a^{2}-\alpha . \tag{1.20}
\end{equation*}
$$

2. Proof of Theorem

At first we will prove that the mean curvature function H of M is constant. We need the following lemmas.

Lemma 2. If $\left(e_{1} x, e_{1} y\right)=(0,0)$ or $\left(e_{2} x, e_{2} y\right)=(0,0)$ in an open subset U of M, then H is constant in U.

Proof. Suppose that $\left(e_{1} x, e_{1} y\right)=(0,0)$ in U. Then from (1.13), we find $e_{2} H \omega_{1}^{2}\left(e_{2}\right)=0$. So we may assume that $\omega_{1}^{2}\left(e_{2}\right)=0$. Differentiating (1.14) in the direction e_{1} and using (1.12), we obtain $e_{1}\left(\omega_{1}^{2}\left(e_{1}\right)\right)=0$. So we have that

$$
\operatorname{tr}\left(\nabla \omega_{1}^{2}\right)=e_{1}\left(\omega_{1}^{2}\left(e_{1}\right)\right)-\omega_{1}^{2}\left(e_{2}\right) \omega_{1}^{2}\left(e_{1}\right)+e_{2}\left(\omega_{1}^{2}\left(e_{2}\right)\right)-\omega_{1}^{2}\left(e_{1}\right) \omega_{2}^{1}\left(e_{2}\right)=0 .
$$

This imply that U is a co-closed surface with 1-type Gauss map. Hence, due to the result of Kim [6], we see that H is constant in U. In case that ($\left.e_{2} x, e_{2} y\right)=(0,0)$ we can get the same conclusion by similar computation.

Lemma 3. Let $f(u, v)$ be a nonconstant real polynomial in two variables u, v. If the principal curvatures x, y satisfy $f(u, v)$, that is $f(x, y)=0$, in a open subset U of M, then H is constant in U.

Proof. Suppose that H is nonconstant in U. Then

$$
V=\{p \in U \mid \nabla H(p) \neq 0\}
$$

is a nonempty open subset. Since the real polynomial ring $R[u, v]$ is a UFD, the polynomial $f(u, v)$ can be factored as $f=f_{1} f_{2} \cdots f_{k}$, where f_{\imath} are irreducible polynomials in $R[u, v]$. From the condition $f(x, y)=0$ on U, we can guarantee the existence of a nonempty open subset W of U, where x, y satisfy a nonconstant irreducible polynomial f_{2}. We may assume $f_{2}=f_{1}$ without loss of generality. Differentiating $f_{1}(x, y)=0$ in the direction e_{2}, we have

$$
\begin{equation*}
\left(f_{1}\right)_{u}(x, y) e_{i} x+\left(f_{1}\right)_{v}(x, y) e_{2} y=0 \tag{2.1}
\end{equation*}
$$

where $\left(f_{1}\right)_{u}$ and $\left(f_{1}\right)_{v}$ mean partial derivatives of f_{1} with respect to u and v. If $\left(e_{1} x, e_{1} y\right)=(0,0)$ or $\left(e_{2} x, e_{2} y\right)=(0,0)$ holds in W, then H is constant in W by Lemma 2. So we may assume that $\left(e_{1} x, e_{1} y\right) \neq(0,0)$ and $\left(e_{2} x, e_{2} y\right) \neq(0,0)$ in W. From (1.16), (1.17) and (2.1) we get

$$
\begin{aligned}
& 3 x\left(f_{1}\right)_{v}(x, y)-(x+2 y)\left(f_{1}\right)_{u}(x, y)=0, \\
& (2 x+y)\left(f_{1}\right)_{v}(x, y)-3 y\left(f_{1}\right)_{u}(x, y)=0 .
\end{aligned}
$$

If $(3 x)(-3 y)+(x+2 y)(2 x+y)=2(x-y)^{2}=0$ in W, then W is totally umbilical and hence H is constant in W, which contradicts to the assumption. So we get $\left(f_{1}\right)_{u}(x, y)=\left(f_{1}\right)_{v}(x, y)=0$ in W. Since $f_{1}(u, v)$ is a nonconstant polynomial, both of $\left(f_{1}\right)_{u}$ and $\left(f_{1}\right)_{v}$ are not zero polynomials. Assume that $\left(f_{1}\right)_{u}$ is not a zero polynomial. Since f_{1} and $\left(f_{1}\right)_{u}$ are relatively prime, the system

$$
\begin{aligned}
& f_{1}(u, v)=0 \\
& \left(f_{1}\right)_{u}(u, v)=0
\end{aligned}
$$

has only finitely many zeros [4, page 18]. But x, y satisfy this system in W. Hence x and y must be constant, which contradicts to the assumption. So we can conclude that H is constant in U.

Suppose that the mean curvature function H of M is nonconstant. Then there exists an open subset U of M where ∇H never vanishes. By Lemma 3, we also assume that $y \neq 0, x+2 y \neq 0, x-y \neq 0$ and $x+y \neq 0$ in U. We will work in U. By (1.1), (1.2) and (1.3) we see that $|\nabla S|^{2}=\left(e_{1} x\right)^{2}+3\left(e_{2} x\right)^{2}+3\left(e_{1} y\right)^{2}+\left(e_{2} y\right)^{2}$. So from (1.20) we have

$$
2\left\{\left(e_{1} x\right)^{2}+3\left(e_{2} x\right)^{2}+3\left(e_{1} y\right)^{2}+\left(e_{2} y\right)^{2}\right\}=-a\left(x^{2}+y^{2}\right)-2(x+y)\left(x^{3}+y^{3}\right)+a^{2}-\alpha .
$$

From (1.16), (1.17) and this we find

$$
\begin{aligned}
& 2\left\{\left(e_{1} x\right)^{2}+3\left(e_{2} x\right)^{2}+3\left(\frac{3 x}{x+2 y}\right)^{2}\left(e_{1} x\right)^{2}+\left(\frac{2 x+y}{3 y}\right)^{2}\left(e_{2} x\right)^{2}\right\} \\
= & -a\left(x^{2}+y^{2}\right)-2(x+y)\left(x^{3}+y^{3}\right)+a^{2}-\alpha .
\end{aligned}
$$

After some calculation we get

$$
\begin{align*}
& 8\left(3 y^{2}\right)\left(7 x^{2}+x y+y^{2}\right)\left(e_{1} x\right)^{2}+8(x+2 y)^{2}\left(7 y^{2}+x y+x^{2}\right)\left(e_{2} x\right)^{2} \tag{2.2}\\
= & \left\{-a\left(x^{2}+y^{2}\right)-2(x+y)\left(x^{3}+y^{3}\right)+a^{2}-\alpha\right\}(x+2 y)^{2}(3 y)^{2} .
\end{align*}
$$

From (1.8) we obtain

$$
\alpha-\left(\operatorname{tr} S^{2}+a\right)^{2}=\left(e_{1} x\right)^{2}+\left(e_{2} x\right)^{2}+2\left(e_{1} x\right)\left(e_{1} y\right)+2\left(e_{2} x\right)\left(e_{2} y\right)+\left(e_{1} y\right)^{2}+\left(e_{2} y\right)^{2} .
$$

Using (1.16) and (1.17) and after some computations, we get

$$
\begin{align*}
& 4(3 y)^{2}(x-y)^{2}\left(e_{1} x\right)^{2}+4(x+2 y)^{2}(x-y)^{2}\left(e_{2} x\right)^{2} \tag{2.3}\\
= & \left\{\alpha-\left(x^{2}+y^{2}+a\right)^{2}\right\}(x+2 y)^{2}(3 y)^{2} .
\end{align*}
$$

From (2.2) and (2.3) we obtain

$$
\begin{equation*}
\left(e_{1} x\right)^{2}=\frac{1}{48\left(x^{2}-y^{2}\right)(x-y)^{2}} F(x, y), \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& F(x, y)=(x+2 y)^{2}\left[(x-y)^{2}\left\{a\left(a-x^{2}-y^{2}\right)-2(x+y)\left(x^{3}+y^{3}\right)-\alpha\right\}\right. \\
&\left.-2\left(7 y^{2}+x y+x^{2}\right)\left\{\alpha-\left(x^{2}+y^{2}+a\right)^{2}\right\}\right] \\
&=(4 y) x^{7}+\sum_{j<7} f_{j}(y) x^{3},
\end{aligned}
$$

where $f_{j}(y)$ are real polynomials in one variable y. From (2.4) we see that

$$
e_{1} x= \pm \sqrt{\frac{1}{48\left(x^{2}-y^{2}\right)(x-y)^{2}} F(x, y)} .
$$

We will denote $e_{1} x$ by $G(x, y)$. Substituting

$$
\omega_{1}^{2}\left(e_{2}\right)=\frac{e_{1} y}{x-y}, \quad e_{1} y=-\frac{3 x}{x+2 y} e_{1} x \quad \text { and } \quad e_{2} y=-\frac{2 x+y}{3 y} e_{2} x
$$

into (1.13), and after some computations we have

$$
\left[\frac{3 y^{2}+3 x y+3 x^{2}}{x+2 y} G+\frac{(x-y)\left\{3 y G_{x}-(2 x+y) G_{y}\right\}}{3}\right] e_{2} x=0,
$$

where G_{x} and G_{y} are partial derivatives of $G(x, y)$ with respect to x and y. So the following holds

$$
\left[9\left(y^{2}+x y+x^{2}\right) G+(x+2 y)(x-y)\left\{3 y G_{x}-(2 x+y) G_{y}\right\}\right] e_{2} x=0 .
$$

Suppose $e_{2} x=0$ locally. Then it follows that $e_{2} y=0$ from (1.17). This is a contradiction to the assumption by Lemma 2. Thus the following holds in U,

$$
\begin{equation*}
9\left(y^{2}+x y+x^{2}\right) G+(x+2 y)(x-y)\left\{3 y G_{x}-(2 x+y) G_{y}\right\}=0 . \tag{2.5}
\end{equation*}
$$

From (2.4), we have

$$
\begin{equation*}
48\left(x^{2}-y^{2}\right)(x-y)^{2} G^{2}=4 y x^{7}+\sum_{j_{<7}} f_{j}(y) x^{3} . \tag{2.6}
\end{equation*}
$$

Differentiating this with respect to x, we get

$$
\begin{aligned}
& 96 x(x-y)^{2} G^{2}+96\left(x^{2}-y^{2}\right)(x-y) G^{2}+96\left(x^{2}-y^{2}\right)(x-y)^{2} G G_{x} \\
= & 28 y x^{6}+\Sigma \text { lower degree terms with respect to } x .
\end{aligned}
$$

Multiplying $\left(x^{2}-y^{2}\right)(x-y)$ at both sides of this, we get

$$
\begin{align*}
& 96\left(x^{2}-y^{2}\right)(x-y)^{3}(2 x+y) G^{2}+96\left(x^{2}-y^{2}\right)^{2}(x-y)^{3} G G_{x} \tag{2.7}\\
= & 28 y x^{9}+\Sigma \text { lower degree terms with respect to } x .
\end{align*}
$$

Similarly we get

$$
\begin{align*}
& -96\left(x^{2}-y^{2}\right)(x-y)^{3}(x+2 y) G^{2}+96\left(x^{2}-y^{2}\right)^{2}(x-y)^{3} G G_{y} \tag{2.8}\\
= & 4 x^{10}+\sum \text { lower degree terms with respect to } x .
\end{align*}
$$

From (2.6), (2.7) and (2.8) we find

$$
\begin{align*}
& 96\left(x^{2}-y^{2}\right)^{2}(x-y)^{3} G G_{x}=12 y x^{9}+\Sigma \text { lower degree terms to } x, \tag{2.9}\\
& 96\left(x^{2}-y^{2}\right)^{2}(x-y)^{3} G G_{y}=4 x^{10}+\Sigma \text { lower degree terms to } x . \tag{2.10}
\end{align*}
$$

Multiplying $96\left(x^{2}-y^{2}\right)^{2}(x-y)^{3} G$ at both sides of (2.5), we get

$$
\begin{align*}
& 9\left(x^{2}+x y+y^{2}\right)\left\{96\left(x^{2}-y^{2}\right)^{2}(x-y)^{3} G^{2}\right\} \tag{2.11}\\
& \quad+(x+2 y)(3 y)(x-y)\left\{96\left(x^{2}-y^{2}\right)^{2}(x-y)^{3} G G_{x}\right\} \\
& \quad-(x+2 y)(2 x+y)(x-y)\left\{96\left(x^{2}-y^{2}\right)^{2}(x-y)^{3} G G_{y}\right\}=0 .
\end{align*}
$$

Substituting (2.6), (2.9) and (2.10) into (2.11), we can see that the heighest degree term with respect to x in (2.11) is $-8 x^{13}$. So x and y satisfy a nonconstant polynomial (2.11). Hence, by Lemma 3, H is constant in U, which contradicts to our assumption. Consequently H is constant in M. And from (1.14) and (1.15) we can see that x and y are constant. So M is an open part of a plane or a sphere or a circular cylinder. But the Gauss map of a plane is constant. Hence a plane has not 1-type Gauss map. The converse is an easy computation.

References

[1] C. Baikoussis, B.-Y. Chen and L. Verstraelen, Ruled surfaces and tubes with finite-type Gauss map, Tokyo J. Math., 16 (1993), 341-349.
[2] B.-Y. Chen, Total Mean Curvature and Submanifolds Finite-type, World Scientific Publishing, Singapore, 1984.
[3] B.-Y. Chen and P. Piccinni, Submanifolds with finite-type Gauss map, Bull. Austral. Math. Soc., 35 (1987), 161-186.
[4] W. Fulton, Algebraic Curves, the Benjamin/Cummings Company, Inc., 1978.
[5] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20 (1984), 237-266.
[6] Y.H. Kim, Co-closed surfaces of 1-type Gauss map, Bull. Korean Math. Soc., 31 (1994), 125-132.

Department of Mathematics

University of Ulsan
Ulsan, Korea 680-749

[^0]: 1980 Mathematics Subject Classification (1985 Revision). 53C40, 53A05.
 Keywords the phrases. finite-type, Gauss map.
 Received December 19, 1995.

