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SURFACES WITH 1-TYPE GAUSS MAP

CHANGRIM JANG

0. Introduction

Submanifolds of finite type were introduced by B.-Y. Chen about thirteen
years ago [2]. Many works have been done in characterizing or classifying
submanifolds in Euclidean space with this notion. On the other hand, several
authors studied submanifolds with finite type Gauss map. B.-Y. Chen and P.
Piccinni studied compact submanifolds with finite type Gauss map [3]. And C.
Baikoussis, B.-Y. Chen and L. Verstraelen classified ruled surfaces and tubes with
finite-type Gauss map [1]. Recently Y.H. Kim studied surfaces in 3-dimensional
Euclidean space E® with 1-type Gauss map and he proved that the only co-closed
surfaces in E® with 1-type Gauss map are spheres and circular cylinders [6].
In this paper we study surfaces in E® with 1-type Gauss map without the
assumption of co-closedness and obtain the following theorem.

THEOREM. Let M be an orientable, connected surface in E®. Then M has
1-type Gauss map if and only if M is an open part of a sphere or an open part
of a circular cylinder.

1. Preliminaries

Let M be an orientable, connected surface in E®. We now choose ¢, and
e, as principal normal vectors of M and let x and y the corresponding principal
curvatures of the shape operator S associated with a unit normal vector e,.
Let 0!, w? ®*® be the dual 1-forms to e;, ¢; and ¢, and w5 the connection forms
associated with o', »?, @* satisfying wf+wi=0 and

vei ejzg w,l;(et)ek +h(eh ej)ea ’ Ve,; e;::% w,l;(ei)ek ’
Vei 98:§ wg(et)ek = '"Sez ’

x=0i(e))=h(e, e)), y=wi(e;)=h(e, ), h(e;, e))=h(e, e,)=0,
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where V and V are the Levi-Civita connections of E® and M respectively and
h the second fundamental form of M. The indices A, B run over the range
{1, 2, 3} and ¢, 7, 2 over {1, 2}. The covariant derivative of the second funda-
mental form h of M is given by

(Ve, h)es, e)=exrh(e,, e;)—h(V,, e, e;)—h(e, V., e;).

We will use abbreviations A, A, . for h(e, e;) and (V,, h)(e, e;) respectively.
The Codazzi’s equation A, r=hs:,, implies that

(L.1) hy1=eix, has=ey,
(L.2) hiz1=ho1 1 =hu1, s = e x=(y — x)wi(e1),
(1.3) his,e=ho e=haes 1 =1y =(x—y)wi(¢s).

We now give the definition of co-closed surface introduced by Y.H. Kim for
later use.

DEFINITION [6]. A surface of Euclidean 3-space is called co-closed if the
connection form % is co-closed, that is, trace (Vw?)=0.

For a smooth function f on M, Vf, the gradient f and Af, the Laplacian
of f are given by

V=3 (efe.,
Af=SHew.f~(Voeuf)}.

The Laplacian A can be extended in a natural way to E3-valued smooth maps
on M. In fact, if v is an E®valued smooth map on M. Then

(1.4) sz;{vei V,,iu—(Vvei eV}
Applying (1.4) to the unit normal vector e;, we find
(1.5) Ae;=—VH—tr S?e,,

where H and tr S® denote the mean curvature function of M in E® and the
square length of the second fundamental form A respectively. A smooth map
y is said to be of k-type if vy can be written as

y=ytv1+ -t

where v, is a constant vector, v, v, ---, v are non-constant maps satisfying
Av;=2,v;, i=1, 2, ---, k and all eigen values {4,, ---, 4} are mutually different.
Suppose that the Gauss map es: M — S¥1)SE® of M is of 1l-type. Then there
exist a constant ¢ and a constant vector ¢ such that

(1.6) Aes;=a(es—c).
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Then, (1.5) and (1.6) imply that

1.7 a(es—c)=—VH—tr S?e;.

So we have

(1.8) ac, ac>=<VH, VH>+(tr S?*+a)?,

where <,)> means the Euclidean metric of E?. Comparing the tangential and
normal components in (1.7), we obtain the followings

(1.9 VH=ac",
(1.10) tr St=a<c, esp—a,

where ( )7 means the projection to the tangent space of M. By (1.9) and (1.10),
differentiating the mean curvature H in the principal normal vectors e;, ¢; on
M, we obtain

e;H=ale,, ¢),

S eie;H—(V,, e;H)=h,(tr S*+a).

So we have

(1.12) erex(x+y)+e(x+y)oie)=0,

(1.13) ese;(x+y)+ex(x+ y)wi(e)=0,

(1.19) ere(x+y)+eq(x + y)wi(e)) — x(x*+y*+a)=0,
(1.15) esex(x+y)+ei(x+y)wi(es) — y(x*+y*+a)=0,

since H=x+y and tr S®=x%+y% From (1.10), we get
Vir S*=—S(VH).
This imply
(1.16) 3xex+(x+2y)e,y=0,
(1.17) (2x+y)e:x+3ye,y=0.
From (1.5) and (1.10), we find
Atr S*=—(VH, VH)—tr S¥tr S*+a).
This and (1.18) imply
(1.18) Atr S®=a(tr S*+-a)—a,

where a=<ac, acd>. We need to mention a well known identity.
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LEMMA 1 (Simons’ identity) [5]. Let M is a surface in E® with the induced
metric. Let H, S and h be the mean curvature function of M in E®, the shape
operator of M and the second fundamental form of M, respectively. Then, for
given orthonormal frame e,, e, the value Atr S? is calculated as follows.

(1.19)  Atr S*=2 %} h.fe;e;H—(V,, e;H)+2|VS|*+2H tr S*—2(tr S?),
where |VS|® means X3, +(hij, 1)

From (1.11), (1.18) and (1.19), we get
(1.20) 2|VS|*=—atr S*—2H tr S*+-a*—«.

2. Proof of Theorem

At first we will prove that the mean curvature function H of M is constant.
We need the following lemmas.

LEMMA 2. If (eix, e,9)=(0, 0) or (esx, e;y)=(0, 0) in an open subset U of
M, then H is constant in U.

Proof. Suppose that (e;x, ¢,;¥)=(0,0) in U. Then from (1.13), we find
e,Hw%(e;)=0. So we may assume that w?(e;)=0. Differentiating (1.14) in the
direction e, and using (1.12), we obtain e;(w¥(e,))=0. So we have that

tr(Vol)=e,(wi(e,)) —wi(es)wi(e:) +ex{wi(e.)) —wi(e)wi(e)=0.

This imply that U is a co-closed surface with 1-type Gauss map. Hence, due
to the result of Kim [6], we see that H is constant in U. In case that
(esx, e,y)=(0, 0) we can get the same conclusion by similar computation.

LEMMA 3. Let f(u, v) be a nonconstant real polynomial in two variables u,
v. If the principal curvatures x, y satisfy f(u, v), that is f(x, y)=0, in a open
subset U of M, then H is constant in U.

Proof. Suppose that H is nonconstant in U. Then
V={pcU|VH(p)+0}

is a nonempty open subset. Since the real polynomial ring R[u, v] is a UFD,
the polynomial f(u, v) can be factored as f=f,f, - fz, where f, are irreducible
polynomials in R[u, v]. From the condition f(x, ¥)=0 on U, we can guarantee
the existence of a nonempty open subset W of U, where x, y satisfy a non-
constant irreducible polynomial f,. We may assume f,=jf, without loss of
generality. Differentiating f,(x, ¥y)=0 in the direction e¢,, we have

@.1) (fulx, P)esx+(fu(x, ¥)e.y=0
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where (fy), and (f,), mean partial derivatives of f, with respect to u and v.
If (e;x, e,9)=(0, 0) or (e;x, e;y)=(0, 0) holds in W, then H is constant in W by
Lemma 2. So we may assume that (e;x, ¢,y)#(0, 0) and (e,x, e,y)+(0, 0) in W.
From (1.16), (1.17) and (2.1) we get

3x(fu(x, ¥)—(x+29)(f1)ulx, ¥)=0,
Cx4+3(f)u(x, )—=33(fDu(x, ¥)=0.

If Bx)(—=3y)+(x+2y)2x+y)=2(x—y)?=0 in W, then W is totally umbilical and
hence H is constant in W, which contradicts to the assumption. So we get
(Fu(x, )= Dolx, ¥)=0 in W. Since f,(u, v) is a nonconstant polynomial, both
of (f). and (f,), are not zero polynomials. Assume that (f;), is not a zero
polynomial. Since f; and (f,), are relatively prime, the system

filu, v)=0
(foulu, v)=0

has only finitely many zeros [4, page 18]. But x, y satisfy this system in W,
Hence x and y must be constant, which contradicts to the assumption. So we
can conclude that H is constant in U.

Suppose that the mean curvature function H of M is nonconstant. Then
there exists an open subset U of M where VH never vanishes. By Lemma 3,
we also assume that y+0, x+2y+#0, x—y=+0 and x+y=0 in U. We will work
in U. By (1.1), (1.2) and (1.3) we see that |VS|2=(e;x)?+3(esx)?+3(e,y)*+(e.y)?.
So from (1.20) we have

2{(e1x)*+3(e2x)*+3(e1y)*+(e2y)?} = — a(x*+y3)—2(x +y)(x*+y*)+a*—a.
From (1.16), (1.17) and this we find

3
2{(e1x)2+3(e2x)2+3(—x+xzy )Z(elx)2+< 29;-;—3) )z(egx)z}
=—a(x®+y)—2x+y)x*+y)+a*—a.
After some calculation we get

2.2) 8By )(Tx*+xy+y*)e1x) +8(x4+29)(7y*+x y+ x%)(e,x)*
={—a(x’+y*)—=2x+y)x*+y*)+a*—a} (x+29)*3y)2

From (1.8) we obtain
a—(tr S*4-a)*=(e,x)*+(esx)2+2(e, x)(e1y)+2(esx)(esy)+(e19)2+(esy)2

Using (1.16) and (1.17) and after some computations, we get
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(2.3) 4@3y) (x—y)*(e1x) +4(x+2y)*(x — )*(esx)*
={a—(x*+y*+a)’} (x+2y)*@3y)".
From (2.2) and (2.3) we obtain

1
48(x>—yA)(x—y)?

(2.4) (e1x)*= F(x, 3),

F(x, y)=(x+2y)[(x—y){a(a—x*—y*)—2(x+y)(x*+y)—a}
—2(Ty*+xy+x){a—(x*+y°+a)’}]
=4y)x"+ Jgfj(y)x’,

where f;(y) are real polynomials in one variable y. From (2.4) we see that

1
e"‘“i\/ By a—9)

We will denote e,x by G(x, ¥). Substituting

F(x, y).

y 2x+y

9 g - 3x _
wl(ez)——x_y , e y= 12y e;x and e,y= 3 22
into (1.13), and after some computations we have
[3312—%—396314—3x2 . L(x-—y){3yGJ,—(2x+y)G,,}] _
G e,x=0,
x+2y 3

where G, and G, are partial derivatives of G(x, y) with respect to x and y.
So the following holds

O +xy+x)G+(x+29)(x— ) {8YG 2 —(@x+y)G 4} Jeax=0.

Suppose e¢,x=0 locally. Then it follows that e,y=0 from (1.17). This is a
contradiction to the assumption by Lemma 2. Thus the following holds in U,

(2.5) Wy*+xy+x)G+(x+2y)x—y) {8y Go—2x+)G,} =0.
From (2.4), we have

(2.6) 48(x* ") x—yyGP =4y 2"+ 2 ().
Differentiating this with respect to x, we get

96x(x —y)’G*+96(x*— yH)(x — )G *+96(x*—y*)(x —)*G G,

=28yx°+> lower degree terms with respect to x.

Multiplying (x*—y*(x—y) at both sides of this, we get
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2.7 96(x%—y3)(x—)°2x+y)G*+96(x*—y*)*(x—3)GG »

=28y x°+>] lower degree terms with respect to x.
Similarly we get
2.8 —96(x*— y*)(x—y)'(x+2y)G*+96(x*~ Yz —3)'GG,
=4x'43) lower degree terms with respect to x.
From (2.6), (2.7) and (2.8) we find
2.9 96(x*— )% (x—¥)’GG =12y x°+ 3] lower degree terms to x,
(2.10) 96(x*—y®)*(x—y)’GG,=4x'"+>] lower degree terms to x.
Multiplying 96(x2—y*)?(x—y)*G at both sides of (2.5), we get

2.11) 9(x2+xy+y2){96(x2— y2)(x — y)*G?}
+(x+29)3y)(x— ) {96(x*— y*)* (x —¥)*GG 2}
—(2429)@2x+y)(x —3){96(x*—y*)*(x —y)*GG 4} =0.

Substituting (2.6), (2.9) and (2.10) into (2.11), we can see that the heighest
degree term with respect to x in (2.11) is —8x'®. So x and y satisfy a non-
constant polynomial (2.11). Hence, by Lemma 3, H is constant in U, which
contradicts to our assumption. Consequently H is constant in M. And from
(1.14) and (1.15) we can see that x and y are constant. So M is an open part
of a plane or a sphere or a circular cylinder. But the Gauss map of a plane
is constant. Hence a plane has not l-type Gauss map. The converse is an
easy computation.
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