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SOME RESULTS ON THE COMPLEX OSCILLATION

FOR HIGHER ORDER HOMOGENEOUS LINEAR

DIFFERENTIAL EQUATIONS*

SHI-AN GAO

Abstract

In this paper, we are concerned with the maximum number of linearly
independent transcendental solutions with finite exponent of convergence of
the zeros for a higher order homogeneous linear differential equation where
its coefficients are entire functions with order less than 1/2 and one dom-
inant. The results obtained here are the extension and deepening of J. K.
Langley's.

§ 1. Introduction and results

Since 1982, various researchs have been made concerning the complex
oscillation of second-order homogeneous linear differential equations. In 1991,
J.K. Langley and S. Bank ([2]) discovered surprisingly that some main results
obtained from second-order equations still hold for higher-order equations. They
made use of asymptotic methods far different to those applied in the second-
order case.

For second-order equations, S. Bank and I. Laine proved the following
theorem in [1], in which etc. the notations are defined at the end of this
section :

THEOREM A. Suppose that A(z) is a transcendental entire function with
σ(Λ)<l/2. Then, the equation

can not have two linearly independent solutions fίf fz with maxUC/Ί), λ(fz)}

The assertion of Theorem A has been proved in the case where σ(Λ)=l/2
by Rossi ([15]) and Shen ([16]) independently.
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For higher-order equations, J.K. Langley and S. Bank proved a related
conclusion in [2] :

THEOREM B. Suppose that &^3 and that A^ •••, Ak_2 are entire functions
such that :

(i) ΛQ is transcendental with σ(Ao)<l/2;
(ii) // σ(A))>0, then σ(AJ)<σ(AQ) for /=!, •••, k-2, while if σ(Λ)=0

then Alf •••, Ak_2 are polynomials.

Then the equation

(1.1) /(*)+Λ*-./(*")+ -.. +Λ/'+4,/=0

can n<?ί /iflwβ ίw0 linearly independent solutions f l f f2 with max{Λ(/Ί), λ(f2}} < + co.

Afterwards, Langley ([14]) obtained a result with weaker conclusion in a
more general situation than Theorem B.

THEOREM C. Suppose that k^3 and that A0, ••-, Ak_2 are entire functions
such that for some se {1, •••, k— 2},

(i) v4s zs transcendental with σ(As)<l/2;
(ii) For jφs, either A3 is a polynomial or we have σ(Aj}<σ(A&).

Then the equation (1.1) can not have k linearly independent solutions fίf --, fk

with max{^(/0, •••, λ(fk

Recently, S.-A. Gao and J.-F. Tang ([7]) got a complement of Theorem C:

THEOREM D. With the hypotheses of Theorem C, the equation (1.1) has
at most k — s linearly independent transcendental solutions /Ί, ••-,/*_« with
maxtftΛ), -, tf/» -.

The present paper aims to improve the upper bound k — s in Theorem D,
and to obtain a conclusion similar to Theorem B when AQ will be replaced
with A$. In fact, we prove the following

THEOREM 1. Suppose that /?^4 and that A0, « , Ak-2 are entire functions
such that for some se{2, •••, k—2},

(i) AS is transcendental with σ(A9)<l/2;
(ii) For jφs, either A} is a polynomial or we have σ(Aj)<σ(As).

Then

(a) An arbitrary fundamental solution set of the equation (1.1) includes at
least k — s (2:2) linearly independent transcendental solutions (in fact, with in finite
order]
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(b) The equation (1.1) has at most m— min{&— s, s— 1} linearly independent
transcendental solutions flf -•• , fm with max{^(/0, •••, Λ(/m)}< + oo

(c) // s=2, or if k—1 and k — s are relatively prime, then the equation
(1.1) can not have two linearly independent transcendental solutions flf fz with

Theorem l(b) is an improvement of Theorem D. Under the assumptions
above, Theorem l(c) is the expected result similar to Theorem B. But the
case s— 1 is exceptional and it remains open here whether we have similar
improvements in this case.

In this paper, we use the standard notations of Nevanlinna theory, e.g. see
[11]. Secondly, we denote by σ(g), μ(g) and λ(g), respectively, the order, the
lower order and the exponent of convergence of the zeros for a meromorphic

function g(z). Thirdly, for a set £d(l, +00), denote m1(E)=t°β%ί.(ί)dί/ί,

log dens (£) = Urn {mί(EΓ^(l> r])/log r\ , log dens (£) = ϊίm {mΛEnCl, r])/log r] ,
r-»oo r-»oo

where IE(t) denotes the characteristic function of the set E.

§ 2. Lemmas needed for the proof of Theorem 1

LEMMA 1 ([10]). Let w be a transcendental meromorphic function with
finite order σ(w)=p< + <χ>, let Γ={(klf O, •••, (km, jm)} denote a finite set of
distinct pairs of integers that satisfy kl>jl'^Q for z— 1, •••, m, and let ε>0 be
a given constant. Then there exists a set EιC(l, +00) with m1(E1)< + <χ>, such
that for all z satisfying z <^£ιU[0, 1] and (k, j)^Γ, we have

(2.1) \w^(z)/w^(z)\< z\(k-J"(>-1+ε>.

LEMMA 2 ([3]). Let f(z) be entire of order σ(f)=p<l/2. Denote A(r)=
infι,ι= r log|/(z) |, B(r)= supι,ι= rlog|/(*)|. // p<a<l, then

(2.2) log dens {r : A(r)>(cosπa)B(r)} ^1-p/a.

LEMMA 3 (Theorem 5 of [4]). Let f(z) be entire with μ(f)=μ<l/2 and

μ<p = σ(f). If μ^δ<mm(p, 1/2) and δ<a<l/2, then log dens {r : Λ(r)>
(cos πά)B(r}>rδ] >C(ρ, δ, a), where C(ρ, δ, a) is a positive constant depending
only on p, δ and a.

LEMMA 4 ([61, p. 205). // f(z) is a non-trivial solution of (1.1), where A0,
•••, Ak_z are entire functions of finite order, then there is a positive constant N
such that

(2.3)
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LEMMA 5. Suppose that &^3 and that AQ, •••, Ak-z are entire functions of
order less than 1/2 such that for some se{l, ••-, k— 2},

(i) As is transcendental;
(ii) For jφs, either A3 is a polynomial or we have σ(A}Xσ(As).

If the equation (1.1) has a solution g of finite order, then g is a polynomial.

Proof. If σ(Ai)>Q then we take σ, τ such that for jΦs,

(2.4) σ(AjXσ<τ<σ(At).

By Lemma 2 (if μ(As)—a(As}} or by Lemma 3 (if μ(As)<σ(As)) we know
that there exists a set #C(1, -h°°) with m1(//)= + °°, such that for all z
satisfying \z\=r^H, we have

(2.5)

If <τ(^4s):=0 (thus μ(AB)=σ(Ag)=Q), by Lemma 2 there also exists a set //C(l, +00)
with m1(JΪ)= + °°, for

(26) minUog |Λ. (g) | ; | z |=r) _^
logr

as r-» + oo. For convenience later on, we define σ to be zero if σ(As)= 0, so
that we will always have, if jΦs and £ is large,

(2.7) Λ/*)|=O(rJfιexp(r'')), MX)

(Denote some fixed positive constants by MI, M2, ••• henceforth). If g is a
solution of finite order of (1.1) and g is transcendental, by Lemma 1, there
exists //ιC(l, +00) with Wι(//ι)< + °°, for all z satisfying \z\=r£Hι,

(2.8)
for /=!, •••, /?. By (1.1) we obtain

(2.9) ^(*V^+^.-2^(*-2V^+ - +Λ£(S)/£+ - +Λ=0.

By (2.7), (2.8) and (2.9) we can get when \z

(2.10)

And by (2.5), (2.6) and (2.10), for all z satisfying \z =rt=H\Hlf

(2.11)

On the other hand, by Wiman-Valiron theory (e.g. see [12], [13]), there exists
//8C(1, +00) with mι(Ht)< + oo, such that if z satisfies \z\=r£Ht and \g(z)\
—M(r, g), then g(s\z)/g(z)~(v(r)/z)s, where v(r) is the central index of g.
From (2.11) we get v(r)=0(l) when r^H^H^H^. Since ^ is transcendental,
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this is a contradiction. So g must be a polynomial.
The following Lemma 6 (see [13, p. 244]) is an improvement of a result of

M. Frei ([5], [6]) :

LEMMA 6. Suppose that the coefficients of the linear differential equation

(2.12) anw^ + an^w^'1^ ••• +aQw=Q

are entire functions, at least one of a3 (o^j<n—l} is transcendental, and ap

(O^p^n— 1) is the first one in order of a0, alt •••, an-\ such that

(2.13) lim 2 m(r, fl

where D is some set in (0, +00) u /ί/i finite measure. Then the equation (2.12)
has at most p linearly independent meromorphic solutions with the property

(2.14) ϊϊm {log T(r, w)/m(r, ap)} =0 .

§3. Proof of Theorem 1

We first prove part (a) of Theorem 1.
It is well-known that if A0, •••, Ak.ι are entire functions, then all solutions

of the equation (1.1) are entire. As the proof in Lemma 5, by (2.4), (2.5), (2.6)
and (2.7), it is easy to check that for an arbitrary set D of r with finite
measure we have

lim{( 2 m(r, Aj)/m(r, As)}< lim {( 2 m(r, Aj))/m(rfr->oo l\7 = s+l // J r-»oo IV=:S+1 //

i.e. (2.13) holds for the equation (1.1). Additionally, since As is transcendental,
it is easy to see that for an arbitrary polynomial solution g(z), we have

lim(logm(r, g)/m(r, -4,))=0,
r-^oo

i.e. (2.14) holds. Therefore, it follows that from Lemma 6 the equation (1.1)
has at most s linearly independent polynomial solutions. This implies assertion
(a) holds from Lemma 5.

Now, we start to prove part (b) and part (c).
Suppose that the equation (1.1) has q linearly independent transcendental

solutions /i, •••, fq each with ^(/;)< + °°. Thus, /, can be written in the form
f3—WjehJ with tf(tt/J )< + °°> J=l, •••, q By Lemma 5, σ(fj)= + oo, so h3 must
be a transcendental entire function. But by Lemma 4, σ(/^ )<-f °° Therefore,
by Lemma 1, there exists a set E2C(1, +°°) with m1(E2)< + 00, for \z\φE2\J
[0, 1], m=l, ~ , k and ;=1, ••-, ,̂

(3.1) w j-V^ I + I A j m ) / A } 1+ Σ I (wj/wl)^/(wj/wιy \ < \z \ M* .
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If (7(A,)>0, for j^s we take <7, τ such that

(3.2) σ(Aj)<σ<τ<σ(A9).

By the same reasoning as in the proof of Lemma 5, there exists a sequence
{rn\, rn-*^, such that rnφE2 and such that on \z\=rn we have

(3.3)

if

min{log
, if σ(A9)=Q,

and moreover, for jΦs, by defining σ— 0 when <7(^4S)— 0, we have always

(3.4) \Aj(z)\ =0(\z\

Now we estimate AJ on \z\=rn. By (3.1), there exists Λf>0 (Λf can be taken
large enough) such that if z on \z\-r n and | Ay(z) | 2^ I z| ̂  then we have

(3.5) /jp)(*)///*)=(Aί)*(l + 0( I z I - *«)) ,

where />=!, •••, fc. Substituting fj—Wjeh3 into (1.1) and dividing through by
/;, at a point z on z | — rn satisfying \h'j(z)\>,\z\N, by (3.4) and (3.5) we have

(/ι;)fe(l+<L))+Λ(A^l+^^ or
m=o

(m^s)

((A;)*-/>l.)(l+o(l))+l+*ΣO(rf exp(rί;)XAί)»-*(Aί)*-V^.=0, or

-0, or

If there are infinitely many n, say nk> such that at a point z on |z |= r W f e

satisfying |A}(^)l^kΓ, we have |AίU)l^exp(r?»A), then by (3.3), (3.6) can not
hold as nk is large enough (because the left side of (3.6) tends to zero as
Tί^-^oo). So if n is large enough, at a point z on z\— rn satisfying \hj(z)\^
\ z \ N , I hj(z)\ >exp(r£) must hold. Thus, at a point z on |z|=rn satisfying
\ h ' j ( z ) \ ^ \ z \ N , from (3.6) we can get

(3.7)

and

(3.8)

Now set d={^: \h}(z)\^\z\N, \z\=rn}, G2={z: \hfj(z)\<\z N, \z\=rn], G =
{ z : \z\=rn}> then G^G^G*, GιΠG2^0. By (3.3) and (3.7), it is not difficult
to see that Gl—{z: \ h ' } ( z ) \ > \ z \ N , \z\=rn] as rn is large enough. Since the
linearly connected open set G can be separated into the union of two open sets
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and GιΠG2— 0, one of the sets d and G2 must be empty. Because hj(z) is a
transcendental entire function, so Gι^0 as rn is large enough, and this is to
say G2=0. Therefore, (3.5), (3.6), (3.7) and (3.8) always hold on \z\=rn as rn

is large enough.
Using (3.7), from (3.8) we obtain

So on z\—rn,

Hence, on |z|=rn, there exists cj>n such that c$~£=—l and

(3.9) lAίW-^nΛU)1^*-')!^^7.

Especially,

\h((z}-cl,nAs(zY><k-v\<r%\

Therefore, there exists aj>n such that α*,~"n=l and such that on \z\=rn

(3.10)

Since α j > n is a (& — s)-th root of unity, there exists a fixed one, say a3 with
akj~s—l, which makes (3.10) to hold for infinitely many n. Thus, hj(z)—djh((z)
is a polynomial and so is hj(z)—djhι(z). Set hj(z)—djhι(z)= Pj(z), then /,=
WjQh3 — WjQp3'Q<l3h\. Since the term ep ? with P, a polynomial may be incor-
porated into Wj, we conclude that without loss of generality hj(z)=ajh1(z\
y=l, •••, q. Then /^ can be written in the form

(3.11) f3 = Wje*Jhι9 J = l, ~,q.

As we have known, d3 is some (k — s)-th root of unity, but we will further
show that dj is also some (s— l)-th root of unity. Using (3.7) and (3.3), from
(3.6) we can get an improving form of (3.8): On \z\—rn)

(3.8)' Λ/(Aί)*- =-(l + 0(r?δ)/(Aί)1+ ),

where 0<ε<l is a given constant. In addition, by [11], Lemma 3.5, by (3.1)
and by a straightforward inductive argument applied to fj/fj= hj+w'j/Wj on
\z\=rn, we get

(3.12) fP>/f,=0(rϊ'W)p-*+(ι)W^^^^

for p=2, '-, k. Moreover, by (3.1) and (3.8)', we may write on \z\— rn



362 SHI-AN GAO

(3.13) Λ./} V/,=Λ[θ(r?*XA})-'+( * )W

= 0(rf'XAί)*-1--( I ) ( / z j ) * - ' u ^ -

Since /j and /, are solutions of (1.1), we have

/ί*V/ι+ - +Λ/ί//ι=/J*V/ί+ - + A 1 f ' J / f ) .

From it and by (3.4), (3.5), on |z|=r», we can get

By (3.12), (3,13), (3.11), (3.7), (3.3) and (3.2), dividing through by (Aί)*"1, the
above formula can be changed into the form on \z\-r n

(3.14) 2(k-s)w'1/

-l̂ ^

Denote by Fl and F3 respectively the entire functions M;ξ<*- )(Aί)*(*"1)"*('"1) and
M^-'Kλί)*'*"1'"'*'"1'. By (3.9), hi has lower order less than 1/2, so that Fl

and Fj have infinitely many zeros. But the argument principle and (3.14) give

n(r«, l/ί\)=flj 1n(rn, l/Fy)+O(r? 10)M(rn, (Aί)-£).

Since, by (3.7) and (3.3), O(rf10)M(rn, (Aί)~ε)-» 0 as w — oo On \z\=rn, the above
formula implies that ak

j~
1=l) i.e. α; is also a (& — l)-th root of unity. And

from l^akj~ί^=aj~s+s~ί=asj~1

) we see that a3 is also a (s— l)-th root of unity.
Since a} is of above properties, it follows that : 1. In part (b), if

<?>min{& — s, s— 1}, then there must exist i and p, iφp, such that az=ap.
Thus, by (3.11) we have hi—hp. 2. In part (c), assume q—2. Since s=2 or
^—1 and k — s are relatively prime, a3— 1 must hold for /=!, 2. Therefore, in
both cases, there are two transcendental solutions, which may be denoted by
/! and /2 in Case 1 without loss of generality, of the form f1=w1e

h

) fz=Wseh,
where we set h = hl=hz. We proceed to show that this is impossible, which
proves part (b) and part (c).

Set f=ufι, v—u', and substitute them into (1.1), we obtain

(3.15) v<k
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where

(3.16)

2 )/"//>.

Since /PV/ι=(A7(l+0(l)) d£
we obtain

- +*/ί*-I)//ι

on |z|=r», by (3.3), (3.4), (3.7) and (3.16),

(3.17)

<*».,=( J)A'(1+o(l))

on z\=rn. Obviously, v—(f2/fί)'=(wί/wί)' is a solution of (3.15). By (3.1),
when U|^£2U[0, 1],

(3.18) \v«\z}/v(z)\<\z Ui.

for ;=1, •••, k—l. Dividing through (3.15) by v, we obtain

(3.19) v<-

Dividing through (3.19) by (Λ')*"1 again, by (3.3), (3.7), (3.17) and (3.18)
on \z\—rn, we obtain k — s=0 as rn^co. This is a contradiction, since se
{2,-, k-2}.

The proof of Theorem 1 has been completed.

Acknowledgement. The author would like to thank the referee for his (or
her) serious and valuable comments.



364 SHI-AN GAO

REFERENCES

[ 1 ] S. BANK AND I. LAINE, On the oscillation theory of f"+Af=Q where A is
entire, Trans. Amer. Math. Soc., 273 (1982), 351-363.

[ 2 ] S. BANK AND J. K. LANGLEY, Oscillation theory for higher order linear differ-
ential equations with entire coefficients, Complex Variables Theory Appl., 16
(1991), 163-175.

[3] P.D. BARRY, On a theorem of Besicovitch, Quart. J. Math. Oxford Ser. (2), 14
(1963), 293-302.

[4] P.D. BARRY, Some theorems related to the cosπp theorem, Proc. London Math.
Soc. (3), 21 (1970), 334-360.

[ 5 ] M. FREI, Sur Γorder des solutions entieres d'une equation differentielle lineare,
C.R. Acad. Sci. Paris Ser. I. Math., 236 (1953), 38-40.

[ 6 ] M. FREI. Uber die Losungen linearen Differentialgleichungen mit Ganzen Funk-
tionen als Koeίfizienten, Comment. Math. Helv., 35 (1961), 201-222.

[7] S.-A. GAO AND J.-F. TANG, A note on the complex oscillation for higher order
homogeneous linear differential equations, Ann. Differential Equations, 12 (1996),
167-172.

[ 8 ] S.-A. GAO, Some results on the complex oscillation theory of periodic second
order linear differential equations, Kexue Tongbao, 13 (1988), 1064-1068.

[ 9 ] S.-A. GAO, A further result on the complex oscillation theory of periodic sec-
ond order linear differential equations, Proc. Edinburgh Math. Soc., 33 (1990),
143-158.

[10] G. GUNDERSEN, Estimates for the logarithmic derivative of a meromorphic func-
tion, plus similar estimates, J. London Math. Soc. (2), 37 (1988), 88-104.

[11] W.K. HAYMAN, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[12] W.K. HAYMAN, The local growth of power series: a survey of the Wiman-

Valiron method, Canad. Math. Bull., 17 (1974), 317-358.
[13] Y.-Z. HE AND X.-Z. XIAO, Algebraic Functions and Ordinary Differential Equa-

tions, Science Press, Peking, 1988 (in Chinese).
[14] J. K. LANGLEY, Some oscillation theorems for higher order linear differential

equations with entire coefficients of small growth, Results Math., 20 (1991),
517-529.

[15] J. Rossi, Second order differential equations with transcendental coefficients,
Proc. Amer. Math. Soc., 97 (1986), 61-66.

[16] L.-C. SHEN, Solutions to a problem of S. Bank regarding the exponent of con-
vergence of the solutions of a differential equation f"+Af=Q, Kexue Tongbao,
30 (1985), 1581-1585.

DEPARTMENT OF MATHEMATICS
SOUTH CHINA NORMAL UNIVERSITY
GUANGZHOU, 510631
P. R. CHINA




