
R. AEBI
KODAI MATH. J.
19 (1996), 308—321

PROPAGATION OF CHAOS IN ENTROPY

ROBERT AEBI

Abstract

A notion of convergence 'propagation of chaos', called by McKean [18],
is defined in terms of the relative entropy. Our goal is to show 'the prop-
agation of chaos in entropy' for clouds of interacting particles with prescribed
initial and terminal distributions. It is shown that, as the number of particles
in the clouds tends to infinity, particles in the clouds become, in the sence of
relative entropy, asymptotically independent with an identical distribution Q.
The limiting distribution Q is known to be a diffusion process related to the
Schrodinger equation.

1. Introduction

The propagation of chaos for systems of interacting diffusion processes is
introduced by McKean [15], [16] and investigated in Gutkin and Kac [10],
Tanaka [30], Kusuoka and Tamura [15], Shiga and Tanaka [28], Oelschlager
[26], Sznitman [29] and Dawson and Gartner [8]. Our discussion is related to
problems considered by Nagasawa and Tanaka [17], [18], [19] and Aebi and
Nagasawa [1].

In this paper we formulate 'propagation of chaos' in terms of relative
entropy which has been established as a natural indicator for the mutual
randomness of probability measures. See for example Csiszar [5], [6] in
connection with large deviations, Boltzmann [4] and Lanford [16] who deal
with statistical mechanics and Khinchin [12] for an approach to information
theory.

DEFINITION 1. A sequence of systems ((Xlf •••, Xn), Q<w *>) of interacting
diffusion processes performs propagation of chaos in entropy with limiting
distribution Q as n and k tend to infinity, if for each me TV, the marginal
distribution Qff Λ ) of Q<n *> on Ωm and the empirical distribution Ln=l/n Σ?=ι<L,

, satisfy
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(1) ϊιmk^\Ίmn7ooH(Qm Q<? *>)=0

( 2) \Ίmk^\imn^H(Q \ Q<» *>[Ln])=0

where k is called a modeling parameter.

The definition given above is the key point of the present article as will be
explained: Nagasawa's definition given in section 8.2 of [24] consists of two
steps; namely, H(Q^ k ) \ Q f ) as well as //(Q(n ^[LnΊ \ Q k ) are required to vanish
as n tends to infinity, where ((?*)*GΛΓ is a family of distributions approximating
Q, indexed by the modeling parameter k, and then H(Q\Qk) is required to
vanish as k tends to infinity. As shown in [1], [24], the definition has techni-
cally no problem, since it implies 'the propagation of chaos in variation-metric'
(cf. inequality (16) below). It is, nonetheless, mathematically not satisfactory.
Our Definition 1 is a modification which is more natural than Nagasawa's
definition, since it avoids the two-steps-argument. This causes, however,
mathematical problems, because of the non-symmetry of the relative entropy
H(Q I P ) in {<3, P} (cf. definition (5)), which will be resolved in Section 3. Our
goal is to prove Theorem 1 given in Section 2, which improves Theorem 8.3 in
[24] and Theorem 4.1 in [1].

The meaning of Definition 1 is this: First of all, property (1) implies that
for arbitrary but fixed m any subset of m-interacting diffusion processes is
asymptotically independent and that Q is the asymptotic distribution of each
diffusion process in the subset. Property (2) indicates a mixing of the involved
diffusion processes by means of the empirical distribution Ln (cf. definition (6)),
namely, the empirical distribution Ln under Q(n-k) converges to Q in entropy
as the total number n of participating diffusion processes and the modeling
parameter k tend to infinity.

In Section 2 a theorem on 'the propagation of chaos in entropy' in the
sense of Definition 1 will be given. This kind of limit theorem was first
investigated by Schrodinger in [27], who was motivated by an analogy of wave
functions in quantum mechanics and a pair of diffusion equations in duality:
He considers a cloud of particles independent and identically distributed accord-
ing to an initial distribution qa at an initial time a, and then he requires that
the terminal distribution at terminal time b, a<b, must be a prescribed distri-
bution qb. To realize such movements of particles, it is therefore necessary to
introduce interactions between participating particles at intermediate time t,
a<t<by through conditioning adapted to the prescribed distributions qa and qby

which are assumed to be observable. The 'controlled' cloud of particles is obtained
as the 'most probable' one in the sense of large deviations (cf. [1]). To discuss
large deviations we adopt, as the substantial mathematical tools, the asymptotic
quasi-independence as well as the /-('Csiszar') projection given by Csiszar [5], [6].

Section 3 is devoted to a proof of 'the propagation of chaos in entropy' in
the setting of Section 2. In Section 4 frequently used known results are briefly
quoted for the reader's convenience. It should be noticed that the limit (41)
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stated in Proposition 2 holds only in this revised form which is essentially
weaker than (2.13) in [1].

Corollary 2 of Theorem 1 is to indicate that the Schrodinger equation can
be considered as a kind of 'Boltzmann equation' (cf. [23]), i.e. an equation for
systems of interacting particles in the spirit of Boltzmann. To investigate this
aspect was the main motivation of Schrodinger in [27].

2. A situation for propagation of chaos

To formulate our main theorem we recall some notations and definitions
(cf. [1], ]24] for details). Let £?=C([α, 6], Rd), -oo<α<&<oo, be the space
of continuous paths taking values in Rd, d fixed, with the Borel σ-field σ(Ω).
Mι(Ω) denotes the set of probability measures on Ω. The state of a path α>eβ
at time t, a<t<ίb, is described by the projection Xt(ω)=X(t, ω)=ω(t).

For a given pair of probability measures (qa, qb) on Rd, we consider

(3) Aa,b={P^Ml(Ω}:P<>X-r

l=qr for r=a, tycM^fl)

which is a class of continuous stochastic processes on Rd with prescribed
marginal distributions qa and qb at finite initial and final times a and b,
respectively.

Let PeMι(fl) be a Markov process which is going to serve as a reference
measure on the path space Ω. We assume that

( 4 )

where the relative entropy H(P\ P) of P with respect to P is defined as

(5) H(P\P)=\log(-jj)dP, if P<P,

otherwise.

In most of the interesting known situations and hence also in our investigations,
the measure P itself is not an element of the set Λa<b. In applications of
Theorem 1 which will be given below, a typical reference measure is the
so-called ' renormalization ' of a measure with creation and killing (cf. [1], [24]).

Let (Ωn, P) be n independent copies of (Ω, P), i.e. P is the w-product of
the probability measure P. Denoting the empirical distribution of ω—(ωlf ••-,
ωn)^Ωn by

(6) L»(ω)=^ΣMβ<

we have Ln(ω)^Mι(Ω) for each such ω. To define a reasonable conditioning,
we must enlarge the subset Aa>b, since Ln takes only discrete values and hence
{Ln<=Aa,b} might be empty in general. Let us take any sequence of finite
measurable partitions &k(Rd)={Bι, •••, Bk\ of Rd, k^N, such that
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(7) σ(^k(Rd))c:σ(^k+ί(Rd)) and σ(&k(Rd))/σ(Rd) as k/oo.

We define a family of subsets A(ε, k) of Mι(Ω) for ε>0 and k<=N in terms of
the partitions &k(Rd} as

(8) A(e, k)=
6

and P°X-r

l<P°X-rl on σ(3>k(Rd)) for r=a, ft}.
Thus

(9) P(Ln(ΞA(ε, fe))>0

for ε>0, k^N and n^N large enough. In fact, since Ln(ω)°X^1 for ω^Ωn is
concentrated on α)j(r)^Rd, /—I, •••, n, {Lne^4(ε, /?)} is the set of those ω^Ωn

for which

-^Γ- for /=!, - . . , A ; r=α, ft
n

where #r(#t) is the number of α>/r), 7 — 1, •••, n, contained in the set
Because of (4), there exists P^Aα>b in (3) such that P<P. Hence (9) is a con-
sequence of the law of large numbers which claims that Pn(Ln<=A(ε, k)) tends
to 1 as n increases to infinity.

The conditioning of P on the set A(ε, k) in (8) by means of the empirical
distribution Ln in (6) can now be defined as

We do not indicate ε on the LHS of (10), since it is a purely technical parameter
(cf. Lemma 4 in Section 4). It might be illustrative to notice that the marginals
of p < π . * > on Q belong to A(ε, k) in (8). In fact, the convex combination of
elements in A(ε, k)

I Λ« » N ^ — * " ^ —

is just the /-th marginal distribution of P ( π > * } on Ω, /=!, ••-, n. Following (i)
of Lemma 4 given in Section 4, A(ε, k) is a convex set and hence contains the
expression (11). Further discussions will be provided by Lemma 1 and Remark 2.

Let us now formulate our main result.

THEOREM 1. Let the set Aα>b in (3) satisfy condition (4). Thus there exists
Csiszar's projection Q^Aa>b defined by

(12) H(Q\P)= mm H(P\P).
p^Aa,b

Moreover, there exists a Markovian modification Q(n k) of the conditional process
P ( 7 l > f e ) defined in (10) such that
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(13) H(Q<» *> I Ql k}^H(P <»• k> I <?» 4)

w/z0r0 Qetk is Csiszar's projection of P on A(ε, k) in (8) defined analogously
to (12).

Then the sequence of systems ((Xlf ••• , An), Q(n>k)) performs 'propagation of
chaos in entropy' of Definition 1 with Csiszar's projection Q in (12) as limiting
distribution when n and k tend to infinity, provided log(Q%"k)/Q™k), n, k^N,
is uniformly integrable w.r.t. Qm for m<=N.

COROLLARY 1. The results of Theorem 1 for m<=N are also true, if for all
sequences (n(v), k(v)\ v^N, and Vδ>0, 3M<oo, 3^>0, 3p(m, δ, M, δJ^N such
that

/or a// ίe(— δj, δj) and /or a// v>v(m, δ, M, δi)

« ,1QtnW'k

dQ-tw

The proof is an immediate consequence of Lemma 3 providing ζ)w<
QJJ OO **")), peΛΓ, as well as a way to deal with (35) in the proof of Theorem 1.
The integrability condition (14) shows the required accuracy of the approxima-
tion A(ε, k) in (8) of AΛtb in (3) with respect to the reference measure P.

Theorem 1 has some significance in quantum physics. In fact, we learn
from [2], [19], [20], [21] that Schrodinger equations are related to so-called
Schrodinger processes and vice versa, as far as solutions exist and the corre-
sponding Schrodinger processes can be constructed. Moreover, [1] claims that
Schrodinger processes are certain Csiszar projections. As a consequence, Theo-
rem 1 yields

COROLLARY 2. In the situation of Theorem 1, the distribution of a 'typical
particle' under the law Q < n > A j ) as n and k tend to infinity is determined by the
Schrodinger process Q and hence by the related Schrodinger equation. In other
words, a Schrodinger equation is a kind of 'Boltzmann equation' for a system
of interacting particles represented by a system of interacting diffusion processes
((Xl} •••, An), Q(n *}) as n and k tend to infinity.

We can consider Schrodinger processes Q as Gibbs states of microscopic
systems represented by Q<n *> for n and k tending to infinity. In fact, Q
determines the rate function of the large deviation principle (40) called approx-
imate Sanov property. Hence, Q is the 'most probable' diffusion process under
the given circumstances and consequently, it is the limiting distribution postulated
by the fundamental hypothesis of statistical mechanics. This illustrates the
analogy to classical statistical mechanics, cf. e.g. [16].
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Remark 1. Csiszar [5], Kemperman [11] and Kullback [14] show that the
variation distance is dominated by the relative entropy according to

where Plf P2, R^M^Ω) with ΛcPgC^ Hence, Theorem 1 provides a com-
parably strong result. In fact, propagation of chaos in entropy yields propagation
of chaos in variation because of (16) and propagation of chaos in variation
obviously yields propagation of chaos in weak convergence.

(17)

3. Proof of Theorem 1

We denote a partial empirical distribution by

n — m j=m+ι
m<n, ω— (ωlt ••• ,

/ m \ ,\
-ε(—)f kj

LEMMA 1. Let us assume condition (4). (i) // n>m2k/ε is chosen large
enough such that

n—m τ

where

then

/ _ m χ
\ n /

ε, k)
for Pn-a.a.

(ii) Moreover, there exists n(m, e,

(18)

for all n^n(m, ε, k\ where
P(n'k^ in (10).

, n(m, ε, k)>m2k/ε, such that

is the m-dimensional marginal distribution of

Proof. Let <Pk={Bίf •••, Bk} be a partition of Rd as introduced in (7). In
view of the definition of A(ε, k) in (8), we first notice for r=a, b that Ln(ώ)°X^1

is not absolutely continuous with respect to P°X^1 on the set {ω^Ωn : 3/=l,
•••, 7z, 3ί=l, •••, k such that ωj<=X~;1(Bl) where P(X^1(Biy)=0] which is however
a Pn-zQτo set. In terms of (17) we receive

l_
n

m
n

ίil;
n—m
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for i—1, ••-, k and r— α, b. Hence (i) follows for Pn-almost every ω<=Ωn, if w
is so large that

2* "IF ?Γ
is positive.

Let n>m2k/ε and let B<m><Ξσ(Ωm). Because of Q<F in Lemma 4 (ϋ), part
( i) implies

(19) Qn(B^r\{Ln^A(ε, k)})

-I(^-), ή).

Since the law of large numbers claims that

there exists n(m, ε, k)>m2k/$ such that for all n^n(m, ε,

If ρw(5(m))>0, then inequality (19) yields

for all n^n(m, ε, ^) where n(m, ε, ^) is independent of the particular set B(m\
As a consequence of

which implies
p(

concluding the proof.

LEMMA 2. Let us assume (4). T/zew the limit

\imH(Q\Qε,k)=0
k^oo

in (38) of Csiszar projections Q and Qε, k in Lemma 4 (ii) implies convergence in
variation, i.e.

Moreover, if Bk^o(Ω} for k^N, then
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(21) limf log(-^-)dQ=0.
k^]βk \dQ£tk'

Proof. The limit (20) follows from (38) because of (16).
We notice that the function h(x)=x\ogx—(x—l\ #^0, satisfies

(22) H
which vanishes in (38) as k tends to infinity. Thus

also vanishes as & tends to infinity. In fact, the first term on the RHS can
simply be estimated by (22) since h is non-negative, and the second term on
the RHS tends to zero as a consequence of (20).

PROPOSITION 1. Let (4) be provided and let Q and Qε<k be the processes in
(12) and in Lemma 4 (ii), respectively. Then there exists a Markovian modifica-
tion Q ( 7 l > *> of P < * ' * > in (10) with property (13). Its m-dimensional marginal
distributions Q ( m ' k ) , m<=N, satisfy

(23)

for all n>n(m, ε, k) in Lemma 1 (ii), and

(24) lim
JfeTΌo T Ϊ /

which yields

(25) lim Ih -
Pm dP

Moreover, if B(^^σ(Ωm) for n, k^N, then

(26) lim limf
fc^Όo n^ooJB

(27) g*"'*^ /^ »
"Vε, fe

Proof. The existance of Q ( w *> with (13) is provided by Lemma 4.2 in [1]
because of (37) and (41). We notice that the marginal distributions of P<n *>
and Q < n ' f e > on Ωmv+lx ••• χβw(v+ι) for ι>— 0, 1, 2, ••• coincide because of the
symmetry of P (n> k) in ωίf i=l, ••• , 72. Thus Lemma 1 (ii) yields (23). Moreover,

(28) H(Q£ *> I *>
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by Lemma 11.3 in [24] where O^r^w—1. Hence (24) is a consequence of (13;
and (41) which cause the RHS of (28) to vanish as n and k tend to infinity.
Convergence in variation (25) follows from (24) by means of (16).

The limit (26) is received analogously to the proof of Lemma 2. In fact,

(29) 5, k

where Λ(*)=* log*-(*--l) for *^0. The LHS of (29) equals #«?#•*> 1C?*)
which vanishes in (24) as n and & tend to infinity. As a consequence,

S n I

vanishes as w and k tend to infinity. In fact, the first term on the RHS is
estimated by (29) since h is non-negative, and the second term on the RHS
tends to zero because of (25).

LEMMA 3. Let us assume (4) and (14) in Corollary 1. If for m^N, g{mw'kw*>
, is given in (27), then V3>0, 3M<co, 3)X<5, M}^N such that

(30) ..m,\\*g(g£w'k™)\dQn<S9 Mu>v(d, M)
JBV,M

with Bϊmά={\\ogg%™'k(v»\>M}.

Proof. Referring to (27) we notice that for Me(0, oo)

B^={\loggS^'k^\>M} = {(gS^'k^f>eM for θ=l or -1}

which corresponds to Bi™£ in (15) with M~eM '. If, as provided by (14),

for all tG(—δίf 30 where l<M<oo, then

(31)

for all t^(—δι, δι). In order to arrive at (30), the inequality

ab<a\oga+eb for α, ^^0

in section 15 of [3] is applied to a-dQm/dQf,k(v} and &=f|log(g£? ( l' ) * ( l / ) ) ) l for
ίe(0, 30- Thus
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1 r
— _\

~ ί JsίS

since the first term on the RHS vanishes in (21) as k(v) tends to infinity while
the second term on the RHS can be made arbitrarily small by a large M on
the basis of (31).

Remark 2. In order to verify propagation of chaos, i.e. (1) and (2), we
essentially have for use the limit (38) which is a consequence of (37) and (39)
and the limit (24) which is a consequence of (13), (28) and (41). While (24)
provides some integrability properties in Proposition 1, Lemma 3 shows some
consequences of (38) under assumption (14). Let us briefly resume our approach.
Because of (37) and (38), Q<Qε,k<P> where Qε>k is Csiszar's projection of P
on A(ε, k) in Lemma 4(ii). Following Proposition 1, Qm<Qίί> f e ) for n>n(m, ε, k),
where Q<n *> is the Markovian modification of jp< n *> in (10). We notice that
(20) and (25) yield

r i //O (7 l *>
U m U m j | d J * m

dPm=0

i.e. convergence in variation. In order to get \\mk^00\\mn^00H(Qm\Q(τϋ>k)}—0,
i.e. (1), Q(m'k> has to satisfy additionally a uniform integrability condition with
respect to the limiting distribution Qm. Lemma 2 and Proposition 1 refine (20)
and (25) on the basis of (38) and (24), respectively. In Corollary 1, the assump-
tion (14) is rather a condition on the approximating sequence Qε>k than on Q
itself.

Proof of Theorem 1. Because of (4), Lemma 4 provides the unique Csiszar
projections Q and Qε>k of P on Λa>b and on A(ε, k), ε>0, k<=N, respectively.
Moreover, Proposition 1 yields a Markovian modification Q(n>k> of P(n'k> which
satisfies (13). Following Proposition 2, Q<n *> and Q£k satisfy (41) because of
(13). In our situation based on (10), which is particularly symmetrical in ωi}

f=l, •••, n, property (1) for m=l implies property (2) in Definition 1.
In order to show (1) for any raeTV, we notice first that H(Qm\Q^'k)) is

well-defined. In fact, Qm<Q(m'k\ i.e. n^n(m, ε, k) in Lemma 1 (ii), holds as a
consequence of (38) and the assumed uniform integrability of log(dQ$'k>/dQ™k)
w.r.t. Qm. Since Qm'k) takes different positions in the relative entropy expres-
sions in (1) and (24), respectively, we consider
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(32)(όl)

for n^n(m, ε, k) where the first factor on the RHS of (32) exists because of
(38) and the second factor on the RHS of (32) exists on suppQϊ'^ because of
(24). As a consequence of (32),

(33) H(Qm\Q%'k>)=mH(Q\Q

where #£?•*>, nt k<=N, is defined in (27).
Let us investigate the limit behaviour of the second term of the RHS of

(33). Proposition 1 claims that

(34) lim limί
f c ^ o o Λ / Ό o J ί | l θ g ( ί ) | > Λ f }

for any M>0. Thus we are ready to claim that

(35)

„
>)|SJf)

1,k)

as n, k/Όo. In fact, the first term on the RHS of (35) becomes arbitrarily
small for M large because of the supposed uniform integrability of log(^ ̂ 'A)),
n, k(=N, w.r.t. Qm. The fourth term on the RHS of (35) can be made small
for large M because of (34) following from Proposition 1. In case of the second
and the third term on the RHS of (35) we refer to (20) and (25), respectively.

Finally we obtain (1) through (33) by means of

as n, k /*oo. In fact, the first term on the RHS vanishes in (38) as k tends to
infinity, the second term becomes small as n and k tend to infinity because of
(35) and the third term vanishes as shown in (24).
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4. Csiszar's projection and the approximate Sanov property

Here we briefly arrange some of the quoted results for the reader's con-
venience.

LEMMA 4 (Csiszar [6], Aebi and Nagasawa [1]). Suppose that any refer-
ence measure PeMι(β) and AΛtb in (3) satisfy (4). Then:

(i) Aa>b and A(ε, k) in (8) are convex, variation closed and satisfy

(36) Aa,b= C^A(ε, k), Vε>0.
k<=N

(ii) There exist uniquely the Csiszar projections Q and Qε>k of P on Aa>b

and on A(ε, k), k^N, ε>0, respectively, defined according to (12). They satisfy

(37) \imH(Qεtk\P)=H(Q\P)ί Vε>0

and

(38) lim#(OK?β i J k)=0, Vε>0.

Proof. Details are found in Lemma 3.5 of [1]. In case of the crucial
convergence in (38), we refer to inequality (2.14) in [6], It provides

(39) H(Q I P)-H(Qε, k \ P}^H(Q \ <?.. ,)

because of QeAα,6cA(ε, k). As a consequence of (37), the LHS of (39) vanishes
as k tends to infinity.

PROPOSITION 2 (Aebi and Nagasawa [1], revised). Let (4) be provided.
Then:

(i) The set Aa>b possesses the approximate Sanov property

(40) lim lim-logP(Lne^(ε, A?))=-#(0|P), Vε>0
A/ΌO ns°° n

where Q is Csiszar's projection of P on the set Aa>b defined in (12).
(ii) The system (X1} •••, Xn) is asymptotically quasi-independent under P(n<k)

in (10) with limiting distribution Qε,k for each k^N and ε>0, i.e.

(41) lim-#(P(n-*M<??,*)=0, MkϊΞN, Vε>0.
n/oo n
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