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LINEAR ISOMETRIC OPERATORS ON THE C{»(X) TYPE SPACES

RISHENG WANG

Abstract

In this paper, we try to investigate the representations of isometries,
isometry groups and the space classifications of the C§{™ (X) type spaces
(XCR™ m,n=1).

§0. Introduction

Let Z, be the set of non-negative integers. We make the following nota-
tions :
X=(%1, X3 =+, Xn)ER™ r=(ry, 13, -+, rR)EZL]

ri=rlry! - ry! [r|=ri+ret - +rn

y _ ar1+rz+~~+rmf(x)
FOX)= e e

If 2 is a locally compact Hausdorff space, C,(£) denotes the Banach space
consisting of continuous function f on £ vanishing at infinity (i.e., {wE®2:
| f(w)| =¢} is compact for all €>0), with the norm | f||=sup{| f(w)| : w=2}. For
any integers m, n=1, set I'={r=(y, -+, ¥u)EZ" i+ - +rn<n}. A subset
X of R™ is called to be NIP: if for any line L parallel to one of the axes of
R™ the set LNX contains no isolated points. If X is a locally compact and
NIP subset of R™, we use C{®(X) to denote the normed space consisting of all
function f on X which satisfies: f™ < Cy(X) for all r&[", with the norm | f|
=SUPyex 2rer | FP(x)| /1. We set C§(X)=Cy(X) and use S, x to denote the
unit sphere of C{™(X).

For the case n=m=1 and X, Y SR, the representations of surjective linear
isometries between C{V(X) and C§(Y) had been studied by Cambern and Pathak
[1] (complex case only), for m=1, n=1 and X=Y=[0, 1], by Pathak [2]
(complex case only), and for m=1, n=1 and X, Y SR' with some conditions by
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the author [3] (real case and complex case) In this paper, we try to consider
the most general case: m,, m,, 7, n,=1 and XSR™, YSR™ are locally com-
pact and NIP. Particularly, when X and Y are open sets, a complete represen-
tation of linear isometries from C{*(X) onto C{"*»(Y) is obtained (Theorem
3.5), the results are true in both the real case and the complex case, extending
the results of all the papers mentioned above.

We shall begin the discussion in section §1 with the representation of
extreme points of the unit ball of C{™(X)*, which is very important for the
construction of the map @, in the next section. By using the basic lemmas
established in section § 2, we state and prove the representations of surjective
linear isometries between C§™(X) type spaces in section §3. Finally, as an
application, we consider the isometry group of C{”(X) and give some interest-
ing examples in section §4.

It is easy to check that fgeC{™(X) and ||fgl|<|fllgll for all f, g&C{™(X),
thus C§{™(X) is a Banach algebra when it is complete®.

§1. The extreme points of the unit ball of C{™(X)*

PROPOSITION 1.1. For any x,=R™ and any ¢, 6>0, there exists an fES, gm
such that supp(f)SNs(x,) and (1/n1)|0™f/0x7(x,)| >1—e.

Proof. For any >0, take a ¢eC§{™(R™) with supp(p)SNs.,(0) and
(0"¢p/0x7)(0)#0 (e.g., we can take ¢=C{™(R™) such that supp(¢)SNs/.(0) and
¢(U)=1 for some open neighbourhood U of 0, then ¢(x)=¢(x)x} (Vx=(x,, -,
xm)ER™) has the desired properties!). For any k=1, define

gr(X)=@(kx), Xy -, Xm), X=(x1, -+, xp)ER™,

It is easy to see that supp(g:)Ssupp(p)SNs/(0) and

91t Tmg L (x) b 9Tt Tm k )
=k" —(kxy, Xa vy Xm).
0xy! - dxy™ Oxit o Qyim ML AP s Am

From which, we can show

k™ | 87¢(0) .
e | Sles=krlel, k21
Set fr=(g+/llg:l)ESa.rm (k=1). Then, supp(f.)=supp(g:)S Ns;(0) and
&) 1 |gs"” (x)]
GE AN AL i

< 1 R oM (kxy, X5 vy Xm)l

= 1|00 o F1sn r!
— k™ ti#n
n! |l 0x?

1 For the completeness of C§™ (X) type spaces (n=1), see [4].
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< n! [o" (kX1 Xy *++) Xm)l
= 3"g0(0) .k TIEL r!
Toxr
- n! 0 b
=W};”¢”—’ (as k—co).
ox}
For any ¢>0, there exists a k,=1 such that
r)
(1.1) /i fx)l<e, VxeR™.
UE I
Take a y,&supp(fr,) SNs2(0) with
irisn
then, from (1.1) we have
0"fy(yo) BEED]
n! T ox? == 3 r! >l—e

Tiin
Finally, the function f defined by
fO)=fr(x—x0+y,), VXxER™,
belonge to S, gm with

supp(f) ENs/2(xo—Yo) ENs(x,)
and
o™ f(x,)

9"fko(yo)
oxr —e. O

TR

n‘ - n!
Let X be a locally compact and NIP subset of R™ (m=1). For any nz=l,

define
Sm.n=la=(a,)eK*r: |a,|=1 (Vrel)}

W=XXSn.n

where [ is as before. Then, W is a locally compact Hausdorff space with the
product topology We use C (W) to denote the Banach space of continuous
functions on W vanishing at infinity, with the sup norm.

If feC{™(X), define f=C, (W) by

Fx, a)— 'f (x), V(x, &)W,

then the mapping f—f is clearly a linear isometry of C{™(X) onto a (linear)
subspace A of C,(W) (We look C§{™(X) and A as the same space). We can
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prove, in a routine way, that any extreme point f* of the unit ball of A*=
C§™(X)* is the restriction on A of some g*cext B¢ w)s henceforth, g*=20,
for some w=(x, &)W and some complex number |A]=1 (See W. Rudin’s book
[6]). That is

arf<r)(x)

HH=g*)=20u()= 22 1

Z‘,‘Bf()(x),

rel

vieCi”(X)

where B=21a. That means any f*cext Bc(m(x)* is of the form

FH)=dce, ,a>(f)—2/9 9 vrecm

for some (x, B eW.
Now, we go to show the inverse.

LEMMA 1.2. For any w,=(x, &)€W, the linear functional 8,, on C{™(X)
defined by

Bu ()= B f ), VfECMX),
rel’ 1!
is an extreme point of the unit ball Bogm xy« of C§(X)*.

Proof. It is clear that [[6,,<1. Suppose that d.,,=(f¥+f¥)/2 for some
f, ff€Bcim . By the Hahn-Banach Theorem, the functionals ff, ¥ can
be extended to be functionals g¥, g¥E Be,wx. Applying the Riesz Representa-
tion Theorem (cf. [5]), there are regular Borel measures p;, p. on (W, 3y)
such that |p;|(W)=|g¥l<1 (¢=1, 2) and

(1.2 gt(n=| Fwdpw), vrecym®), i=1, 2.

From Proposition 1.1, for any ¢, >0 there exists an f€S, r» such that
supp(f) & Ns(x,) and

a"f(xo)
n‘ T ox® >1=
Especially, when 6>0 is small enough feC{™(X) and | f||<1, therefore,
a.f "’(xo) 0™ f(x,) larf @ (X0) ]
Bu(pl=| B 2L | 2 | 2T ~ 3
>1——e—e=1—2€,
and
X %

Since |Ig¥ll<1 (¢=1,2) and |f[<1, from (1.3) we have |g¥(f)|=1—4e
(¢=1, 2), thus
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) 1-desigrnl=|| Fwdpw)|=| Fadpw)|

S [ pil(No(x) X Sm, ), =1, 2.

N3lxg) xS, n

Letting ¢e—0 in (1.4), we get
1S e/ (Ns(X0) X S, n), V00, =1, 2.

Since the Borel measure l(.tzl is regUlar and K—{xo} XSEm, n is compact, Setting
d—0 we get
1= I[lil(K)S |ﬂi|(W)——|lg’}‘[|<l, i=1, 2

which implies
1.5) il W)= p:|(K)=1, |psl(K)=0, i=1, 2.
By (1.2) and (1.5), we obtain

16 gio=| gwdmw=| gwduw), VgeCiX), =1 2.

Take a p=C§{™(R™) such that
supp(p) ENs,(xo) and @U)=1,

where 0,>0 is small enough so that N (x,)N\X is compact and U is an open
neighbourhood of x,. Write

d(x)= gpdr(xl—xm)“ v (Xm—Xom)™™, X=(Xy, -+, Xm)ER™

xo—-:(xM, ceey xum)ER"‘
and define
gx)=px)p(x), YxeR™

Then geC§{™(X) and
1.7 a,g™(x,)>0, Vrel.
Therefore, from (1.2), (1.6) and (1.7) we have

1&g (x0)] a8 (xy) _ R e)+r¥e) _ g +g¥g)
rel r! _rezl" r! —5w0(g>—— 2 - 2

:-;-[SKQ(w)d ,al(w)+SK§(w)d m(w)] .

Since | g |(K)=1p.|(K)=1 and

18" (x0) |

1Ew)l= 2 i Ywek,
rel’ r

we must have
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)
1.8) [ 2= =5, ), i=1, 2

For any weK,=K\{(x,, ia): |A|=1}, from (1.7) we can show that

|2 (x0)|

j&(w)| <r€l;~T .

Therefore, from [lp:l=1 and (1.8) we must have |p;|(K,)=0 (¢=1, 2). Thus,
from (1.8),
1.9) [, #du=( gwdpw=21E =5, ()
’ Ky [li K #z rel’ r! “o
where Ki=K\K,= {(x,, 1a): |A]|=1}.
Finally, for any heC§{™(X) and w=(x,, A&)=K,, an easy calculation shows
that
~ Aa,h ™ (x,)

rel’

w)

&(
0w,(8)

thus, by (1.2), (1.5) and (1.9),
Fry=gt={ hwdpw)=|_kwdp@={_kwdpw)

_ 0y (h)
T 0u,(8)

that is, f¥=f¥=0,, and 9., ,Sext Be{m x)+. O

[, 2wdp=su,m), vhecm), i=1, 2,
1

Remark 1. We do not know whether for any w=(x, &)W there exists a
“peak function” f=C§™(X) such that

SIOWI G 1F W)

rer Tl rer Tl

, Vy#+x, yeX

and a,f"(x)>0 (r&l’), henceforth, we can not directly use the Lemma 3.2 of
[6] as being used by many other authors, but the results concerning the repre-
sentations of the extreme points of C§{™(X)* are the same.

THEOREM 1.3. Let m, n=1 and X, W be the same as before. Then,
f*eext Begm s & f*=0w for some weW.

Moreover, the map &:w—d, is a homeomorphism of W onto (ext Boim cx)s,
weak*), where weak* means the weak-star topology.

Proof. The first part has been proved. We only prove the latter part.
Let us note that the map & is one-to-one and onto, we only need to show the
continuities of & and &!. From the definition, the continuity of & is trivial.
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Now, if 6%@6", (We=(xq4, &g), w=(x, a)W), by taking g C{®(X) so that
supp(g) SN3(x)N\X is compact and 8.,(g)+0, then d,,(8)#0 (Vd=d,) for some
dy. Thus, x;=supp(g) (d=d,), without loss of generality we assume that
lim, xq=y<supp(g) and limz@;=BESn,». For any heC§{™(X) we have

0. p(h)=1im 8, (1) =0u(h),

which implies that (y, B)=w and lims§*(0w,)=lim; w.=(y, B)=w=E"(0u).
The continuity of &' is proved. O

§2. Some basic lemmas

In this section, we always assume that n,, n, m;, m,=1 are integers,
XS R™ and YSR™ are locally compact and NIP, and T : C§{"?(X)— C§{"2(Y)
is a surjective linear isometry.
Denote
W =XXS8n;.n, and W,=Y XSn, 1,.

For any (x, &)=w,sW,, since (T "H)*: C{"?(X)*—C§"(Y)* is a surjective
linear isometry and d.,&ext Begro nx, we have (T7)*0y,)=0,,E€xXt Bo{n i«
for some unique w,&W,. Define

Or(w)=w,.

Remark 2. 1t is evident that

ﬁwr(w)(Tf):‘?w(f): Vw €W1 » fE Cf(inl)(X)~

LEMMA 2.1. @7:W,—W, is a homeomorphism.

Proof. Let
51 : W1—>(ext Bcgnl)(x)*, Weak*)

&1 Wiy—(ext Begny ayx, weak*)

be as in Theorem 1.3. Since &, & are homeomorphic and (T !)* is a surjective
linear isometry and a weak-star isomorphism, from the following commutative
diagram

&1
W1 —> (eXt Bgéﬂl) (X)%) Weak*)
| or | cxoy
&'
W, <— (ext Bcgnz) @+, weak*)

we can easily see that @, is a homeomorphism. O
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LEMMA 2.2. For any x,=X, define
Alx)={yeY : Or(x,, @)=y, B) for some @aESy  », and BESn, r,}-
Then *A(x,)=1.

Proof. Take a;=(ai,), @:=(@2;)ESm,, », such that

a10=a20=1 and A=y (1§ |r|§n1>'
Then,

1
5x=-2-[5<x,a1>‘|‘5<x,¢2)], VxeX.

Set Dr(xy, @)=(y;, B1) and Dr(x,, @)=Y, Be).
Suppose that ys€ A(x,)\{y:, y.}. Let U and V be two open subsets of Y
satisfying

2.1 unv=0, y, y.€U, y;V.

Since the mappings
X— QY@T(xy al)

and x— QyPr(x, @)

are continuous (where Qy:W,—Y is the natural projection), there exists an
open neighbourhood O of x, so that

2.2) Qy0r(x, @), QyPr(x, @)U, Vx&O0.
Let @r(xy, @&;)=(ys Bs) and take a geC{*?(Y) such that
2.3) Ocyy.89(8)#0, supp(g)SV.

Then, from (2.1), (2.2) and (2.3) we have

THQHX) =0T @) =5 (B, ap +30e.0 T~ (@)
= LBorcn ap(&)Hogcs.ap@]=0, VxO.

Therefore,
T @) (x))=0, |ri=mn
which implies that
00y, 8(8)=0(x,.a(T™(g))=0,

a contradiction. Thus, A(x,)E {y:, Y.} .

When the scalar field is C', A(x,) is the range of the continuous map
Qy®Pr(x,, -) on the connected domain Smy.ny» henceforth, connected, thus #A(x,)
=1. When the scalar field is R', let P: W,—Sn, ., be the natural projection,
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then, from the continuity of P®r and the discreteness of Sp, ., there exists
an open neighbourhood O, of x, such that

POr(x, a)=8,, ¥x0,

2.4
POr(x, @)=F,, Vx<O..

If y,#y,, we can take two disjoint open subsets U, and V,; of Y such that
y.€U, and y,€V,. There exists an open neighbourhood O, of x, so that

(2'5) QYQT(x; al)EUl) QY@T(x’ aZ)EVI} VxEOZ'

Let geC§{"(Y) satisfy supp(g)SU, and g(U.)=B7kh,..o for some open neigh-
bourhood U, of y, (where 8:=(B:,)). Take an open neighbourhood O; of x, so
that

(2.6) Qv0r(x, @a)sU,, Vx&O0;.
Then, from (2.4), (2.5) and (2.6) we get

2.7 T"(g)(x)=5x(T"(g))=-;—[5@,a1> +0¢x,ap J(T7(2)

1
=—2‘[5(QY¢T(:¢, ay), ﬂl)(g)+5(qy¢r<x. ap. (2]

=3 [140]=5, Yx€0,N0,N0s,
in particular,
(2.8) T g (x0)=0, 1l=|r|=n,.
Thus, from (2.7), (2.8) and noting that y,#supp(g), we obtain that
0=104,, (@)= 10(xg.apy(T (&N =T (g)X0) | =%,

which is a contradiction.
We have shown that *A(x,)=1 for all x,=X. 0

LEMMA 2.3. There exists a homeomorphism ©: X—Y such that
Or(x, @)=(t(x), ), xEX, @aSSn,.n,
where * is an element in Sy, ., depending on (x, @).
Proof. For any x=X, from Lemma 2.2, we can define
7(x)=QrPr(x, @)

which does not depend on the choice of @ =S, ,»,. Then,
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¢T(x, a)———('l'(x), *)7 Vaesml.nl

where * depends on (x, @)W,. Because that @; is homeomorphic, we can
verify that r: X—Y is homeomorphic. O

Remark 3. When XS R™ and Y S R™: are open subsets, from Lemma 2.3,
we must have m,=m,.
COROLLARY 2.4. For any feC{"(X) and x&X,
FAKCII ITf"(z(x))]

Irisng r! Irisny r!

Proof. Let @ESnp,,a, satisfy 0. ar(/)=Zirisn, | /T (x)]/r! and set Or(x, a)
=(r(x), B), then

| f )] | Tf O]

(2.9) > —:a(x,a)(f):‘s(r(x)»ﬂ>(Tf)§mzsn r!

yrign, 1!

On the other hand, if B*&Sn,. 1, such that d¢ (. so(T)=Zirisn, | T (x(x)]
/rl, let @r(x, a*)=(r(x), B*), then

TFf® )
(2.10) 2 l—f“six))']=5<rm,p*)(Tf)=5<x,¢*)(f)§ b EAC)) '(x)l.
irismn, r Irisn, ri
From (2.9) and (2.10) we can get the desired equality. 0O

LEMMA 2.5. Let U be an open subset of X. If feC§™(X) satisfies f|y=1,
then |Tf(y)|=1 (Yyerl)) and Tf"(y)=0 (Vyec) I1<|r|<n,). If f, g€
C™(X) satisfy fly=glv=1, then Tfl|l.on=Tg|.w. Furthermore, for any
heC{i*(X) and x=X, we have

h(x)=0 &&= Th(z(x))=0.

Proof. Suppose that f|y=1 for some fC§{"’(X) and some open subset U
of X. For any x&U and BESn,. »,, letting @r(x, a@)=(z(x), B), from

@1)  1decw p(THI=l0m(N=1= 5 oW 5 [T/

risny r! —lrlsn2 r!

We can see that {Tf™(z(x)): |r|<n,} has at most one non-zero term and
ITf(z(x))|=0 or 1, xeU.

For any y,=r(U), by the continuity of T f, there exists an open neighbourhood
V of y, such that V<(U) and

(1) ITf(y|=0, yeV
() or |Tfyl=1, yeV.
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The case (I) does not exist. Otherwise,
Tf(r)(y):()y yEV: |r1§n2:

a contradiction to (2.11).
For the case (II), from (2.11) we have

Tf"(y)=0, yoccU), 1Z|r|<n,.
For any heC{*(X) and x=X that satisfy h(x)=0, take a,=(a,.), @;=
(@) ESmy. , such that d¢s,ap(h)=2irisa, [A7(x)|/r! and
ap=—a»=1, a,=a, 1=|r|<n,).

Set Or(x, a,)=(z(x), B:;) (=1, 2). Take an feC§(X) so that f|y=1 for some
open neighbourhood U of x, then |T f(r(x))|=1, Tf"(r(x))=0 (1< |r|<n,) and

0=[0x,ap+0x.ap]()=[0ccx). g F0x(xr, g AT /)= (Bro+ B20) T f(z(x)),
thus, Bio+B2=0. Now, from

_ _ A" x)]_ | Th®(x(x)]
5(r(x).ﬂl)(Th)"a(x.al)(h)‘—Irlz?nl rl _IrI§n2 rl

_ _ |h X)) _ | Th®(z(x))]|
5(1’(::).ﬂz)(Th)_a(x.az)(h)_‘rénl r! _lrlsng rl ’

we have
Th®(r(x 1
lrlgnzl——*f!ﬁ)“lzf[&ﬂx).ﬁl) +5(r(x),ﬂ2)](Th)

— BirtBer Th(z(x))
- Ir§n2 2 r!
Butfor Th®(z(x))
-lélrlsnz 2 r!
BirtBer || Th™(z(x))]
2 r!

- s IThOEE)|

T 1sirisng r!

=
1s|risng

It follows that |Th(zr(x))|=0. By a symmetric consideration with respect to
T-', we can also show that

Th(z(x))=0=— h(x)=0.
Hence, for any x€X and heC§"(X),

h(x)=0 &= T h(z(x))=0.
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If fly=gly=1 for some f, geC¢"(X) and some open subset UZSX, then
(f—g)x)=0 (xeU), from the above we have (T f—Tg)(z(x))=0 (x&l), i.e.,
Tfleov=Tgl:w».- (]

§3. Representations of isometries

THEOREM 3.1. Let ny, n, my, my=1 be integers and XS R™, YSR™ be

locally compact and NIP. Suppose that T :C{"P(X)—C§2(Y) is a surjective
linear 1sometry. Then there exists a homeomorphism o :Y—X and a continuous

modular function 0(y) on Y such that
1) 0"=0 for all |r|=1, and
(2) for any fECMV(X),

3.1 Tfy=0wfew), VyeY.

Proof. Let 7:X—Y be the same as in section §2 and set 6=7"'. For
any y€Y, by Lemma 2.5, there exists a 6(y) in S!, the set of numbers of
absolute value 1 in K*, so that

0=Tfw),

for all feC§{"(X) such that f|y=1 for some open neighbourhood U of z7!(y)
=0o(y). From Lemma 2.5, 6(y) is well defined, continuous and

0(")(1/):0, 1§Ir|§n2-

Thus, 6 :Y—S' is a continuous modular function satisfying (1).
For any geC{"’(X) and y<Y, let f be as above, then the function A=
g—gle(y)feCi™(X) satisfies h(o(y))=0, applying Lemma 2.5 we get

Thy)=Tgy)—gleW)T f(y)=T g(y)— g(a(y))0(y)=0,

that is,
Tgly)=0wyelew), VyeY. O

In order to find out the relations of m,, m,, n, and n,, we need the follow-
ing lemma.

LEMMA 3.2. Under the same conditions as in Theorem 3.1, set
I'=A{r=(ry, =, ra)EZM1 :ri+ - +rp <0y}
Fy=Ar=(ry, =, ra)EZT2: 11+ - +rp,<ns}.
Then, (1) #I',=%1",, (2) for any feC{"’(X) and xX,
#rel': fOw)=0=*{rel,: T f"(z(x))=0}
#rel: fO)#0=*{rel,: T f™(r(x))+0}
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where t is as in Lemma 2.3.
Proof. (1) Let @r be as in section §2. By Lemma 2.1 and 2.3, P®r(x, -)
is a homeomorphism from ‘sml‘nlzs‘”} Onto Sy, »,=S*"2 (where P: We—Smyn,

is the natural projection), thus, *I",=*#/",.
(2) For any feC{"(X) and x<X, let

=Hrel: fO=0, k=*{rel,:Tf"(x)=0},

then S*: is homeomorphic to C={@ESn, 1, : 0cx.ar(f)=2iri5n, | P (x)]/r!} and
S*2 is homeomorphic to D={BESm, n,: Occer, (T F)=Ziri5n, | T f O (x(x))|/71}.
But, from 31,150, | fC )| /1= 11150, | TS (z(x))| /1! (Corollary 2.4) and 8., a)(f)
=0¢c(w), Pop.an(T f), we can see that C and D are homeomorphic under the
map P®@r(x,-). Therefore, S*: and S*2 are homeomorphic, hence k,=k,, i.e.,

trel: fO@)=0=*{rel:: Tf"((x)=0}.
It follows that
srell: fO)=0 =" —*{rel: f"(x)=0}
=#,—*{rel,: Tf"(c(x)=0}
=*{rel,: Tf"(r(x))=0}. 0

THEOREM 3.3. Under the same conditions as in Theorem 3.1, we have m,=m;,
and n,=mn,.

Proof. Let 8 and o=t"! be the same as in Theorem 3.1 and &(y,)=x, be
fixed. There exists an a=R™ and an open neighbourhood U of x, such that

x;—a,>0, VYx=(xy -, xn)€U, j=1, -+, my.
Take {f;} A4S Cs"(X) so that

fix)=x;—a,, Yx=(xy, -, x0)EV, j=1, -, m
for some open neighbourhood VEU of x,. From Theorem 3.1, we have
(3.2) Tfir(x)=0((x)fx)#0, Yx&V, j=1, -, m;.
By Lemma 3.2 and the choice of f,, we know that
(3.3) Hrel,: T (e(x)+0}

=*{rel: fP(x)#0 =2, VYxeV, 1<j<m,.

Cram. If xe€V, rel’, and T f{"(z(x))#0, then |r|<1.

Otherwise, there is a r*<[, with 1< |r*|=|r|—1 and
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(rk)
rrpw="T"0 yyey

for some 1<i<m, By the continuity of T f",
(3.4) TfP@y+0, Yye0

for some open neighbourhood O Sz(V) of z(x). Clearly, Tf{™(y)%0 on O. We
can take a y*=r1(x*) (x*<V) such that T f{™(y*)+0, then together with (3.2)
and (3.4) we have

Try®+#0, Tfmw*+0, Tf"@*)+0

which contradicts with (3.3). The claim is true.
Now, define

f=hHi+ - +fa, €CIMX),
then for any r&/', with |[r|>1, from the above claim,
TfOW)=Tf{"Wo)+ - +TF7(H)=0.
Besides, from the properties of {f,:1<j<m,} we can calculate
#Hrely: fO(x)#0} =14+m,.
Therefore, by Lemma 3.2 and the claim,
I4+m=*{rel: f"(x,)+0}

=#{rel,: Tf"(y,)+0}
<tfrel,:|r|Ll}=14+m,,

that is, m;<m,. Similarly, by considering 7!, we can also get m,<m,, thus
m,=ms,.
Finally, if we set m;=m,=m, then from
Hr=0y -, ra)EZL i+ - Frasn} =*=*T,
=¥ {r=@y, -, rR)EZL i 11+ o TS}
we can easily see that n,=n,. 0
From now on, we only consider the cases where m;=m, and n,=n,.

Suppose that YSR™ is NIP and F is a map from Y into R™. Recall that the
Jacobian matrix J(F) of F at the point y=Y is defined by
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0F,(y) O0Fy(y) 0F,.(y)

0y, 0y, 0y,
OF@y) R  0F.®)

J(FYy)= ayz 3y2 ' ayz

dF\(y) 0Fy(y) IF,.(y)
0y 0yn 0Ym

where F(y)=(F.(y), Fx(¥), -+, Fu(®)).

THEOREM 3.4. Let m, n=1 be integers and X, YSR™ be locally compact
and NIP. Suppose that T : C{™(X)—C§™(Y) is a surjective linear isometry. Let
0:Y—X be the homeomorphism as in Theorem 3.1. Then for any y,Y there
exists an open neighbourhood O of y, and a permutation = on {1, 2, ---, m} such
that the Jacobian matrix J(o) is a constant matrix on O with the property

@5 ey yasism =0 (=i,

x(j)

a"JLyQ
9y,

Proof. For any y,<Y, set x,=0(y,)=X. As in the proof of Theorem 3.3,
we can take an ac=R™ and {f;} %, S C§™(X) such that

fix)=x;—a,>0, VYxeU, 1<j<m
for some open neighbourhood U of x,. We have known that
(3.6) Tf)=0)f(o@)=0)(o,y)—a)+0, YyeccU)

where 6 is as in Theorem 3.1, 7=¢7! is as in section §2 and o=(agy, -, o).
From (3.6), we know that

Gj(y>:a.7 0( ) Tf](y)! VyET(U)

which implies ¢ is continuous at y,, henceforth continuous on Y (r&/"). As
shown in the proof of Theorem 3.3, for any 1<;<m and y<z(U) we can show
that there is a unique r(j, y)I" with |r|=1 and

Tfrow@#0, TfFP@=0 (Ir|=L r£r(, y)).

By Corollary 2.4 and (3.6), letting y=1(x) (xU), we can calculate.
(r) r)
0@ 5 WL )

1sinsa 1l TwEe 1!

(r
le] ()| — T )= = [Tl

T ifEn 1sirisn r!

=ITf;‘""””(y)l———ll’;"“’””(y)l, Vysr).

3.7 1=
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By the uniqueness of r(j, y), we can also show that the map r(j, :): z(U)—T"
is continuous (where I' equips with the discrete topology). That is, there
exists an open neighbourhood O<S7(U) of y, so that

r(j, y)=rQ, yo), VyeO0, 1=;<m.

Now, let us show that
3.8 r(J, yo)#r(k, y,), if j+k.

In fact, if r(J, yo)=r(k, yo)=r, (J#k), since a{(y,) and a{(y, are real
numbers and belong to {—1, 1} (from (3.7)) we can take a real number
e {—1, 1} with o{"(y,)+ca{(y,)=0. Considering f=f;+cf,€C§{™(X), we can
calculate

(” &)
9— fr<‘xo>! 1f0(x0)] <xo>| 1 fe|
1sirisn e
(r.
= 5 T2 7 pg)
r)
:lglrléanfr!(y())l:IT'f’(m)(yO)_l_CTf’grO)(yO)’

=10o)a;" (Yo)+cOyo)ai (o) | =0,
a contradiction. Thus, (3.8) is proved. Let
17 yo=0 -, 0, 1,0, ,0), lsj=m,
then from (3.8), n(-): {1, 2, ---, m}—{1, 2, ---, m} is a permutation and

998D _ yrom(yye (—1, 1} (1<j=m),

33’”(;)

0 . .

{:913()1:0) e Yo)=0 (GE#n()))
where r=(0, -, 0, <11>, 0, -, 0l

Define
= [—m\ {yEO . o—}(r(f-vo))(y)—_—-g]('(f»vo))(yo)},_

Since "V v (y)=g "1 (y)e {—1, 1}, by the continuities of g{"¥ ¥ (1<7<m),
we can see that O, is an open neighbourhood of y,. For any y=O,,

%l;j(f) =ayror(g=grog)e -1, 1}, 1=j<m

and

ao,y(y) =0 (y)=0, i#x())
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where r=(0, ---, 0, (1), 0, .-, 00l with r#r(j, y)=r(J, y,). Therefore, the

Jacobian matrix J(¢) of ¢ is a constant matrix on O, and satisfies (3.5). O

As we know (for example, from [7]) that every (linear) isometry I on
(R™ ||-],1) is of the form

(39) I(x):(alxn(l)) R amxn(m)); Vx:(xb B xm)ERm

for some a,, ---, ap={—1, 1} and some permutation = on {1, ---, m}. For our
convenience, we shall call the map [ of the form (3.9) a permutation (of axes)
on R™. If we use IOR(m) to denote the isometry group of (R™, |-|,1), then for
the ¢ in Theorem 3.4, looking as a linear operator on R™, J(o)(y) is a linear
isometry on (R™, ||-|l;1) (y€Y), therefore J(¢):Y—IOR(m) is a locally constant
map. Now, let us keep the above notation, we can state the conditions for a
linear operator T to be an onto isometry between C{™(X) and C§™(Y), espe-
cially, the conditions for which C{™(X)=C{™ ().

THEOREM 3.5. Let m, n=1 be integers and X, YSR™ be open sets. Then
T is a linear isometry of C§™(X) onto C§™(Y) if and only if the followings
hold :

(1) there exists a continuous modular function 0 : Y —S* such that 6 =0 for
all |r|=1;

(2) there exists a homeomorphism o :Y—X such that J(o):Y—IOR(m) is
locally constant ;

(3 for any fECM(X),

Tiy)=0Ww)f(e(y), yeY.

Proof. The “only if” part is the direct consequence of Theorem 3.1 and
3.4. For the “if” part, let 8, o satisfy (1), (2) and T be defined by (3). First
of all, let us show that TfeC{ () for all feC{™(X). Let feC§™(X) be
fixed. For any y,€Y, let J(6)=(a,;): Y—IOR(m) be constant on some open
neighbourhood O of y, and = be a permutation on {1, ---, m} so that

(3.10) G €{—L 1} (1=7=m), a,,=0 G#n())).
We can calculate (Noting that 6™ =0 (|r|=1)),

I"TIW) _ g,y 2 L@@ )
—W——o(y) F o7 I ajz-1gy, VyEO.

Thus, for any r=(, -, rn)€Il" and y<O0,
01t m f(a(y)

1 Tm
1 oxm Qiz-1) *** Cmz-1(m)
Xz-1( " 0Xz=1(m)

(3.11) Tfo=0w)

=0y f T Trm (a(Y))ak-1  Ar-1em) -
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It follows that T f(y) is continuous on O, especially, T (y) is continuous at
Yo. So, Tf is continuous on Y for all r&l’. Since |8(y)|=1 and a,-1E
{—1, 1}, from (3.11) we can also show

5 ITf" W)l _ 5 | £ (a(yo))| ’

rel’ r! rel’ r!

(3.12) Y<EY.

For any ¢>0, the set

{er: Emge}z{yey; Ewge}

rel r! rel’ r!

- Lo X))
=0 (frex: 2 5 2
is compact in Y. Therefore, TfeC{™(Y) and T is well-defined.
From (3), T is linear, and from (3.12), isometric. It remains to prove that
T is surjective. Suppose g€C{™(Y). Suffice to show that the function f
defined by
fx)=0(c""(x))"'g(e™"(x)), Vx&X

belongs to C§{™(X).

For any x,X, let J(¢)=(a,;) be constant on some open neighbourhood O
of yo=07'(x,)€Y with (3.9). Then the Jacobian matrix J(¢™') of ¢! is constant
on ¢(0) with

J(e™H)=J(0)'=(b:y)
and
b1, =051 €{—1 1} (1=7=m), by,=0 G#n"Y())).

Similar calculations as in (3.11) and (3.12), for any x<a(0) we have
FO(x)=0(a7(x)) 1 g1 Tt (@7 X)L 1y <+ B

for all re/" and

rer 1! rel r!

[f )] _ 5 lg (e X))

From which we can prove that feC{™(X). This finishes the proof. 0

Remark 4. The results of Theorem 3.5 remain true if m=1 and X, Y S R!
are locally compact subsets without isolated points, under almost the same proof.
But, we do not know whether it is also true for m>1 and general locally
compact and NIP subsets of R™.

Remark 5. As a direct consequence of Theorem 3.5, C{™(X)=C{™(Y) if
and only if the condition (2) in the theorem holds.
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§4. Applications

As an application of the representations of surjective linear isometries
(Theorem 3.5), let us consider the isometry group of C{™(X).

THEOREM 4.1. Let m, n=1 be integers and X is an open subset of R™.
Define
O=1{0|0:X—S' is continuous and =0 (V|r|=1)}

o is a homeomorphism on X such that}

and 2:{0 J(@): X—IOR(m) is locally constant

Then the isometry group I, x of C§™(X) (n=1), with the operator topology, is
homeomorphic to @ X3 with the group operation (6, 61)°(8s 05)=(0,-(05°0,),
0,001) and the product topology of OXZ, where O equips with the uniform
topology (i.e., d(0, 0,)=sup{|0.(x)—0xx)|:xEX}) and X equips with the
discrete topology.

Proof. From Theorem 3.5, for any T <1, x, there is a 66 and a s
such that

4.1 Tfx)=0x)f(a(x)), VxeX, feCMX).

Clearly, the correspondence T« (#, o) is a bijection between [, y and O xJ2.
If T,>(0, g,) and T, (8, d,), then
=1, G,#0,

IIT1~T2H=
d(017 02), 012021

from which we can easily show that T+— (6, ¢) is a homeomorphism of I, x
onto ®x2X. The group operation is evident from (4.1). O

THEOREM 4.2. Let m, n=1 be integers and X, YSR™ be connected open
subsets. Then, T : C§"(X)—C§{™(Y) is a surjectwe linear isometry & there exists
a number A€ K with |2|=1 and a homeomorphism o of Y onto X of the form:
o =permutation+translation, so that

Tiy=2f(a(y), VfeCMX), ye<Y.

Proof. By Theorem 3.5, the “&” part is trivial. For the “=” part, let 0,
o be the same as in Theorem 3.5, then #(y) and J(o) are locally constant on
Y. Since Y is connected, 6(y) is a constant on Y and J(¢)=(a,;) is a constant
matrix on Y with

;€1 1} AZ7Em), a,=0, G#r()))

for some permutation # on {1, ---, m}. Using the connectedness of Y again,
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for each 1<7<m we can show that

0, (Y)=0z;5;Yp+C;, YYEY
for some constant ¢c;R!. Thus,

o(Y)=(1Yzw), "5 CmYzm)+c, YYEY

where ¢=(¢y, -+, cn)ER™. Set 2=0(y), then 2 and ¢ satisfy what we need. [J

COROLLARY 4.3. Let m,n, X and Y be the same as in Theorem 4.2. Then
CW(X)=Cm(Y)o X and Y are isometric under the [*-norm? & there exists a map
g on R™ of the form: o=permutation+translation, so that (Y )=X.

Proof. 1t is trivial that X and Y are isometric under the /*-norm if there
exists a map oJ=permutation-+translation, such that ¢(Y)=X. By Theorem

4.2, it is enough to show that any isometry o : Yiit—;X under the /'-norm is of
the form: ¢=permutation-translation. Now, suppose that ¢:Y—X is such a
surjective isometry, from the generalized Mazur-Ulam’s Theorem (See [8]) ¢
can be extended to be an affine isometry o4 on (R™, | -|,1), i.e.,

ox(y)=I1(y)+c, VysR™

for some point ¢cR™ and some (surjective) linear isometry I on (R™,|-|1).
Therefore, ¢ has the desired form. O

COROLLARY 4.4. Let m, n=1 be integers and X, YSR™ be open subsets.
Then C{™(X)=C§™(Y) & there is a homeomorphism o :Y—X such that o is
isometric on each connected part of Y under the [*-norm of R™.

COROLLARY 4.5. Let m, n=1 be integers and X be a connected open subset
of R™. Then the isometry group of C§™(X) is S'X23 with the group operation
(A1, 01)°(As, 03)=(A14e, G200,) and

4, o) )x)=2f(e(x)), VxeX, feCi(X),
where X={c|0: X?fiX is isometric in the I*-norm of R™}.

Remark 6. Although we assume that the X and Y are open subsets of R™
in this section, it is worth to mention that all the results in Theorem 4.1 & 4.2
and Corollary 4.3~4.5 remain true if we replace “open subset(s)” by “locally
compact and NIP subset(s) which is(are) contained in the closure(s) of its(their)
interior(s)”.

Now, let us see some examples.

? That is, there exists a bijection ¢: X—Y such that |[p(x)—e(¥)|1=]x—y|.,
Vx,ysX.
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Example 1. Let n=1 and
X=A(xy, x)ER?: | x,|+ | x:] <~ 2}
Y={(x,, x)€R*: |x,| <1, |x,|<1}.
Then X and Y are isometric under the /2-norm of R? but C{™(X)&C{™(Y).

Check. Since X is a rotation of Y, X and Y are isometric in the [*-nor =t
of R%. If C{™(X)=C{™(Y), we must have a homeomorphism ¢:Y—X of the
form: g=permutation+translation. It is obvious that Y is invariant under
permutations. Therefore, ¥ must be transferred to X by some translation
which is obviously impossible. O

When XS R™ is connected and open, the isometry group of C{™(X), due to
the symmetry of X, may be as large as S*XIOR(m) and also may be as small
as S'. See the next two examples.

Example 2. Let Xp,={(xy, -+, xn)ER™: (| 2,7+ -+ +| x| ")?<1} (m=1, 0
<p=oo). Then the isometry group I, x, of C{™(X,) (n=l) is equal to
S'XIOR(m) with (;, 61)°(4s, 65)=(2,45, G:°0,) and

A4, o) f)x)=2f(e(x)), VxeX,, feCM™(X,).
Moreover, when m>1, n=1 and p+#q we have C§{™(X,)# C§™(Xy).

Check. Let X be the same as in Corollary 4.5. By the Mazur-Ulam’s
Theorem [8], each =2 can be extended to be a surjective linear isometry on
(R™, ||-],1), thus, ¢<IOR(m). On the other hand, 6% when ¢<IOR(m).
Therefore, Y=IOR(m) and I, x p:SIXIOR(m). The group operation is trivial.

Finally, if m>1, n=1 and p#q&(0, o], noting that X, is invariant under
permutations and X,#X,, we can see that there is no map ¢ of the form:
g=permutation+translation, such that ¢(X,)=X,, by Corollary 4.3, C§™(X,)#
C§m(Xp). ]

Example 3.
(1) Let m>1, a,>0 (1<i<m), a;,#a, (i+]) and
X= ﬁ(—al, (Zz) or X:{x:(xl’ e xm)ERm: f}lﬁl_<1]“

=1 4, J
Then, the isometry group I, y of C§{(X) (n=1) is homeomorphic to

Stx {—1, 1} ™ and IOR(m)Z I, x.
2) Let m>1, 0<a,< -+ <@ym<oo and

xX=(x;, -+, xp)ER™: x1=—“12;-122]-1+azj12;, l;>0}

X:{ A=Em), L+ - +An=1
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Then, the isometry group of C{™(X) (n=1) is S' and each surjective linear
isometry T on C{™(X) is of the form Tf=Af (feC§{ (X)) for some scalar
[A]=L1.

Check. In both the cases (1) and (2), the lengths of the projections of X
to the axes are different and invariant under translations. Thus, any surjective
isometry ¢ (=permutation+translation) on X must keep the axes unchanged and

a(x):(blxl) Tty bmxm)+<cly Tty Cm), Vx:(xl: ) xm)EX

for some b=(b,, -+, bp)={—1, 1}™ and ¢=(cy, :+-, cn)ER™.
For the case (1), since o(x)€X for x=(0, -, 0, x,, 0, -, 0)=X, letting
bix;— ta, we get
—a,=ta;+c,<a,, 1<j<m.

Thus, ¢,=0 (1<7j<m). On the other hand, for any b=(b,, :--, bn)e{—1, 1} ™,
it is obvious that @,(x)=(bxy, -, bmxnm) (VXx=(x, -, xm)EX) determines an
isometry ¢, on X in the /*-norm. By Corollary 4.5, the isometry group I, x
of C{™(X) (n=1) is homeomorphic to S!'xXX=S'% {—1, 1}™. Since IOR(m) is
homeomorphic to {—1, 1}™XII (from (3.9)), where II= {permutation on
{1, ---, m}} #{Id}, IOR(m) is not contained in I, x.

For the case (2), it is trivial that ¢ is also an isometry on the closure X
of X, which can be represented by

X—{ X=(Xy, =+, Xu)ER™: x,=—ay,_1As;_1+ A3;As,, 1,20}
B A<7Em), A+ - +Aen=11"

and the map t—b,t+c, is an isometry from [—a,,_;, as] onto [—as,_y, Gy,].

For any 1=<;<m, let te[—a,,_;, a,,] be such that bjt+c,=a,, and x=(0, -,

0, (t), 0, .-+, 0)eX. Since o(x)=(cy, -+, Cj_1, @ay Cy41, ***, Cm)EX With the corre-
J

sponding 2;,=1, we must have 4,=0 (Vi#j). Therefore, ¢,=0 (1=7<m).
Because that a(y)=(, -, 0, b,-(g_z)z,, 0, -, 00X, where y=(, -, 0, %o
0, -, 0)eX, we have —a,,_;<b;a,,. Together with the condition 0<a,< -
<@m<oco and b;=+1, we can get that b;=1 (1<7<m). Thus, 6=Idy and
Y={Id}. By Theorem 4.2, each isometry T on C{™(X) (n=1) is of the form
Tf=1f (feC{™ (X)) for some scalar |4|=1. Therefore, the isometry group of
C§™(X) is St O
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