LINEAR ISOMETRIC OPERATORS ON THE $C_{0}^{(n)}(X)$ TYPE SPACES

Risheng Wang

Abstract

In this paper, we try to investigate the representations of isometries, isometry groups and the space classifications of the $C_{0}^{(n)}(X)$ type spaces $\left(X \subset \boldsymbol{R}^{m}, m, n \geqq 1\right)$.

§ 0. Introduction

Let \boldsymbol{Z}_{+}be the set of non-negative integers. We make the following notations:

$$
\begin{aligned}
& \boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{m}\right) \in \boldsymbol{R}^{m} \quad \boldsymbol{r}=\left(r_{1}, r_{2}, \cdots, r_{m}\right) \in \boldsymbol{Z}_{+}^{m} \\
& \boldsymbol{r}!=r_{1}!r_{2}!\cdots r_{m}!\quad|\boldsymbol{r}|=r_{1}+r_{2}+\cdots+r_{m} \\
& f^{(r)}(\boldsymbol{x})=\frac{\partial^{r_{1}+r_{2}+\cdots+r_{m}} \frac{\partial(\boldsymbol{x})}{\partial x_{1}^{r_{1}} \partial x_{2}^{r_{2}} \cdots \partial x_{m}^{r_{m}^{m}}} .}{}
\end{aligned}
$$

If Ω is a locally compact Hausdorff space, $C_{0}(\Omega)$ denotes the Banach space consisting of continuous function f on Ω vanishing at infinity (i.e., $\{\omega \in \Omega$: $|f(\omega)| \geqq \varepsilon\}$ is compact for all $\varepsilon>0$), with the norm $\|f\|=\sup \{|f(\omega)|: \omega \in \Omega\}$. For any integers $m, n \geqq 1$, set $\Gamma=\left\{\boldsymbol{r}=\left(r_{1}, \cdots, r_{m}\right) \in \boldsymbol{Z}_{+}^{m}: r_{1}+\cdots+r_{m} \leqq n\right\}$. A subset X of \boldsymbol{R}^{m} is called to be NIP: if for any line L parallel to one of the axes of \boldsymbol{R}^{m} the set $L \cap X$ contains no isolated points. If X is a locally compact and NIP subset of \boldsymbol{R}^{m}, we use $C_{0}^{(n)}(X)$ to denote the normed space consisting of all function f on X which satisfies: $f^{(r)} \in C_{0}(X)$ for all $\boldsymbol{r} \in \Gamma$, with the norm $\|f\|$ $=\sup _{\boldsymbol{x} \in X} \sum_{r \in \Gamma}\left|f^{(r)}(\boldsymbol{x})\right| / \boldsymbol{r}$!. We set $C_{0}^{(0)}(X)=C_{0}(X)$ and use $S_{n, X}$ to denote the unit sphere of $C_{0}^{(n)}(X)$.

For the case $n=m=1$ and $X, Y \subseteq \boldsymbol{R}^{1}$, the representations of surjective linear isometries between $C_{0}^{(1)}(X)$ and $C_{0}^{(1)}(Y)$ had been studied by Cambern and Pathak [1] (complex case only), for $m=1, n \geqq 1$ and $X=Y=[0,1]$, by Pathak [2] (complex case only), and for $m=1, n \geqq 1$ and $X, Y \subseteq \boldsymbol{R}^{1}$ with some conditions by

[^0]the author [3] (real case and complex case) In this paper, we try to consider the most general case: $m_{1}, m_{2}, n_{1}, n_{2} \geqq 1$ and $X \subseteq \boldsymbol{R}^{m_{1}}, Y \subseteq \boldsymbol{R}^{m_{2}}$ are locally compact and NIP. Particularly, when X and Y are open sets, a complete representation of linear isometries from $C_{0}^{\left(n_{1}\right)}(X)$ onto $C_{0}^{\left(n_{2}\right)}(Y)$ is obtained (Theorem 3.5), the results are true in both the real case and the complex case, extending the results of all the papers mentioned above.

We shall begin the discussion in section $\S 1$ with the representation of extreme points of the unit ball of $C_{0}^{(n)}(X)^{*}$, which is very important for the construction of the map Φ_{T} in the next section. By using the basic lemmas established in section §2, we state and prove the representations of surjective linear isometries between $C_{0}^{(n)}(X)$ type spaces in section $\S 3$. Finally, as an application, we consider the isometry group of $C_{0}^{(n)}(X)$ and give some interesting examples in section $\S 4$.

It is easy to check that $f g \in C_{0}^{(n)}(X)$ and $\|f g\| \leqq\|f\|\|g\|$ for all $f, g \in C_{0}^{(n)}(X)$, thus $C_{0}^{(n)}(X)$ is a Banach algebra when it is complete ${ }^{1}$.

$\S 1$. The extreme points of the unit ball of $C_{0}^{(n)}(X)^{*}$

Proposition 1.1. For any $\boldsymbol{x}_{0} \in \boldsymbol{R}^{m}$ and any $\varepsilon, \delta>0$, there exists an $f \in S_{n, \boldsymbol{R}^{m}}$ such that $\operatorname{supp}(f) \cong N_{\hat{\delta}}\left(\boldsymbol{x}_{0}\right)$ and $(1 / n!)\left|\partial^{n} f / \partial x_{1}^{n}\left(\boldsymbol{x}_{0}\right)\right|>1-\varepsilon$.

Proof. For any $\delta>0$, take a $\varphi \in C_{0}^{(n)}\left(\boldsymbol{R}^{m}\right)$ with $\operatorname{supp}(\varphi) \subseteq N_{\delta / 2}(\mathbf{0})$ and $\left(\partial^{n} \varphi / \partial x_{1}^{n}\right)(\boldsymbol{0}) \neq 0$ (e.g., we can take $\psi \in C_{0}^{(n)}\left(\boldsymbol{R}^{m}\right)$ such that $\operatorname{supp}(\psi) \subseteq N_{\partial / 2}(\boldsymbol{0})$ and $\psi(U)=1$ for some open neighbourhood U of 0 , then $\varphi(\boldsymbol{x})=\phi(\boldsymbol{x}) x_{1}^{n} \quad\left(\forall \boldsymbol{x}=\left(x_{1}, \cdots\right.\right.$, $\left.x_{m}\right) \in \boldsymbol{R}^{m}$) has the desired properties!). For any $k \geqq 1$, define

$$
g_{k}(\boldsymbol{x})=\varphi\left(k x_{1}, x_{2}, \cdots, x_{m}\right), \quad \boldsymbol{x}=\left(x_{1}, \cdots, x_{m}\right) \in \boldsymbol{R}^{m} .
$$

It is easy to see that $\operatorname{supp}\left(g_{k}\right) \subseteq \operatorname{supp}(\varphi) \subseteq N_{\hat{\partial} / 2}(\mathbf{0})$ and

$$
\frac{\partial^{r_{1}+\cdots+r_{m}} g_{k}(\boldsymbol{x})}{\partial x_{1}^{r_{1}} \cdots \partial x_{m}^{r_{m}}}=k^{r_{1}} \frac{\partial^{r_{1}+\cdots+r_{m}} \varphi}{\partial x_{1}^{r_{1}} \cdots \partial x_{m}^{r_{m}}}\left(k x_{1}, x_{2}, \cdots, x_{m}\right) .
$$

From which, we can show

$$
\frac{k^{n}}{n!}\left|\frac{\partial^{n} \varphi(\mathbf{0})}{\partial x_{1}^{n}}\right| \leqq\left\|g_{k}\right\| \leqq k^{n}\|\varphi\|, \quad k \geqq 1
$$

Set $f_{k}=\left(g_{k} /\left\|g_{k}\right\|\right) \in S_{n, \boldsymbol{R}^{m}}(k \geqq 1)$. Then, $\operatorname{supp}\left(f_{k}\right)=\operatorname{supp}\left(g_{k}\right) \cong N_{\delta / 2}(\mathbf{0})$ and

$$
\begin{aligned}
\sum_{\substack{|r| \leq n \\
r_{1} \neq n}} \frac{\left|f_{k}^{(r)}(\boldsymbol{x})\right|}{\boldsymbol{r}!} & =\frac{1}{\left\|g_{k}\right\| \|_{\substack{r_{1} \leq n \\
r_{1} \neq n}} \sum_{k} \frac{\left|g_{k}^{(r)}(\boldsymbol{x})\right|}{\boldsymbol{r}!}} \\
& \leqq \frac{1}{\frac{1}{n!}\left|\frac{\partial^{n} \varphi(0)}{\partial x_{1}^{n}}\right| k^{n} \sum_{\substack{|r| \leq n \\
r_{1} \neq n}} \frac{k^{r_{1}\left|\varphi^{(r)}\left(k x_{1}, x_{2}, \cdots, x_{m}\right)\right|}}{\boldsymbol{r}!}}
\end{aligned}
$$

[^1]\[

$$
\begin{aligned}
& \leqq \frac{n!}{\left|\frac{\partial^{n} \varphi(\mathbf{0})}{\partial x_{1}^{n}}\right| k} \sum_{\mid r_{1} \in n} \frac{\left|\varphi^{(r)}\left(k x_{1}, x_{2}, \cdots, x_{m}\right)\right|}{r!} \\
& \leqq \frac{n!}{\left|\frac{\partial^{n} \varphi(\mathbf{0})}{\partial x_{1}^{n}}\right| k}\|\varphi\| \rightarrow 0 \quad(\text { as } k \rightarrow \infty) .
\end{aligned}
$$
\]

For any $\varepsilon>0$, there exists a $k_{0} \geqq 1$ such that

$$
\begin{equation*}
\sum_{\substack{|r| \leq n \\ r_{1} \neq n}} \frac{\left|f_{R_{0}}^{(r)}(\boldsymbol{x})\right|}{r!}<\varepsilon, \quad \forall \boldsymbol{x} \in \boldsymbol{R}^{m} . \tag{1.1}
\end{equation*}
$$

Take a $\boldsymbol{y}_{0} \in \operatorname{supp}\left(f_{k_{0}}\right) \subseteq N_{\delta / 2}(\mathbf{0})$ with

$$
\sum_{|r| \leqslant n} \frac{\left|f_{k_{0}}^{(r)}\left(\boldsymbol{y}_{0}\right)\right|}{r!}=\left\|f_{k_{0}}\right\|=1,
$$

then, from (1.1) we have

$$
\frac{1}{n!}\left|\frac{\partial^{n} f_{k_{0}}\left(\boldsymbol{y}_{0}\right)}{\partial x_{1}^{n}}\right|=1-\sum_{\substack{|r|=n \\ r_{1} \neq n}} \frac{\left|f_{k_{0}}^{(r)}\left(\boldsymbol{y}_{0}\right)\right|}{r!}>1-\varepsilon
$$

Finally, the function f defined by

$$
f(\boldsymbol{x})=f_{k_{0}}\left(\boldsymbol{x}-\boldsymbol{x}_{0}+\boldsymbol{y}_{0}\right), \quad \forall \boldsymbol{x} \in \boldsymbol{R}^{m},
$$

belonge to $S_{n, R^{m}}$ with

$$
\operatorname{supp}(f) \cong N_{\hat{\partial} / 2}\left(\boldsymbol{x}_{0}-\boldsymbol{y}_{0}\right) \cong N_{\delta}\left(\boldsymbol{x}_{0}\right)
$$

and

$$
\left.\frac{1}{n!}\left|\frac{\partial^{n} f\left(\boldsymbol{x}_{0}\right)}{\partial x_{1}^{n}}\right|=\frac{1}{n!} \right\rvert\, \frac{\partial^{n} f_{k_{0}}\left(\boldsymbol{y}_{0}\right)}{\partial x_{1}^{n}}>1-\varepsilon .
$$

Let X be a locally compact and NIP subset of $\boldsymbol{R}^{m}(m \geqq 1)$. For any $n \geqq 1$, define

$$
\begin{aligned}
& \mathcal{S}_{m, n}=\left\{\boldsymbol{a}=\left(\alpha_{r}\right) \in \boldsymbol{K}^{\#^{\#}}:\left|\alpha_{\boldsymbol{r}}\right|=1 \quad(\forall \boldsymbol{r} \in \Gamma)\right\} \\
& W=X \times \mathcal{S}_{m, n}
\end{aligned}
$$

where Γ is as before. Then, W is a locally compact Hausdorff space with the product topology We use $C_{0}(W)$ to denote the Banach space of continuous functions on W vanishing at infinity, with the sup norm.

If $f \in C_{0}^{(n)}(X)$, define $\tilde{f} \in C_{0}(W)$ by

$$
\tilde{f}(\boldsymbol{x}, \boldsymbol{\alpha})=\sum_{\boldsymbol{r} \in \Gamma} \frac{\alpha_{r} f^{(r)}(\boldsymbol{x})}{\boldsymbol{r}!}, \quad \forall(\boldsymbol{x}, \boldsymbol{\alpha}) \in W,
$$

then the mapping $f \mapsto \tilde{f}$ is clearly a linear isometry of $C_{0}^{(n)}(X)$ onto a (linear) subspace A of $C_{0}(W)$ (We look $C_{0}^{(n)}(X)$ and A as the same space). We can
prove, in a routine way, that any extreme point f^{*} of the unit ball of $A^{*}=$ $C_{0}^{(n)}(X)^{*}$ is the restriction on A of some $g^{*} \in \operatorname{ext} B_{C_{0}(W) *}$, henceforth, $g^{*}=\lambda \delta_{w}$ for some $w=(\boldsymbol{x}, \boldsymbol{\alpha}) \in W$ and some complex number $|\lambda|=1$ (See W. Rudin's book [5]). That is

$$
f^{*}(f)=g^{*}(\tilde{f})=\lambda \delta_{w}(\tilde{f})=\lambda \sum_{\boldsymbol{r} \in \Gamma} \frac{\alpha_{r} f^{(r)}(\boldsymbol{x})}{\boldsymbol{r}!}=\sum_{\boldsymbol{r} \in \Gamma} \frac{\beta_{\boldsymbol{r}} f^{(\boldsymbol{r})}(\boldsymbol{x})}{\boldsymbol{r}!}, \quad \forall f \in C_{0}^{(n)}(X)
$$

where $\boldsymbol{\beta}=\lambda \boldsymbol{\alpha}$. That means any $f^{*} \in \operatorname{ext} B_{C_{0}^{(n)}(\boldsymbol{X}) *}$ is of the form

$$
f^{*}(f)=\delta_{(\boldsymbol{x}, \beta)}(f)=\sum_{r \in T} \frac{\beta_{r} f^{(r)}(\boldsymbol{x})}{\boldsymbol{r}!}, \quad \forall f \in C_{0}^{(n)}(X)
$$

for some $(\boldsymbol{x}, \boldsymbol{\beta}) \in W$.
Now, we go to show the inverse.
Lemma 1.2. For any $w_{0}=\left(\boldsymbol{x}_{0}, \boldsymbol{\alpha}\right) \in W$, the linear functional $\boldsymbol{\delta}_{w_{0}}$ on $C_{0}^{(n)}(X)$ defined by

$$
\delta_{w_{0}}(f)=\sum_{r \in \Gamma} \frac{\alpha_{r}}{r!} f^{(r)}\left(\boldsymbol{x}_{0}\right), \quad \forall f \in C_{0}^{(n)}(X),
$$

is an extreme point of the unit ball $B_{C_{0}^{(n)}(X) *}$ of $C_{0}^{(n)}(X)^{*}$.
Proof. It is clear that $\left\|\delta_{w_{0}}\right\| \leqq 1$. Suppose that $\delta_{w_{0}}=\left(f_{1}^{*}+f_{2}^{*}\right) / 2$ for some
 be extended to be functionals $g_{1}^{*}, g_{2}^{*} \in B_{C_{0}(W) *}$. Applying the Riesz Representation Theorem (cf. [5]), there are regular Borel measures μ_{1}, μ_{2} on (W, \mathcal{B}_{W}) such that $\left|\mu_{i}\right|(W)=\left\|g_{i}^{*}\right\| \leqq 1(i=1,2)$ and

$$
\begin{equation*}
g_{\imath}^{*}(f)=\int_{W} \tilde{f}(w) d \mu_{i}(w), \quad \forall f \in C_{0}^{(n)}(X), \quad i=1,2 . \tag{1.2}
\end{equation*}
$$

From Proposition 1.1, for any $\varepsilon, \delta>0$ there exists an $f \in S_{n, \mathbf{R}^{m}}$ such that $\operatorname{supp}(f) \cong N_{\delta}\left(\boldsymbol{x}_{0}\right)$ and

$$
\frac{1}{n!}\left|\frac{\partial^{n} f\left(\boldsymbol{x}_{0}\right)}{\partial x_{1}^{n}}\right|>1-\varepsilon .
$$

Especially, when $\delta>0$ is small enough $f \in C_{0}^{(n)}(X)$ and $\|f\| \leqq 1$, therefore,

$$
\begin{aligned}
\left|\boldsymbol{\delta}_{w_{0}}(f)\right| & =\left|\sum_{\boldsymbol{r} \in \Gamma} \frac{\alpha_{r} f^{(r)}\left(\boldsymbol{x}_{0}\right)}{\boldsymbol{r}!}\right| \geqq \frac{1}{n!}\left|\frac{\partial^{n} f\left(\boldsymbol{x}_{0}\right)}{\partial x_{1}^{n}}\right|-\sum_{\substack{|r| \leq n \\
r_{1} \neq n}} \frac{\left|\boldsymbol{\alpha}_{r} f^{(r)}\left(\boldsymbol{x}_{0}\right)\right|}{\boldsymbol{r}!} \\
& >1-\varepsilon-\varepsilon=1-2 \varepsilon,
\end{aligned}
$$

and

$$
\begin{equation*}
\left|\frac{g_{1}^{*}(f)+g_{2}^{*}(f)}{2}\right|=\left|\delta_{w_{0}}(f)\right|>1-2 \varepsilon \tag{1.3}
\end{equation*}
$$

Since $\left\|g^{*}\right\| \leqq 1(i=1,2)$ and $\|f\| \leqq 1$, from (1.3) we have $\left|g_{\imath}^{*}(f)\right| \geqq 1-4 \varepsilon$ ($i=1,2$), thus

$$
\begin{align*}
1-4 \varepsilon \leqq\left|g_{\imath}^{*}(f)\right|= & \left|\int_{W} \tilde{f}(w) d \mu_{i}(w)\right|=\left|\int_{N_{\delta}\left(x_{0}\right) \times s_{m, n}} \tilde{f}(w) d \mu_{i}(w)\right| \tag{1.4}\\
& \leqq\left|\mu_{i}\right|\left(N_{\tilde{\delta}}\left(\boldsymbol{x}_{0}\right) \times \mathcal{S}_{m, n}\right), \quad i=1,2 .
\end{align*}
$$

Letting $\varepsilon \rightarrow 0$ in (1.4), we get

$$
1 \leqq\left|\mu_{i}\right|\left(N_{\delta}\left(\boldsymbol{x}_{0}\right) \times \mathcal{S}_{m, n}\right), \quad \forall \delta>0, \quad i=1,2 .
$$

Since the Borel measure $\left|\mu_{2}\right|$ is regular and $K=\left\{\boldsymbol{x}_{0}\right\} \times \mathcal{S}_{m, n}$ is compact, setting $\delta \rightarrow 0$ we get

$$
1 \leqq\left|\mu_{i}\right|(K) \leqq\left|\mu_{i}\right|(W)=\left\|g_{i}^{*}\right\| \leqq 1, \quad i=1,2
$$

which implies

$$
\begin{equation*}
\left|\mu_{i}\right|(W)=\left|\mu_{i}\right|(K)=1, \quad\left|\mu_{i}\right|\left(K^{c}\right)=0, \quad i=1,2 . \tag{1.5}
\end{equation*}
$$

By (1.2) and (1.5), we obtain

$$
\begin{equation*}
g_{\imath}^{*}(g)=\int_{W} \tilde{g}(w) d \mu_{i}(w)=\int_{K} \tilde{g}(w) d \mu_{i}(w), \quad \forall g \in C_{0}^{(n)}(X), \quad i=1,2 . \tag{1.6}
\end{equation*}
$$

Take a $\varphi \in C_{0}^{(n)}\left(\boldsymbol{R}^{m}\right)$ such that

$$
\operatorname{supp}(\varphi) \cong N_{\delta_{0}}\left(\boldsymbol{x}_{0}\right) \quad \text { and } \quad \varphi(U)=1
$$

where $\delta_{0}>0$ is small enough so that $\overline{N_{\delta_{0}}\left(\boldsymbol{x}_{0}\right)} \cap X$ is compact and U is an open neighbourhood of \boldsymbol{x}_{0}. Write
and define

$$
\begin{aligned}
\phi(\boldsymbol{x})=\sum_{r \in T} \bar{\alpha}_{r}\left(x_{1}-x_{01}\right)^{r_{1} \cdots\left(x_{m}-x_{0 m}\right)^{r_{m}},} \begin{array}{c}
\boldsymbol{x}
\end{array}=\left(x_{1}, \cdots, x_{m}\right) \in \boldsymbol{R}^{m} \\
\boldsymbol{x}_{0}=\left(x_{01}, \cdots, x_{0 m}\right) \in \boldsymbol{R}^{m}
\end{aligned}
$$

and

$$
g(\boldsymbol{x})=\varphi(\boldsymbol{x}) \psi(\boldsymbol{x}), \quad \forall \boldsymbol{x} \in \boldsymbol{R}^{m}
$$

Then $g \in C_{0}^{(n)}(X)$ and

$$
\begin{equation*}
\alpha_{r} g^{(r)}\left(\boldsymbol{x}_{0}\right)>0, \quad \forall \boldsymbol{r} \in \Gamma . \tag{1.7}
\end{equation*}
$$

Therefore, from (1.2), (1.6) and (1.7) we have

$$
\begin{aligned}
\sum_{r \in \Gamma} \frac{\left|g^{(r)}\left(\boldsymbol{x}_{0}\right)\right|}{r!} & =\sum_{r \in \Gamma} \frac{\alpha_{r} g^{(r)}\left(\boldsymbol{x}_{0}\right)}{r!}=\delta_{w_{0}}(g)=\frac{f_{1}^{*}(g)+f_{2}^{*}(g)}{2}=\frac{g_{1}^{*}(g)+g_{2}^{*}(g)}{2} \\
& =\frac{1}{2}\left[\int_{K} \tilde{g}(w) d \mu_{1}(w)+\int_{K} \tilde{g}(w) d \mu_{2}(w)\right] .
\end{aligned}
$$

Since $\left|\mu_{1}\right|(K)=\left|\mu_{2}\right|(K)=1$ and

$$
|\tilde{g}(w)| \leqq \sum_{\boldsymbol{r} \in \Gamma} \frac{\left|g^{(r)}\left(\boldsymbol{x}_{0}\right)\right|}{\boldsymbol{r}!}, \quad \forall w \in K
$$

we must have

$$
\begin{equation*}
\int_{K} \tilde{g}(w) d \mu_{i}(w)=\sum_{r \in \Gamma} \frac{\left|g^{(r)}\left(\boldsymbol{x}_{0}\right)\right|}{\boldsymbol{r}!}=\delta_{w_{0}}(g), \quad i=1,2 . \tag{1.8}
\end{equation*}
$$

For any $w \in K_{0}=K \backslash\left\{\left(\boldsymbol{x}_{0}, \lambda \boldsymbol{\alpha}\right):|\lambda|=1\right\}$, from (1.7) we can show that

$$
|\tilde{g}(w)|<\sum_{r \in \Gamma} \frac{\left|g^{(r)}\left(\boldsymbol{x}_{0}\right)\right|}{r!} .
$$

Therefore, from $\left\|\mu_{i}\right\|=1$ and (1.8) we must have $\left|\mu_{i}\right|\left(K_{0}\right)=0(i=1,2)$. Thus, from (1.8),

$$
\begin{equation*}
\int_{K_{1}} \tilde{g}(w) d \mu_{i}(w)=\int_{K} \tilde{g}(w) d \mu_{i}(w)=\sum_{\boldsymbol{r} \in \Gamma} \frac{\left|g^{(r)}\left(\boldsymbol{x}_{0}\right)\right|}{\boldsymbol{r}!}=\delta_{w_{0}}(g) \tag{1.9}
\end{equation*}
$$

where $K_{1}=K \backslash K_{0}=\left\{\left(\boldsymbol{x}_{0}, \lambda \boldsymbol{\alpha}\right):|\lambda|=1\right\}$.
Finally, for any $h \in C_{0}^{(n)}(X)$ and $w=\left(\boldsymbol{x}_{0}, \lambda \boldsymbol{\alpha}\right) \in K_{1}$, an easy calculation shows that

$$
\tilde{h}(w)=\sum_{r \in \Gamma} \frac{\lambda \alpha_{r} h^{(r)}\left(\boldsymbol{x}_{0}\right)}{\boldsymbol{r}!}=\lambda \boldsymbol{\delta}_{w_{0}}(h)=\boldsymbol{\delta}_{w_{0}}(h) \frac{\tilde{g}(w)}{\boldsymbol{\delta}_{w_{0}}(g)},
$$

thus, by (1.2), (1.5) and (1.9),

$$
\begin{aligned}
f_{\imath}^{*}(h)=g_{\imath}^{*}(h) & =\int_{W} \tilde{h}(w) d \mu_{i}(w)=\int_{K} \tilde{h}(w) d \mu_{i}(w)=\int_{K_{1}} \tilde{h}(w) d \mu_{i}(w) \\
& =\frac{\delta_{w_{0}}(h)}{\delta_{w_{0}}(g)} \int_{K_{1}} \tilde{g}(w) d \mu_{i}(w)=\delta_{w_{0}}(h), \quad \forall h \in C_{0}^{(n)}(X), i=1,2,
\end{aligned}
$$

that is, $f_{1}^{*}=f_{2}^{*}=\delta_{w_{0}}$ and $\delta_{w_{0}} \in \operatorname{ext} B_{C_{0}^{(n)}(X) *}$.
Remark 1. We do not know whether for any $w=(\boldsymbol{x}, \boldsymbol{a}) \in W$ there exists a "peak function" $f \in C_{0}^{(n)}(X)$ such that

$$
\sum_{r \in T} \frac{\left|f^{(r)}(\boldsymbol{y})\right|}{\boldsymbol{r}!}<\sum_{\boldsymbol{r} \in \Gamma} \frac{\left|f^{(r)}(\boldsymbol{x})\right|}{\boldsymbol{r}!}, \quad \forall \boldsymbol{y} \neq \boldsymbol{x}, \boldsymbol{y} \in X
$$

and $\alpha_{r} f^{(r)}(\boldsymbol{x})>0(\boldsymbol{r} \in \Gamma)$, henceforth, we can not directly use the Lemma 3.2 of [6] as being used by many other authors, but the results concerning the representations of the extreme points of $C_{0}^{(n)}(X)^{*}$ are the same.

Theorem 1.3. Let $m, n \geqq 1$ and X, W be the same as before. Then,

$$
f^{*} \in \operatorname{ext} B_{c_{0}^{(n)}(X) *} \Longleftrightarrow f^{*}=\delta_{w} \text { for some } w \in W \text {. }
$$

Moreover, the map $\xi: w \mapsto \delta_{w}$ is a homeomorphism of W onto (ext $B_{C_{0}^{(n)}(X) *,}$ weak*), where weak* means the weak-star topology.

Proof. The first part has been proved. We only prove the latter part. Let us note that the map ξ is one-to-one and onto, we only need to show the continuities of ξ and ξ^{-1}. From the definition, the continuity of ξ is trivial.

Now, if $\boldsymbol{\delta}_{w_{d}} \xrightarrow{\text { weak* }} \boldsymbol{\delta}_{w}\left(w_{d}=\left(\boldsymbol{x}_{d}, \boldsymbol{\alpha}_{d}\right), w=(\boldsymbol{x}, \boldsymbol{\alpha}) \in W\right)$, by taking $g \in C_{0}^{(n)}(X)$ so that $\operatorname{supp}(g) \subseteq \overline{N_{\delta}(\boldsymbol{x})} \cap X$ is compact and $\delta_{w}(g) \neq 0$, then $\delta_{w_{d}}(g) \neq 0 \quad\left(\forall d \geqq d_{0}\right)$ for some d_{0}. Thus, $\boldsymbol{x}_{d} \in \operatorname{supp}(g)\left(d \geqq d_{0}\right)$, without loss of generality we assume that $\lim _{d} \boldsymbol{x}_{d}=\boldsymbol{y} \in \operatorname{supp}(g)$ and $\lim _{d} \boldsymbol{\alpha}_{d}=\boldsymbol{\beta} \in \mathcal{S}_{m, n}$. For any $h \in C_{0}^{(n)}(X)$ we have

$$
\boldsymbol{\delta}_{(\boldsymbol{y}, \beta)}(h)=\lim _{d} \boldsymbol{\delta}_{w_{d}}(h)=\boldsymbol{\delta}_{w}(h),
$$

which implies that $(\boldsymbol{y}, \boldsymbol{\beta})=w$ and $\lim _{d} \xi^{-1}\left(\boldsymbol{\delta}_{w_{d}}\right)=\lim _{d} w_{d}=(\boldsymbol{y}, \boldsymbol{\beta})=w=\xi^{-1}\left(\boldsymbol{\delta}_{w}\right)$. The continuity of ξ^{-1} is proved.

§ 2. Some basic lemmas

In this section, we always assume that $n_{1}, n_{2}, m_{1}, m_{2} \geqq 1$ are integers, $X \subseteq \boldsymbol{R}^{m_{1}}$ and $Y \subseteq \boldsymbol{R}^{m_{2}}$ are locally compact and NIP, and $T: C_{0}^{\left(n_{1}\right)}(X) \rightarrow C_{0}^{\left(n_{2}\right)}(Y)$ is a surjective linear isometry.

Denote

$$
W_{1}=X \times \mathcal{S}_{m_{1}, n_{1}} \quad \text { and } \quad W_{2}=Y \times \mathcal{S}_{m_{2}, n_{2}}
$$

For any $(\boldsymbol{x}, \boldsymbol{\alpha})=w_{1} \in W_{1}$, since $\left(T^{-1}\right)^{*}: C_{0}^{\left(n_{1}\right)}(X)^{*} \rightarrow C_{0}^{\left(n_{2}\right)}(Y)^{*}$ is a surjective linear isometry and $\boldsymbol{\delta}_{w_{1}} \in \operatorname{ext} B_{C_{0}^{\left(n_{1}\right)(X) *}}$, we have $\left(T^{-1}\right)^{*}\left(\boldsymbol{\delta}_{w_{1}}\right)=\boldsymbol{\delta}_{w_{2}} \in \operatorname{ext} B_{C_{0}^{\left(n_{2}\right)(Y) *}}$ for some unique $w_{2} \in W_{2}$. Define

$$
\Phi_{T}\left(w_{1}\right)=w_{2}
$$

Remark 2. It is evident that

$$
\delta_{\phi_{\left.T^{(} w\right)}}(T f)=\delta_{w}(f), \quad \forall w \in W_{1}, \quad f \in C_{0}^{\left(n_{1}\right)}(X)
$$

LEMMA 2.1. $\quad \Phi_{T}: W_{1} \rightarrow W_{2}$ is a homeomorphism.
Proof. Let

$$
\begin{aligned}
& \xi_{1}: W_{1} \rightarrow\left(\operatorname{ext} B_{C_{0}^{\left(n_{1}\right)(X) *}}, \text { weak } *\right) \\
& \xi_{2}: W_{2} \rightarrow\left(\operatorname{ext} B_{C_{0}^{\left(n_{2}\right)(Y) *}}, \text { weak }^{*}\right)
\end{aligned}
$$

be as in Theorem 1.3. Since ξ_{1}, ξ_{2} are homeomorphic and $\left(T^{-1}\right)^{*}$ is a surjective linear isometry and a weak-star isomorphism, from the following commutative diagram

we can easily see that Φ_{T} is a homeomorphism.

Lemma 2.2. For any $\boldsymbol{x}_{0} \in X$, define

$$
A\left(\boldsymbol{x}_{0}\right)=\left\{\boldsymbol{y} \in Y: \Phi_{T}\left(\boldsymbol{x}_{0}, \boldsymbol{\alpha}\right)=(\boldsymbol{y}, \boldsymbol{\beta}) \text { for some } \boldsymbol{a} \in \mathcal{S}_{m_{1}, n_{1}} \text { and } \boldsymbol{\beta} \in \mathcal{S}_{m_{2}, n_{2}}\right\} .
$$

Then ${ }^{\#} A\left(\boldsymbol{x}_{0}\right)=1$.
Proof. Take $\boldsymbol{a}_{1}=\left(\alpha_{1 r}\right), \boldsymbol{a}_{2}=\left(\alpha_{2 r}\right) \in \mathcal{S}_{m_{1}, n_{1}}$ such that

$$
\alpha_{10}=\alpha_{20}=1 \quad \text { and } \quad \alpha_{1 r}=-\alpha_{2 r}\left(1 \leqq|\boldsymbol{r}| \leqq n_{1}\right) .
$$

Then,

$$
\delta_{x}=\frac{1}{2}\left[\delta_{\left(x, a_{1}\right)}+\delta_{\left(x, a_{2}\right)}\right], \quad \forall x \in X .
$$

Set $\Phi_{T}\left(\boldsymbol{x}_{0}, \boldsymbol{a}_{1}\right)=\left(\boldsymbol{y}_{1}, \boldsymbol{\beta}_{1}\right)$ and $\Phi_{T}\left(\boldsymbol{x}_{0}, \boldsymbol{\alpha}_{2}\right)=\left(\boldsymbol{y}_{2}, \boldsymbol{\beta}_{2}\right)$.
Suppose that $\boldsymbol{y}_{3} \in A\left(\boldsymbol{x}_{0}\right) \backslash\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right\}$. Let U and V be two open subsets of Y satisfying

$$
\begin{equation*}
U \cap V=\emptyset, \quad \boldsymbol{y}_{1}, \quad \boldsymbol{y}_{2} \in U, \quad \boldsymbol{y}_{3} \in V \tag{2.1}
\end{equation*}
$$

Since the mappings

$$
\begin{aligned}
& \boldsymbol{x} \mapsto Q_{Y} \Phi_{T}\left(\boldsymbol{x}, \boldsymbol{\alpha}_{1}\right) \\
\text { and } & \boldsymbol{x} \mapsto Q_{Y} \Phi_{T}\left(\boldsymbol{x}, \boldsymbol{\alpha}_{2}\right)
\end{aligned}
$$

are continuous (where $Q_{Y}: W_{2} \rightarrow Y$ is the natural projection), there exists an open neighbourhood O of \boldsymbol{x}_{0} so that

$$
\begin{equation*}
Q_{Y} \Phi_{T}\left(\boldsymbol{x}, \boldsymbol{\alpha}_{1}\right), \quad Q_{Y} \Phi_{T}\left(\boldsymbol{x}, \boldsymbol{\alpha}_{2}\right) \in U, \quad \forall \boldsymbol{x} \in O \tag{2.2}
\end{equation*}
$$

Let $\Phi_{T}\left(\boldsymbol{x}_{0}, \boldsymbol{a}_{3}\right)=\left(\boldsymbol{y}_{3}, \boldsymbol{\beta}_{3}\right)$ and take a $g \in C_{0}^{\left(n_{2}\right)}(Y)$ such that

$$
\begin{equation*}
\delta_{\left(y_{3}, \beta_{3}\right)}(g) \neq 0, \quad \operatorname{supp}(g) \cong V . \tag{2.3}
\end{equation*}
$$

Then, from (2.1), (2.2) and (2.3) we have

$$
\begin{aligned}
T^{-1}(g)(\boldsymbol{x}) & =\delta_{\boldsymbol{x}}\left(T^{-1}(g)\right)=\frac{1}{2}\left[\delta_{\left(x, \boldsymbol{a}_{1}\right)}+\delta_{\left(x, \boldsymbol{a}_{2}\right)}\right]\left(T^{-1}(g)\right) \\
& =\frac{1}{2}\left[\delta_{\Phi_{T}\left(x, \boldsymbol{a}_{1}\right)}(g)+\delta_{\Phi_{T^{\left(x, \boldsymbol{a}_{2}\right.}}}(g)\right]=0, \quad \forall \boldsymbol{x} \in O
\end{aligned}
$$

Therefore,

$$
T^{-1}(g)^{(r)}\left(\boldsymbol{x}_{0}\right)=0, \quad|\boldsymbol{r}| \leqq n_{1}
$$

which implies that

$$
0 \neq \boldsymbol{\delta}_{\left(\boldsymbol{y}_{3}, \boldsymbol{\beta}_{3}\right)}(g)=\boldsymbol{\delta}_{\left(x_{0}, \boldsymbol{a}_{3}\right)}\left(T^{-1}(g)\right)=0,
$$

a contradiction. Thus, $A\left(\boldsymbol{x}_{0}\right) \subseteq\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right\}$.
When the scalar field is $\boldsymbol{C}^{1}, A\left(\boldsymbol{x}_{0}\right)$ is the range of the continuous map $Q_{Y} \Phi_{T}\left(\boldsymbol{x}_{0}, \cdot\right)$ on the connected domain $\mathcal{S}_{m_{1}, n_{1}}$, henceforth, connected, thus ${ }^{\#} A\left(\boldsymbol{x}_{0}\right)$ $=1$. When the scalar field is \boldsymbol{R}^{1}, let $P: W_{2} \rightarrow \mathcal{S}_{m_{2}, n_{2}}$ be the natural projection,
then, from the continuity of $P \Phi_{T}$ and the discreteness of $\mathcal{S}_{m_{2}, n_{2}}$ there exists an open neighbourhood O_{1} of \boldsymbol{x}_{0} such that

$$
\begin{array}{ll}
P \Phi_{T}\left(\boldsymbol{x}, \boldsymbol{\alpha}_{1}\right)=\boldsymbol{\beta}_{1}, & \forall \boldsymbol{x} \in O_{1} \\
P \Phi_{T}\left(\boldsymbol{x}, \boldsymbol{a}_{2}\right)=\boldsymbol{\beta}_{2}, & \forall \boldsymbol{x} \in O_{1} . \tag{2.4}
\end{array}
$$

If $\boldsymbol{y}_{1} \neq \boldsymbol{y}_{2}$, we can take two disjoint open subsets U_{1} and V_{1} of Y such that $\boldsymbol{y}_{1} \in U_{1}$ and $\boldsymbol{y}_{2} \in V_{1}$. There exists an open neighbourhood O_{2} of \boldsymbol{x}_{0} so that

$$
\begin{equation*}
Q_{Y} \Phi_{T}\left(\boldsymbol{x}, \boldsymbol{\alpha}_{1}\right) \in U_{1}, \quad Q_{Y} \Phi_{T}\left(\boldsymbol{x}, \boldsymbol{\alpha}_{2}\right) \in V_{1}, \quad \forall \boldsymbol{x} \in O_{2} \tag{2.5}
\end{equation*}
$$

Let $g \in C_{0}^{\left(n_{2}\right)}(Y)$ satisfy $\operatorname{supp}(g) \cong U_{1}$ and $g\left(U_{2}\right)=\beta_{1(0, \ldots, 0)}^{-1}$ for some open neighbourhood U_{2} of \boldsymbol{y}_{1} (where $\boldsymbol{\beta}_{1}=\left(\beta_{1 r}\right)$). Take an open neighbourhood O_{3} of \boldsymbol{x}_{0} so that

$$
\begin{equation*}
Q_{Y} \Phi_{T}\left(\boldsymbol{x}, \boldsymbol{a}_{1}\right) \in U_{2}, \quad \forall \boldsymbol{x} \in O_{3} \tag{2.6}
\end{equation*}
$$

Then, from (2.4), (2.5) and (2.6) we get

$$
\begin{align*}
T^{-1}(g)(\boldsymbol{x}) & =\delta_{x}\left(T^{-1}(g)\right)=\frac{1}{2}\left[\delta_{\left(x, a_{1}\right)}+\delta_{\left(x, a_{2}\right)}\right]\left(T^{-1}(g)\right) \tag{2.7}\\
& =\frac{1}{2}\left[\boldsymbol{\delta}_{\left(Q_{Y} \Phi_{T}\left(x, a_{1}\right), \beta_{1}\right)}(g)+\boldsymbol{\delta}_{\left(Q_{Y} \Phi_{T}\left(x, a_{2}\right), \beta_{2}\right)}(g)\right] \\
& =\frac{1}{2}[1+0]=\frac{1}{2}, \quad \forall \boldsymbol{x} \in O_{1} \cap O_{2} \cap O_{3},
\end{align*}
$$

in particular,

$$
\begin{equation*}
T^{-1}(g)^{(r)}\left(\boldsymbol{x}_{0}\right)=0, \quad 1 \leqq|\boldsymbol{r}| \leqq n_{1} \tag{2.8}
\end{equation*}
$$

Thus, from (2.7), (2.8) and noting that $\boldsymbol{y}_{2} \notin \operatorname{supp}(g)$, we obtain that

$$
0=\left|\boldsymbol{\delta}_{\left(y_{2}, \beta_{2}\right)}(g)\right|=\left|\delta_{\left(x_{0}, \boldsymbol{\alpha}_{2}\right)}\left(T^{-1}(g)\right)\right|=\left|T^{-1}(g)\left(x_{0}\right)\right|=\frac{1}{2}
$$

which is a contradiction.
We have shown that ${ }^{\#} A\left(\boldsymbol{x}_{0}\right)=1$ for all $\boldsymbol{x}_{0} \in X$.
Lemma 2.3. There exists a homeomorphism $\tau: X \rightarrow Y$ such that

$$
\Phi_{T}(\boldsymbol{x}, \boldsymbol{a})=(\tau(\boldsymbol{x}), *), \quad \boldsymbol{x} \in X, \quad \boldsymbol{\alpha} \in \mathcal{S}_{m_{1}, n_{1}}
$$

where $*$ is an element in $\mathcal{S}_{m_{2}, n_{2}}$ depending on $(\boldsymbol{x}, \boldsymbol{a})$.
Proof. For any $\boldsymbol{x} \in X$, from Lemma 2.2, we can define

$$
\tau(\boldsymbol{x})=Q_{Y} \Phi_{T}(\boldsymbol{x}, \boldsymbol{a})
$$

which does not depend on the choice of $\boldsymbol{\alpha} \in \mathcal{S}_{m_{1}, n_{1}}$. Then,

$$
\Phi_{T}(\boldsymbol{x}, \boldsymbol{\alpha})=(\tau(\boldsymbol{x}), *), \quad \forall \boldsymbol{\alpha} \in \mathcal{S}_{m_{1}, n_{1}}
$$

where $*$ depends on $(\boldsymbol{x}, \boldsymbol{\alpha}) \in W_{1}$. Because that Φ_{T} is homeomorphic, we can verify that $\tau: X \rightarrow Y$ is homeomorphic.

Remark 3. When $X \subseteq \boldsymbol{R}^{m_{1}}$ and $Y \subseteq \boldsymbol{R}^{m_{2}}$ are open subsets, from Lemma 2.3, we must have $m_{1}=m_{2}$.

Corollary 2.4. For any $f \in C_{0}^{\left(n_{1}\right)}(X)$ and $\boldsymbol{x} \in X$,

$$
\sum_{|r| \leqslant n_{1}} \frac{\left|f^{(r)}(\boldsymbol{x})\right|}{\boldsymbol{r}!}=\sum_{|r| \leqq n_{2}} \frac{\left|T f^{(r)}(\tau(\boldsymbol{x}))\right|}{\boldsymbol{r}!} .
$$

Proof. Let $\boldsymbol{\alpha} \in \mathcal{S}_{m_{1}, n_{1}}$ satisfy $\boldsymbol{\delta}_{(\boldsymbol{x}, \boldsymbol{a})}(f)=\sum_{|r| \leq n_{1}}\left|f^{(\boldsymbol{r})}(\boldsymbol{x})\right| / \boldsymbol{r}!$ and set $\Phi_{T}(\boldsymbol{x}, \boldsymbol{\alpha})$ $=(\tau(\boldsymbol{x}), \boldsymbol{\beta})$, then

$$
\begin{equation*}
\sum_{|r| \leqslant n_{1}} \frac{\left|f^{(r)}(\boldsymbol{x})\right|}{r!}=\delta_{(x, \boldsymbol{a})}(f)=\delta_{(\tau(x), \boldsymbol{\beta})}(T f) \leqq \sum_{|r| \leqslant n_{2}} \frac{\left|T f^{(r)}(\tau(\boldsymbol{x}))\right|}{\boldsymbol{r}!} . \tag{2.9}
\end{equation*}
$$

On the other hand, if $\boldsymbol{\beta}^{*} \in \mathcal{S}_{m_{2}, n_{2}}$ such that $\boldsymbol{\delta}_{\left(\tau(x), \beta^{*}\right)}(T f)=\sum_{|r| \leq n_{2}}\left|T f^{(r)}(\tau(\boldsymbol{x}))\right|$ $/ \boldsymbol{r}$, let $\Phi_{T}\left(\boldsymbol{x}, \boldsymbol{\alpha}^{*}\right)=\left(\tau(\boldsymbol{x}), \boldsymbol{\beta}^{*}\right)$, then

$$
\begin{equation*}
\sum_{|r| \leqq n} \frac{\left|T f^{(r)}(\tau(\boldsymbol{x}))\right|}{\boldsymbol{r}!}=\delta_{\left(\tau(x), \beta^{*}\right)}(T f)=\delta_{(x, \boldsymbol{a})}(f) \leqq \sum_{|r| \leqq n_{1}} \frac{\left|f^{(r)}(\boldsymbol{x})\right|}{\boldsymbol{r}!} . \tag{2.10}
\end{equation*}
$$

From (2.9) and (2.10) we can get the desired equality.
Lemma 2.5. Let U be an open subset of X. If $f \in C_{0}^{\left(n_{1}\right)}(X)$ satisfies $\left.f\right|_{U}=1$, then $|T f(\boldsymbol{y})|=1 \quad(\forall \boldsymbol{y} \in \tau(U))$ and $T f^{(r)}(\boldsymbol{y})=0 \quad\left(\forall \boldsymbol{y} \in \tau(U), 1 \leqq|\boldsymbol{r}| \leqq n_{2}\right)$. If $f, g \in$ $C_{0}^{\left(n_{1}\right)}(X)$ satisfy $\left.f\right|_{U}=\left.g\right|_{U}=1$, then $\left.T f\right|_{\tau(U)}=\left.T g\right|_{\tau(U)}$. Furthermore, for any $h \in C_{0}^{\left(n_{1}\right)}(X)$ and $\boldsymbol{x} \in X$, we have

$$
h(\boldsymbol{x})=0 \Longleftrightarrow T h(\tau(\boldsymbol{x}))=0
$$

Proof. Suppose that $\left.f\right|_{U}=1$ for some $f \in C_{0}^{\left(n_{1}\right)}(X)$ and some open subset U of X. For any $\boldsymbol{x} \in U$ and $\boldsymbol{\beta} \in \mathcal{S}_{m_{2}, n_{2}}$, letting $\Phi_{T}(\boldsymbol{x}, \boldsymbol{\alpha})=(\tau(\boldsymbol{x}), \boldsymbol{\beta})$, from

$$
\begin{equation*}
\left|\delta_{(\tau(x), \beta)}(T f)\right|=\left|\delta_{(x, \boldsymbol{x})}(f)\right|=1=\sum_{|r| \leqq n_{1}} \frac{\left|f^{(r)}(\boldsymbol{x})\right|}{\boldsymbol{r}!}=\sum_{|\boldsymbol{r}| \leqslant n_{2}} \frac{\left|T f^{(r)}(\tau(\boldsymbol{x}))\right|}{\boldsymbol{r}!} . \tag{2.11}
\end{equation*}
$$

We can see that $\left\{T f^{(r)}(\tau(\boldsymbol{x})):|\boldsymbol{r}| \leqq n_{2}\right\}$ has at most one non-zero term and

$$
|T f(\tau(\boldsymbol{x}))|=0 \text { or } 1, \quad \boldsymbol{x} \in U
$$

For any $\boldsymbol{y}_{0} \in \tau(U)$, by the continuity of $T f$, there exists an open neighbourhood V of \boldsymbol{y}_{0} such that $V \cong \tau(U)$ and
(II)

$$
\begin{align*}
& |T f(\boldsymbol{y})|=0, & \boldsymbol{y} \in V \tag{I}\\
\text { or } & |T f(\boldsymbol{y})|=1, & \boldsymbol{y} \in V .
\end{align*}
$$

The case (I) does not exist. Otherwise,

$$
T f^{(r)}(\boldsymbol{y})=0, \quad \boldsymbol{y} \in V, \quad|\boldsymbol{r}| \leqq n_{2}
$$

a contradiction to (2.11).
For the case (II), from (2.11) we have

$$
T f^{(r)}\left(\boldsymbol{y}_{0}\right)=0, \quad \boldsymbol{y}_{0} \in \tau(U), \quad 1 \leqq|\boldsymbol{r}| \leqq n_{2}
$$

For any $h \in C_{0}^{\left(n_{1}\right)}(X)$ and $\boldsymbol{x} \in X$ that satisfy $h(\boldsymbol{x})=0$, take $\boldsymbol{\alpha}_{1}=\left(\alpha_{1 r}\right), \boldsymbol{a}_{2}=$ $\left(\alpha_{2 r}\right) \in \mathcal{S}_{m_{1}, n_{1}}$ such that $\delta_{\left(x, a_{1}\right)}(h)=\sum_{|r| \leqq n_{1}}\left|h^{(r)}(\boldsymbol{x})\right| / \boldsymbol{r}!$ and

$$
\alpha_{10}=-a_{20}=1, \quad \alpha_{1 r}=\alpha_{2 r}\left(1 \leqq|\boldsymbol{r}| \leqq n_{1}\right) .
$$

Set $\Phi_{T}\left(\boldsymbol{x}, \boldsymbol{\alpha}_{\imath}\right)=\left(\tau(\boldsymbol{x}), \boldsymbol{\beta}_{i}\right)(i=1,2)$. Take an $f \in C_{0}^{\left(n_{1}\right)}(X)$ so that $\left.f\right|_{U}=1$ for some open neighbourhood U of \boldsymbol{x}, then $|T f(\tau(\boldsymbol{x}))|=1, T f^{(r)}(\tau(\boldsymbol{x}))=0\left(1 \leqq|\boldsymbol{r}| \leqq n_{2}\right)$ and

$$
0=\left[\boldsymbol{\delta}_{\left(x, \boldsymbol{a}_{1}\right)}+\boldsymbol{\delta}_{\left(x, a_{2}\right)}\right](f)=\left[\delta_{\left(\tau(x), \beta_{1}\right)}+\delta_{\left(\tau(x), \boldsymbol{\beta}_{2}\right)}\right](T f)=\left(\beta_{10}+\beta_{20}\right) T f(\tau(\boldsymbol{x})),
$$

thus, $\beta_{10}+\beta_{20}=0$. Now, from

$$
\begin{aligned}
& \boldsymbol{\delta}_{\left(\tau(x), \boldsymbol{\beta}_{1}\right)}(T h)=\delta_{\left(x, \alpha_{1}\right)}(h)=\sum_{|r| \leqq n_{1}} \frac{\left|h^{(r)}(\boldsymbol{x})\right|}{r!}=\sum_{|r| \leqslant n_{2}} \frac{\left|T h^{(r)}(\tau(\boldsymbol{x}))\right|}{\boldsymbol{r}!} \\
& \boldsymbol{\delta}_{\left(\tau(x), \beta_{2}\right)}(T h)=\boldsymbol{\delta}_{\left(x, \boldsymbol{\alpha}_{2}\right)}(h)=\sum_{|r| \leqq n_{1}} \frac{\left|h^{(r)}(\boldsymbol{x})\right|}{\boldsymbol{r}!}=\sum_{|r| \leqq n_{2}} \frac{\left|T h^{(r)}(\tau(\boldsymbol{x}))\right|}{\boldsymbol{r}!},
\end{aligned}
$$

we have

$$
\begin{aligned}
\sum_{|r| \leqq n_{2}} \frac{\left|T h^{(r)}(\tau(\boldsymbol{x}))\right|}{r!} & =\frac{1}{2}\left[\delta_{\left(\tau(x), \beta_{1}\right)}+\delta_{\left(\tau(x), \beta_{2}\right)}\right](T h) \\
& =\sum_{|r| \leq n_{2}} \frac{\beta_{1 r}+\beta_{2 r}}{2} \frac{T h^{(r)}(\tau(\boldsymbol{x}))}{r!} \\
& =\sum_{1 \leq|r| \leq n_{2}} \frac{\beta_{1 r}+\beta_{2 r}}{2} \frac{T h^{(r)}(\tau(\boldsymbol{x}))}{r!} \\
& \leqq \sum_{1 \leq|r| \leq n_{2}}\left|\frac{\beta_{1 r}+\beta_{2 r}}{2}\right| \frac{\left|T h^{(r)}(\tau(\boldsymbol{x}))\right|}{r!} \\
& \leqq \sum_{1 \leqq|r| \leq n_{2}} \frac{\left|T h^{(r)}(\tau(\boldsymbol{x}))\right|}{r!} .
\end{aligned}
$$

It follows that $|T h(\tau(\boldsymbol{x}))|=0$. By a symmetric consideration with respect to T^{-1}, we can also show that

$$
T h(\tau(\boldsymbol{x}))=0 \Longrightarrow h(\boldsymbol{x})=0
$$

Hence, for any $\boldsymbol{x} \in X$ and $h \in C_{0}^{\left(n_{1}\right)}(X)$,

$$
h(\boldsymbol{x})=0 \Longleftrightarrow T h(\tau(\boldsymbol{x}))=0 .
$$

If $\left.f\right|_{U}=\left.g\right|_{U}=1$ for some $f, g \in C_{0}^{\left(n_{1}\right)}(X)$ and some open subset $U \subseteq X$, then $(f-g)(\boldsymbol{x})=0(\boldsymbol{x} \in U)$, from the above we have $(T f-T g)(\tau(\boldsymbol{x}))=0(\boldsymbol{x} \in U)$, i.e., $\left.T f\right|_{\tau(U)}=\left.T g\right|_{\tau(U)}$.

§ 3. Representations of isometries

Theorem 3.1. Let $n_{1}, n_{2}, m_{1}, m_{2} \geqq 1$ be integers and $X \subseteq \boldsymbol{R}^{m_{1}}, Y \subseteq \boldsymbol{R}^{m_{2}}$ be locally compact and NIP. Suppose that $T: C_{0}^{\left(n_{1}\right)}(X) \rightarrow C_{0}^{\left(n_{2}\right)}(Y)$ is a surjective linear isometry. Then there exists a homeomorphism $\sigma: Y \rightarrow X$ and a continuous modular function $\theta(\boldsymbol{y})$ on Y such that
(1) $\theta^{(r)}=0$ for all $|\boldsymbol{r}| \geqq 1$, and
(2) for any $f \in C_{0}^{\left(n_{1}\right)}(X)$,

$$
\begin{equation*}
T f(\boldsymbol{y})=\theta(\boldsymbol{y}) f(\boldsymbol{\sigma}(\boldsymbol{y})), \quad \forall \boldsymbol{y} \in Y \tag{3.1}
\end{equation*}
$$

Proof. Let $\tau: X \rightarrow Y$ be the same as in section $\S 2$ and set $\sigma=\tau^{-1}$. For any $\boldsymbol{y} \in Y$, by Lemma 2.5, there exists a $\theta(\boldsymbol{y})$ in S^{1}, the set of numbers of absolute value 1 in \boldsymbol{K}^{1}, so that

$$
\theta(\boldsymbol{y})=T f(\boldsymbol{y}),
$$

for all $f \in C_{0}^{\left(n_{1}\right)}(X)$ such that $\left.f\right|_{U}=1$ for some open neighbourhood U of $\tau^{-1}(\boldsymbol{y})$ $=\boldsymbol{\sigma}(\boldsymbol{y})$. From Lemma 2.5, $\boldsymbol{\theta}(\boldsymbol{y})$ is well defined, continuous and

$$
\theta^{(r)}(\boldsymbol{y})=0, \quad 1 \leqq|\boldsymbol{r}| \leqq n_{2} .
$$

Thus, $\theta: Y \rightarrow S^{1}$ is a continuous modular function satisfying (1).
For any $g \in C_{0}^{\left(n_{1}\right)}(X)$ and $\boldsymbol{y} \in Y$, let f be as above, then the function $h=$ $g-g(\boldsymbol{\sigma}(\boldsymbol{y})) f \in C_{0}^{\left(n_{1}\right)}(X)$ satisfies $h(\sigma(\boldsymbol{y}))=0$, applying Lemma 2.5 we get

$$
T h(\boldsymbol{y})=T g(\boldsymbol{y})-g(\boldsymbol{\sigma}(\boldsymbol{y})) T f(\boldsymbol{y})=T g(\boldsymbol{y})-g(\boldsymbol{\sigma}(\boldsymbol{y})) \theta(\boldsymbol{y})=0,
$$

that is,

$$
T g(\boldsymbol{y})=\theta(\boldsymbol{y}) g(\boldsymbol{\sigma}(\boldsymbol{y})), \quad \forall \boldsymbol{y} \in Y
$$

In order to find out the relations of m_{1}, m_{2}, n_{1} and n_{2}, we need the following lemma.

Lemma 3.2. Under the same conditions as in Theorem 3.1, set

$$
\begin{aligned}
& \Gamma_{1}=\left\{\boldsymbol{r}=\left(r_{1}, \cdots, r_{m_{1}}\right) \in \boldsymbol{Z}_{+}^{m_{1}}: r_{1}+\cdots+r_{m_{1}} \leqq n_{1}\right\} \\
& \Gamma_{2}=\left\{\boldsymbol{r}=\left(r_{1}, \cdots, r_{m_{2}}\right) \in \boldsymbol{Z}_{+}^{m_{2}}: r_{1}+\cdots+r_{m_{2}} \leqq n_{2}\right\} .
\end{aligned}
$$

Then, (1) ${ }^{\#} \Gamma_{1}={ }^{\#} \Gamma_{2}$, (2) for any $f \in C_{0}^{\left(n_{1}\right)}(X)$ and $\boldsymbol{x} \in X$,

$$
\begin{aligned}
& \#\left\{\boldsymbol{r} \in \Gamma_{1}: f^{(r)}(\boldsymbol{x})=0\right\}=\#\left\{\boldsymbol{r} \in \Gamma_{2}: T f^{(r)}(\boldsymbol{\tau}(\boldsymbol{x}))=0\right\} \\
& \#\left\{\boldsymbol{r} \in \Gamma_{1}: f^{(r)}(\boldsymbol{x}) \neq 0\right\}=\#\left\{\boldsymbol{r} \in \Gamma_{2}: T f^{(r)}(\tau(\boldsymbol{x})) \neq 0\right\}
\end{aligned}
$$

where τ is as in Lemma 2.3.
Proof. (1) Let Φ_{T} be as in section §2. By Lemma 2.1 and 2.3, $P \Phi_{T}(\boldsymbol{x}, \cdot)$ is a homeomorphism from $\mathcal{S}_{m_{1}, n_{1}}=S^{\# \Gamma_{1}}$ onto $\mathcal{S}_{m_{2}, n_{2}}=S^{\#} \Gamma_{2}$ (where $P: W_{2} \rightarrow \mathcal{S}_{m_{2}, n_{2}}$ is the natural projection), thus, ${ }^{\#} \Gamma_{1}=\# \Gamma_{2}$.
(2) For any $f \in C_{0}^{\left(n_{1}\right)}(X)$ and $\boldsymbol{x} \in X$, let

$$
k_{1}=\#\left\{\boldsymbol{r} \in \Gamma_{1}: f^{(r)}(\boldsymbol{x})=0\right\}, \quad k_{2}=\#\left\{\boldsymbol{r} \in \Gamma_{2}: T f^{(r)}(\tau(\boldsymbol{x}))=0\right\},
$$

then $S^{k_{1}}$ is homeomorphic to $C=\left\{\boldsymbol{\alpha} \in \mathcal{S}_{m_{1}, n_{1}}: \boldsymbol{\delta}_{(\boldsymbol{x}, \boldsymbol{a})}(f)=\sum_{|r| \leqslant n_{1}}\left|f^{(r)}(\boldsymbol{x})\right| / \boldsymbol{r}!\right\}$ and $S^{k_{2}}$ is homeomorphic to $D=\left\{\boldsymbol{\beta} \in \mathcal{S}_{m_{2}, n_{2}}: \delta_{(\tau(x), \boldsymbol{\beta})}(T f)=\sum_{|r| \leqslant n_{2}}\left|T f^{(r)}(\tau(\boldsymbol{x}))\right| / \boldsymbol{r}!\right\}$. But, from $\sum_{|r| \leqslant n_{1}}\left|f^{(r)}(\boldsymbol{x})\right| / \boldsymbol{r}!=\sum_{|r| \leqq n_{2}}\left|T f^{(r)}(\boldsymbol{\tau}(\boldsymbol{x}))\right| / \boldsymbol{r}!$ (Corollary 2.4) and $\boldsymbol{\delta}_{(\boldsymbol{x}, \boldsymbol{a})}(f)$ $=\delta_{\left(\tau(x), P \phi_{T}(x, \alpha)\right)}(T f)$, we can see that C and D are homeomorphic under the $\operatorname{map} P \Phi_{T}(\boldsymbol{x}, \cdot)$. Therefore, $S^{k_{1}}$ and $S^{k_{2}}$ are homeomorphic, hence $k_{1}=k_{2}$, i.e.,

$$
\#\left\{\boldsymbol{r} \in \Gamma_{1}: f^{(r)}(\boldsymbol{x})=0\right\}=\#\left\{\boldsymbol{r} \in \Gamma_{2}: T f^{(r)}(\tau(\boldsymbol{x}))=0\right\} .
$$

It follows that

$$
\begin{aligned}
\#\left\{\boldsymbol{r} \in \Gamma_{1}: f^{(r)}(\boldsymbol{x}) \neq 0\right\} & ={ }^{\#} \Gamma_{1}-^{\#}\left\{\boldsymbol{r} \in \Gamma_{1}: f^{(r)}(\boldsymbol{x})=0\right\} \\
& ={ }^{\#} \Gamma_{2}-\#\left\{\boldsymbol{r} \in \Gamma_{2}: T f^{(r)}(\tau(\boldsymbol{x}))=0\right\} \\
& ={ }^{\#}\left\{\boldsymbol{r} \in \Gamma_{2}: T f^{(r)}(\tau(\boldsymbol{x})) \neq 0\right\} .
\end{aligned}
$$

Theorem 3.3. Under the same conditions as in Theorem 3.1, we have $m_{1}=m_{2}$ and $n_{1}=n_{2}$.

Proof. Let θ and $\sigma=\tau^{-1}$ be the same as in Theorem 3.1 and $\sigma\left(\boldsymbol{y}_{0}\right)=\boldsymbol{x}_{0}$ be fixed. There exists an $\boldsymbol{a} \in \boldsymbol{R}^{m_{1}}$ and an open neighbourhood U of \boldsymbol{x}_{0} such that

$$
x_{j}-a_{j}>0, \quad \forall \boldsymbol{x}=\left(x_{1}, \cdots, x_{m_{1}}\right) \in U, j=1, \cdots, m_{1}
$$

Take $\left\{f_{j}\right\}_{j=1}^{n_{1}} \cong C_{0}^{\left(n_{1}\right)}(X)$ so that

$$
f_{j}(\boldsymbol{x})=x_{j}-a_{\jmath}, \quad \forall \boldsymbol{x}=\left(x_{1}, \cdots, x_{m_{1}}\right) \in V, j=1, \cdots, m_{1}
$$

for some open neighbourhood $V \subseteq U$ of \boldsymbol{x}_{0}. From Theorem 3.1, we have

$$
\begin{equation*}
T f_{j}(\tau(\boldsymbol{x}))=\theta(\tau(\boldsymbol{x})) f_{j}(\boldsymbol{x}) \neq 0, \quad \forall \boldsymbol{x} \in V, \jmath=1, \cdots, m_{1} \tag{3.2}
\end{equation*}
$$

By Lemma 3.2 and the choice of $f_{\mathcal{J}}$, we know that

$$
\begin{align*}
& \#\left\{\boldsymbol{r} \in \Gamma_{2}: T f_{J}^{(r)}(\tau(\boldsymbol{x})) \neq 0\right\} \tag{3.3}\\
= & \left\{\boldsymbol{r} \in \Gamma_{1}: f_{j}^{(r)}(\boldsymbol{x}) \neq 0\right\}=2, \quad \forall \boldsymbol{x} \in V, 1 \leqq j \leqq m_{1} .
\end{align*}
$$

Claim. If $\boldsymbol{x} \in V, \boldsymbol{r} \in \Gamma_{2}$ and $T f_{J}^{(r)}(\tau(\boldsymbol{x})) \neq 0$, then $|\boldsymbol{r}| \leqq 1$.
Otherwise, there is a $\boldsymbol{r}^{*} \in \Gamma_{2}$ with $1 \leqq\left|\boldsymbol{r}^{*}\right|=|\boldsymbol{r}|-1$ and

$$
T f_{\rho}^{(r)}(\boldsymbol{y})=\frac{\partial T f_{J}^{(r *)}(\boldsymbol{y})}{\partial y_{2}}, \quad \forall \boldsymbol{y} \in Y
$$

for some $1 \leqq i \leqq m_{2}$. By the continuity of $T f_{\rho}^{(r)}$,

$$
\begin{equation*}
T f_{j}^{(r)}(\boldsymbol{y}) \neq 0, \quad \forall \boldsymbol{y} \in O \tag{3.4}
\end{equation*}
$$

for some open neighbourhood $O \subseteq \tau(V)$ of $\tau(\boldsymbol{x})$. Clearly, $T f_{s}^{(r *)}(\boldsymbol{y}) \not \equiv 0$ on O. We can take a $\boldsymbol{y}^{*}=\tau\left(\boldsymbol{x}^{*}\right)\left(\boldsymbol{x}^{*} \in V\right)$ such that $T f_{j}^{\left(r^{*}\right)}\left(\boldsymbol{y}^{*}\right) \neq 0$, then together with (3.2) and (3.4) we have

$$
T f_{j}\left(\boldsymbol{y}^{*}\right) \neq 0, \quad T f_{J}^{(r *)}\left(\boldsymbol{y}^{*}\right) \neq 0, T f_{J}^{(r)}\left(\boldsymbol{y}^{*}\right) \neq 0
$$

which contradicts with (3.3). The claim is true.
Now, define

$$
f=f_{1}+\cdots+f_{m_{1}} \in C_{0}^{\left(n_{1}\right)}(X),
$$

then for any $\boldsymbol{r} \in \Gamma_{2}$ with $|\boldsymbol{r}|>1$, from the above claim,

$$
T f^{(r)}\left(\boldsymbol{y}_{0}\right)=T f_{1}^{(r)}\left(\boldsymbol{y}_{0}\right)+\cdots+T f_{m_{1}}^{(r)}\left(\boldsymbol{y}_{0}\right)=0 .
$$

Besides, from the properties of $\left\{f_{j}: 1 \leqq j \leqq m_{1}\right\}$ we can calculate

$$
\#\left\{\boldsymbol{r} \in \Gamma_{1}: f^{(r)}\left(\boldsymbol{x}_{0}\right) \neq 0\right\}=1+m_{1} .
$$

Therefore, by Lemma 3.2 and the claim,

$$
\begin{aligned}
1+m_{1} & =\#\left\{\boldsymbol{r} \in \Gamma_{1}: f^{(r)}\left(\boldsymbol{x}_{0}\right) \neq 0\right\} \\
& =\#\left\{\boldsymbol{r} \in \Gamma_{2}: T f^{(r)}\left(\boldsymbol{u}_{0}\right) \neq 0\right\} \\
& \leqq\left\{\boldsymbol{r} \in \Gamma_{2}:|\boldsymbol{r}| \leqq 1\right\}=1+m_{2},
\end{aligned}
$$

that is, $m_{1} \leqq m_{2}$. Similarly, by considering T^{-1}, we can also get $m_{2} \leqq m_{1}$, thus $m_{1}=m_{2}$.

Finally, if we set $m_{1}=m_{2}=m$, then from

$$
\begin{aligned}
& \#\left\{\boldsymbol{r}=\left(r_{1}, \cdots, r_{m}\right) \in \boldsymbol{Z}_{+}^{m}: r_{1}+\cdots+r_{m} \leqq n_{1}\right\}=\# \Gamma_{1}=\# \Gamma_{2} \\
=\# & \left\{\boldsymbol{r}=\left(r_{1}, \cdots, r_{m}\right) \in \boldsymbol{Z}_{+}^{m}: r_{1}+\cdots+r_{m} \leqq n_{2}\right\}
\end{aligned}
$$

we can easily see that $n_{1}=n_{2}$.
From now on, we only consider the cases where $m_{1}=m_{2}$ and $n_{1}=n_{2}$. Suppose that $Y \subseteq \boldsymbol{R}^{m}$ is NIP and F is a map from Y into \boldsymbol{R}^{m}. Recall that the Jacobian matrix $J(F)$ of F at the point $\boldsymbol{y} \in Y$ is defined by

$$
J(F)(\boldsymbol{y})=\left(\begin{array}{cccc}
\frac{\partial F_{1}(\boldsymbol{y})}{\partial y_{1}} & \frac{\partial F_{2}(\boldsymbol{y})}{\partial y_{1}} & \cdots & \frac{\partial F_{m}(\boldsymbol{y})}{\partial y_{1}} \\
\frac{\partial F_{1}(\boldsymbol{y})}{\partial y_{2}} & \frac{\partial F_{2}(\boldsymbol{y})}{\partial y_{2}} & \cdots & \frac{\partial F_{m}(\boldsymbol{y})}{\partial y_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial F_{1}(\boldsymbol{y})}{\partial y_{m}} & \frac{\partial F_{2}(\boldsymbol{y})}{\partial y_{m}} & \cdots & \frac{\partial F_{m}(\boldsymbol{y})}{\partial y_{m}}
\end{array}\right)
$$

where $F(\boldsymbol{y})=\left(F_{1}(\boldsymbol{y}), F_{2}(\boldsymbol{y}), \cdots, F_{m}(\boldsymbol{y})\right)$.
Theorem 3.4. Let $m, n \geqq 1$ be integers and $X, Y \subseteq \boldsymbol{R}^{m}$ be locally compact and NIP. Suppose that $T: C_{0}^{(n)}(X) \rightarrow C_{0}^{(n)}(Y)$ is a surjective linear isometry. Let $\sigma: Y \rightarrow X$ be the homeomorphism as in Theorem 3.1. Then for any $\boldsymbol{y}_{0} \in Y$ there exists an open neighbourhood O of \boldsymbol{y}_{0} and a permutation π on $\{1,2, \cdots, m\}$ such that the Jacobian matrix $J(\sigma)$ is a constant matrix on O with the property

$$
\begin{equation*}
\frac{\partial \sigma_{j}\left(\boldsymbol{y}_{0}\right)}{\partial y_{\pi(j)}} \in\{-1,1\}(1 \leqq j \leqq m) \quad \text { and } \quad \frac{\partial \sigma_{j}\left(\boldsymbol{y}_{0}\right)}{\partial y_{2}}=0 \quad(i \neq \pi(j)) . \tag{3.5}
\end{equation*}
$$

Proof. For any $\boldsymbol{y}_{0} \in Y$, set $\boldsymbol{x}_{0}=\boldsymbol{\sigma}\left(\boldsymbol{y}_{0}\right) \in X$. As in the proof of Theorem 3.3, we can take an $\boldsymbol{a} \in \boldsymbol{R}^{m}$ and $\left\{f_{j}\right\}_{j=1}^{m} \subseteq C_{0}^{(n)}(X)$ such that

$$
f_{j}(\boldsymbol{x})=x_{j}-a_{j}>0, \quad \forall \boldsymbol{x} \in U, 1 \leqq j \leqq m
$$

for some open neighbourhood U of \boldsymbol{x}_{0}. We have known that

$$
\begin{equation*}
T f_{j}(\boldsymbol{y})=\theta(\boldsymbol{y}) f_{j}(\sigma(\boldsymbol{y}))=\theta(\boldsymbol{y})\left(\sigma_{j}(\boldsymbol{y})-a_{j}\right) \neq 0, \quad \forall \boldsymbol{y} \in \tau(U) \tag{3.6}
\end{equation*}
$$

where θ is as in Theorem 3.1, $\tau=\sigma^{-1}$ is as in section $\S 2$ and $\sigma=\left(\sigma_{1}, \cdots, \sigma_{m}\right)$. From (3.6), we know that

$$
\sigma_{j}(\boldsymbol{y})=a_{j}+\frac{1}{\theta(\boldsymbol{y})} T f_{j}(\boldsymbol{y}), \quad \forall \boldsymbol{y} \in \tau(U)
$$

which implies $\sigma_{t}^{(r)}$ is continuous at \boldsymbol{y}_{0}, henceforth continuous on $Y(\boldsymbol{r} \in \Gamma)$. As shown in the proof of Theorem 3.3, for any $1 \leqq \jmath \leqq m$ and $\boldsymbol{y} \in \tau(U)$ we can show that there is a unique $\boldsymbol{r}(j, \boldsymbol{y}) \in \Gamma$ with $|\boldsymbol{r}|=1$ and

$$
T f_{J}^{(r(j), \boldsymbol{y}))}(\boldsymbol{y}) \neq 0, \quad T f_{J}^{(r)}(\boldsymbol{y})=0(|\boldsymbol{r}| \geqq 1, \boldsymbol{r} \neq \boldsymbol{r}(j, \boldsymbol{y})) .
$$

By Corollary 2.4 and (3.6), letting $\boldsymbol{y}=\boldsymbol{\tau}(\boldsymbol{x})(\boldsymbol{x} \in U)$, we can calculate

$$
\begin{align*}
1 & =\sum_{1 \leqq|r| \leqq n} \frac{\left|f_{s}^{(r)}(\boldsymbol{x})\right|}{\boldsymbol{r}!}=\sum_{|r| \leqq n} \frac{\left|f_{\int}^{(r)}(\boldsymbol{x})\right|}{\boldsymbol{r}!}-\left|f_{j}(\boldsymbol{x})\right| \tag{3.7}\\
& =\sum_{|r| \leqq n} \frac{\left|T f_{j}^{(r)}(\boldsymbol{y})\right|}{\boldsymbol{r}!}-\left|T f_{j}(\boldsymbol{y})\right|=\sum_{1 \leqq|r| \leqq n} \frac{\left|T f_{j}^{(r)}(\boldsymbol{y})\right|}{\boldsymbol{r}!} \\
& =\left|T f_{j}^{(r(\gamma, y)}(\boldsymbol{y})(\boldsymbol{y})\right|=\left|\sigma_{j}^{(r(j, \boldsymbol{y}))}(\boldsymbol{y})\right|, \quad \forall \boldsymbol{y} \in \tau(U) .
\end{align*}
$$

By the uniqueness of $\boldsymbol{r}(j, \boldsymbol{y})$, we can also show that the map $\boldsymbol{r}(j, \cdot): \tau(U) \rightarrow \Gamma$ is continuous (where Γ equips with the discrete topology). That is, there exists an open neighbourhood $O \cong \tau(U)$ of \boldsymbol{y}_{0} so that

$$
\boldsymbol{r}(j, \boldsymbol{y})=\boldsymbol{r}\left(j, \boldsymbol{y}_{0}\right), \quad \forall \boldsymbol{y} \in O, 1 \leqq j \leqq m
$$

Now, let us show that

$$
\begin{equation*}
\boldsymbol{r}\left(j, \boldsymbol{y}_{0}\right) \neq \boldsymbol{r}\left(k, \boldsymbol{y}_{0}\right), \quad \text { if } j \neq k \tag{3.8}
\end{equation*}
$$

In fact, if $\boldsymbol{r}\left(j, \boldsymbol{y}_{0}\right)=\boldsymbol{r}\left(k, \boldsymbol{y}_{0}\right)=\boldsymbol{r}_{0}(j \neq k)$, since $\boldsymbol{\sigma}_{j}^{\left(\boldsymbol{r}_{0}\right)}\left(\boldsymbol{y}_{0}\right)$ and $\boldsymbol{\sigma}_{k}^{\left(\boldsymbol{r}_{0}\right)}\left(\boldsymbol{y}_{0}\right)$ are real numbers and belong to $\{-1,1\}$ (from (3.7)) we can take a real number $c \in\{-1,1\}$ with $\sigma_{j}^{\left(r_{0}\right)}\left(\boldsymbol{y}_{0}\right)+c \sigma_{k}^{\left(r_{0}\right)}\left(\boldsymbol{y}_{0}\right)=0$. Considering $f=f_{j}+c f_{k} \in C_{0}^{(n)}(X)$, we can calculate

$$
\begin{aligned}
2 & =\sum_{1 \leqslant|r| \leqslant n} \frac{\left|f^{(r)}\left(\boldsymbol{x}_{0}\right)\right|}{\boldsymbol{r}!}=\sum_{|r| \leqslant n} \frac{\left|f^{(r)}\left(\boldsymbol{x}_{0}\right)\right|}{\boldsymbol{r}!}-\left|f\left(\boldsymbol{x}_{0}\right)\right| \\
& =\sum_{|r| \leqslant n} \frac{\left|T f^{(r)}\left(\boldsymbol{y}_{0}\right)\right|}{\boldsymbol{r}!}-\left|T f\left(\boldsymbol{y}_{0}\right)\right| \\
& =\sum_{1 \leqslant|r| \leqslant n} \frac{\left|T f^{(r)}\left(\boldsymbol{y}_{0}\right)\right|}{\boldsymbol{r}!}=\left|T f_{j}^{\left(r_{0}\right)}\left(\boldsymbol{y}_{0}\right)+c T f_{k}^{\left(r_{0}\right)}\left(\boldsymbol{y}_{0}\right)\right| \\
& =\left|\theta\left(\boldsymbol{y}_{0}\right) \boldsymbol{\sigma}_{j}^{\left(r_{0}\right)}\left(\boldsymbol{y}_{0}\right)+c \theta\left(\boldsymbol{y}_{0}\right) \boldsymbol{\sigma}_{k}^{\left(r_{0}\right)}\left(\boldsymbol{y}_{0}\right)\right|=0,
\end{aligned}
$$

a contradiction. Thus, (3.8) is proved. Let

$$
\boldsymbol{r}\left(j, \boldsymbol{y}_{0}\right)=(0, \cdots, 0, \underset{\langle\pi(\jmath)\rangle}{1}, 0, \cdots, 0), \quad 1 \leqq j \leqq m
$$

then from $(3.8), \pi(\cdot):\{1,2, \cdots, m\} \rightarrow\{1,2, \cdots, m\}$ is a permutation and

$$
\begin{aligned}
& \frac{\partial \sigma_{j}\left(\boldsymbol{y}_{0}\right)}{\partial y_{\pi(j)}}=\sigma_{r}^{\left(r\left(j, \boldsymbol{y}_{0}\right)\right)}\left(\boldsymbol{y}_{0}\right) \in\{-1,1\} \quad(1 \leqq j \leqq m) \\
& \frac{\partial \sigma_{j}\left(\boldsymbol{y}_{0}\right)}{\partial y_{\imath}}=\sigma_{j}^{(\boldsymbol{r})}\left(\boldsymbol{y}_{0}\right)=0 \quad(i \neq \pi(j))
\end{aligned}
$$

where $r=(0, \cdots, 0, \underset{\langle i\rangle}{1}, 0, \cdots, 0) \in \Gamma$.
Define

$$
O_{1}=\bigcap_{j=1}^{m}\left\{\boldsymbol{y} \in O: \boldsymbol{\sigma}_{j}^{\left(r\left(\jmath \cdot \boldsymbol{y}_{0}\right)\right)}(\boldsymbol{y})=\sigma_{J}^{\left(\boldsymbol{r}\left(j \cdot \boldsymbol{y}_{0}\right)\right)}\left(\boldsymbol{y}_{0}\right)\right\}
$$

Since $\boldsymbol{\sigma}_{j}^{\left(\boldsymbol{r}\left(\jmath, \boldsymbol{y}_{0}\right)\right)}(\boldsymbol{y})=\boldsymbol{\sigma}_{f}^{(\boldsymbol{r}(\jmath, \boldsymbol{y}))}(\boldsymbol{y}) \in\{-1,1\}$, by the continuities of $\boldsymbol{\sigma}^{\left(\boldsymbol{r}\left(j, \boldsymbol{y}_{0}\right)\right)}(1 \leqq j \leqq m)$, we can see that O_{1} is an open neighbourhood of \boldsymbol{y}_{0}. For any $\boldsymbol{y} \in O_{1}$,

$$
\frac{\partial \sigma_{j}(\boldsymbol{y})}{\partial y_{\pi(j)}}=\sigma_{\jmath}^{\left(r\left(\jmath, \boldsymbol{y}_{0}\right)\right)}(\boldsymbol{y})=\sigma_{\jmath}^{\left(r\left(\jmath, \boldsymbol{y}_{0}\right)\right)}\left(\boldsymbol{y}_{0}\right) \in\{-1,1\}, \quad 1 \leqq j \leqq m
$$

and

$$
\frac{\partial \sigma_{j}(\boldsymbol{y})}{\partial y_{2}}=\sigma_{\partial}^{(r)}\left(\boldsymbol{y}_{0}\right)=0, \quad i \neq \pi(j)
$$

where $\boldsymbol{r}=\left(0, \cdots, 0, \frac{1}{\langle i\rangle}, 0, \cdots, 0\right) \in \Gamma$ with $\boldsymbol{r} \neq \boldsymbol{r}(j, \boldsymbol{y})=\boldsymbol{r}\left(j, \boldsymbol{y}_{0}\right)$. Therefore, the Jacobian matrix $J(\sigma)$ of σ is a constant matrix on O_{1} and satisfies (3.5).

As we know (for example, from [7]) that every (linear) isometry I on $\left(\boldsymbol{R}^{m},\|\cdot\|_{l^{1}}\right)$ is of the form

$$
\begin{equation*}
I(\boldsymbol{x})=\left(a_{1} x_{\pi(1)}, \cdots, a_{m} x_{\pi(m)}\right), \quad \forall \boldsymbol{x}=\left(x_{1}, \cdots, x_{m}\right) \in \boldsymbol{R}^{m} \tag{3.9}
\end{equation*}
$$

for some $a_{1}, \cdots, a_{m} \in\{-1,1\}$ and some permutation π on $\{1, \cdots, m\}$. For our convenience, we shall call the map I of the form (3.9) a permutation (of axes) on \boldsymbol{R}^{m}. If we use $\operatorname{IOR}(m)$ to denote the isometry group of $\left(\boldsymbol{R}^{m},\|\cdot\|_{1^{1}}\right)$, then for the σ in Theorem 3.4, looking as a linear operator on $\boldsymbol{R}^{m}, J(\boldsymbol{\sigma})(\boldsymbol{y})$ is a linear isometry on $\left(\boldsymbol{R}^{m},\|\cdot\|_{l^{1}}\right)(\boldsymbol{y} \in Y)$, therefore $J(\boldsymbol{\sigma}): Y \rightarrow \operatorname{IOR}(m)$ is a locally constant map. Now, let us keep the above notation, we can state the conditions for a linear operator T to be an onto isometry between $C_{0}^{(n)}(X)$ and $C_{0}^{(n)}(Y)$, especially, the conditions for which $C_{0}^{(n)}(X) \cong C_{0}^{(n)}(Y)$.

Theorem 3.5. Let $m, n \geqq 1$ be integers and $X, Y \subseteq \boldsymbol{R}^{m}$ be open sets. Then T is a linear isometry of $C_{0}^{(n)}(X)$ onto $C_{0}^{(n)}(Y)$ if and only of the followings hold:
(1) there exists a continuous modular function $\theta: Y \rightarrow S^{1}$ such that $\theta^{(r)}=0$ for all $|\boldsymbol{r}| \geqq 1$;
(2) there exists a homeomorphism $\sigma: Y \rightarrow X$ such that $J(\sigma): Y \rightarrow \operatorname{IOR}(m)$ is locally constant ;
(3) for any $f \in C_{0}^{(n)}(X)$,

$$
T f(\boldsymbol{y})=\theta(\boldsymbol{y}) f(\sigma(\boldsymbol{y})), \quad \boldsymbol{y} \in Y .
$$

Proof. The "only if" part is the direct consequence of Theorem 3.1 and 3.4. For the "if" part, let θ, σ satisfy (1), (2) and T be defined by (3). First of all, let us show that $T f \in C_{0}^{(n)}(Y)$ for all $f \in C_{0}^{(n)}(X)$. Let $f \in C_{0}^{(n)}(X)$ be fixed. For any $\boldsymbol{y}_{0} \in Y$, let $J(\boldsymbol{\sigma})=\left(a_{2 j}\right): Y \rightarrow \operatorname{lOR}(m)$ be constant on some open neighbourhood O of \boldsymbol{y}_{0} and π be a permutation on $\{1, \cdots, m\}$ so that

$$
\begin{equation*}
a_{\pi(j) j} \in\{-1,1\} \quad(1 \leqq j \leqq m), \quad a_{\imath \jmath}=0 \quad(i \neq \pi(j)) . \tag{3.10}
\end{equation*}
$$

We can calculate (Noting that $\left.\theta^{(r)}=0(|\boldsymbol{r}| \geqq 1)\right)$,

$$
\frac{\partial^{r_{j}} T f(\boldsymbol{y})}{\partial y_{j}^{r_{j}}}=\theta(\boldsymbol{y}) \frac{\partial^{r_{j}} f(\boldsymbol{\sigma}(\boldsymbol{y}))}{\left.\partial x_{\pi-1(j)}^{r_{j}-1(}\right)} a_{j_{j-1}(j)}^{r_{j}}, \quad \forall \boldsymbol{y} \in O .
$$

Thus, for any $\boldsymbol{r}=\left(r_{1}, \cdots, r_{m}\right) \in \Gamma$ and $\boldsymbol{y} \in O$,

$$
\begin{align*}
T f^{(r)}(\boldsymbol{y}) & =\theta(\boldsymbol{y}) \frac{\partial^{r_{1}+\cdots+r_{m}} f(\boldsymbol{\sigma}(\boldsymbol{y}))}{\partial x_{\pi-1(1)}^{r_{1}} \cdots \partial x_{\pi}^{r_{m}(m)}} a_{1 \pi-1(1)}^{r_{1}} \cdots a_{m \pi-1(m)}^{r_{m}} \tag{3.11}\\
& =\theta(\boldsymbol{y}) f^{\left(r_{\pi(1)} \cdots, \cdots, r_{\pi(m)}(\sigma(\boldsymbol{y})) a_{1 \pi}^{r_{1}-1(1)} \cdots a_{m \pi-1(m)}^{r_{m}} .\right.} .
\end{align*}
$$

It follows that $T f^{(r)}(\boldsymbol{y})$ is continuous on O, especially, $T f^{(r)}(\boldsymbol{y})$ is continuous at \boldsymbol{y}_{0}. So, $T f^{(r)}$ is continuous on Y for all $\boldsymbol{r} \in \Gamma$. Since $|\theta(\boldsymbol{y})|=1$ and $a_{j^{-1(j)}} \in$ $\{-1,1\}$, from (3.11) we can also show

$$
\begin{equation*}
\sum_{r \in \Gamma} \frac{\left|T f^{(r)}\left(\boldsymbol{y}_{0}\right)\right|}{\boldsymbol{r}!}=\sum_{r \in \Gamma} \frac{\left|f^{(r)}\left(\boldsymbol{\sigma}\left(\boldsymbol{y}_{0}\right)\right)\right|}{\boldsymbol{r}!}, \quad \boldsymbol{y}_{0} \in Y . \tag{3.12}
\end{equation*}
$$

For any $\varepsilon>0$, the set

$$
\begin{aligned}
\left\{\boldsymbol{y} \in Y: \sum_{r \in \Gamma} \frac{\left|T f^{(r)}(\boldsymbol{y})\right|}{\boldsymbol{r}!} \geqq \varepsilon\right\} & =\left\{\boldsymbol{y} \in Y: \sum_{r \in \Gamma} \frac{\left|T f^{(r)}(\boldsymbol{\sigma}(\boldsymbol{y}))\right|}{\boldsymbol{r}!} \geqq \varepsilon\right\} \\
& =\sigma^{-1}\left(\left\{\boldsymbol{x} \in X: \sum_{r \in \Gamma} \frac{\left|f^{(r)}(\boldsymbol{x})\right|}{\boldsymbol{r}!} \geqq \varepsilon\right\}\right)
\end{aligned}
$$

is compact in Y. Therefore, $T f \in C_{0}^{(n)}(Y)$ and T is well-defined.
From (3), T is linear, and from (3.12), isometric. It remains to prove that T is surjective. Suppose $g \in C_{0}^{(n)}(Y)$. Suffice to show that the function f defined by

$$
f(\boldsymbol{x})=\theta\left(\boldsymbol{\sigma}^{-1}(\boldsymbol{x})\right)^{-1} g\left(\boldsymbol{\sigma}^{-1}(\boldsymbol{x})\right), \quad \forall \boldsymbol{x} \in X
$$

belongs to $C_{0}^{(n)}(X)$.
For any $\boldsymbol{x}_{0} \in X$, let $J(\boldsymbol{\sigma})=\left(a_{\imath j}\right)$ be constant on some open neighbourhood O of $\boldsymbol{y}_{0}=\sigma^{-1}\left(\boldsymbol{x}_{0}\right) \in Y$ with (3.9). Then the Jacobian matrix $J\left(\boldsymbol{\sigma}^{-1}\right)$ of $\boldsymbol{\sigma}^{-1}$ is constant on $\sigma(O)$ with

$$
J\left(\boldsymbol{\sigma}^{-1}\right)=J(\boldsymbol{\sigma})^{-1}=\left(b_{i j}\right)
$$

and

$$
b_{\pi^{-1(j)},}=a_{j \frac{1}{\pi}-1(j)}^{-1} \in\{-1,1\} \quad(1 \leqq j \leqq m), \quad b_{i j}=0 \quad\left(i \neq \pi^{-1}(j)\right) .
$$

Similar calculations as in (3.11) and (3.12), for any $\boldsymbol{x} \in \boldsymbol{\sigma}(O)$ we have

$$
f^{(r)}(\boldsymbol{x})=\theta\left(\sigma^{-1}(\boldsymbol{x})\right)^{-1} g^{\left(r_{\pi}-1(1)\right.}, \cdots, r_{\left.\pi^{-1}(m)\right)}\left(\sigma^{-1}(\boldsymbol{x})\right) b_{1 \pi(1)}^{r_{1}} \cdots b_{m \pi(m)}^{r_{m}}
$$

for all $\boldsymbol{r} \in \Gamma$ and

$$
\sum_{\boldsymbol{r} \in \Gamma} \frac{\left|f^{(r)}(\boldsymbol{x})\right|}{\boldsymbol{r}!}=\sum_{r \in \Gamma} \frac{\left|g^{(r)}\left(\boldsymbol{\sigma}^{-1}(\boldsymbol{x})\right)\right|}{\boldsymbol{r}!} .
$$

From which we can prove that $f \in C_{0}^{(n)}(X)$. This finishes the proof.
Remark 4. The results of Theorem 3.5 remain true if $m=1$ and $X, Y \subseteq \boldsymbol{R}^{1}$ are locally compact subsets without isolated points, under almost the same proof. But, we do not know whether it is also true for $m>1$ and general locally compact and NIP subsets of \boldsymbol{R}^{m}.

Remark 5. As a direct consequence of Theorem 3.5, $C_{0}^{(n)}(X) \cong C_{0}^{(n)}(Y)$ if and only if the condition (2) in the theorem holds.

§ 4. Applications

As an application of the representations of surjective linear isometries (Theorem 3.5), let us consider the isometry group of $C_{0}^{(n)}(X)$.

Theorem 4.1. Let $m, n \geqq 1$ be integers and X is an open subset of \boldsymbol{R}^{m}. Define

$$
\Theta=\left\{\theta \mid \theta: X \rightarrow S^{1} \text { is continuous and } \theta^{(r)}=0(\forall|\boldsymbol{r}| \geqq 1)\right\}
$$

Then the isometry group $I_{n, x}$ of $C_{0}^{(n)}(X)(n \geqq 1)$, with the operator topology, is homeomorphic to $\Theta \times \Sigma$ with the group operation $\left(\theta_{1}, \sigma_{1}\right) \circ\left(\theta_{2}, \sigma_{2}\right)=\left(\theta_{1} \cdot\left(\theta_{2} \circ \sigma_{1}\right)\right.$, $\left.\sigma_{2} \circ \sigma_{1}\right)$ and the product topology of $\Theta \times \Sigma$, where Θ equips with the uniform topology (i.e., $d\left(\theta_{1}, \theta_{2}\right)=\sup \left\{\left|\theta_{1}(\boldsymbol{x})-\theta_{2}(\boldsymbol{x})\right|: \boldsymbol{x} \in X\right\}$) and Σ equips with the discrete topology.

Proof. From Theorem 3.5, for any $T \in I_{n, X}$, there is a $\theta \in \Theta$ and a $\sigma \in \Sigma$ such that

$$
\begin{equation*}
T f(\boldsymbol{x})=\theta(\boldsymbol{x}) f(\boldsymbol{\sigma}(\boldsymbol{x})), \quad \forall \boldsymbol{x} \in X, f \in C_{0}^{(n)}(X) . \tag{4.1}
\end{equation*}
$$

Clearly, the correspondence $T \leftrightarrow(\theta, \sigma)$ is a bijection between $I_{n, x}$ and $\Theta \times \Sigma$. If $T_{1} \leftrightarrow\left(\theta_{1}, \sigma_{1}\right)$ and $T_{2} \leftrightarrow\left(\theta_{2}, \sigma_{2}\right)$, then

$$
\left\|T_{1}-T_{2}\right\|= \begin{cases}\geqq 1, & \sigma_{1} \neq \sigma_{2} \\ d\left(\theta_{1}, \theta_{2}\right), & \sigma_{1}=\sigma_{2}\end{cases}
$$

from which we can easily show that $T \mapsto(\theta, \sigma)$ is a homeomorphism of $I_{n, X}$ onto $\Theta \times \Sigma$. The group operation is evident from (4.1).

THEOREM 4.2. Let $m, n \geqq 1$ be integers and $X, Y \subseteq \boldsymbol{R}^{m}$ be connected open subsets. Then, $T: C_{0}^{(n)}(X) \rightarrow C_{0}^{(n)}(Y)$ is a surjective linear isometry \Leftrightarrow there exists a number $\lambda \in \boldsymbol{K}$ with $|\lambda|=1$ and a homeomorphism σ of Y onto X of the form: $\sigma=$ permutation + translation, so that

$$
T f(\boldsymbol{y})=\lambda f(\boldsymbol{\sigma}(\boldsymbol{y})), \quad \forall f \in C_{0}^{(n)}(X), \quad \boldsymbol{y} \in Y .
$$

Proof. By Theorem 3.5, the " \Leftarrow " part is trivial. For the " \Rightarrow " part, let θ, σ be the same as in Theorem 3.5, then $\theta(\boldsymbol{y})$ and $J(\boldsymbol{\sigma})$ are locally constant on Y. Since Y is connected, $\theta(\boldsymbol{y})$ is a constant on Y and $J(\boldsymbol{\sigma})=\left(a_{\imath j}\right)$ is a constant matrix on Y with

$$
a_{\pi(j) j} \in\{-1,1\} \quad(1 \leqq j \leqq m), \quad a_{\imath \jmath}=0, \quad(i \neq \pi(j))
$$

for some permutation π on $\{1, \cdots, m\}$. Using the connectedness of Y again,
for each $1 \leqq j \leqq m$ we can show that

$$
\sigma_{j}(\boldsymbol{y})=a_{\pi(j)}, y_{\pi(j)}+c_{\jmath}, \quad \forall \boldsymbol{y} \in Y
$$

for some constant $c_{j} \in \boldsymbol{R}^{1}$. Thus,

$$
\boldsymbol{\sigma}(\boldsymbol{y})=\left(a_{1} y_{\pi(1)}, \cdots, a_{m} y_{\pi(m)}\right)+\boldsymbol{c}, \quad \forall \boldsymbol{y} \in Y
$$

where $\boldsymbol{c}=\left(c_{1}, \cdots, c_{m}\right) \in \boldsymbol{R}^{m}$. Set $\lambda=\theta(\boldsymbol{y})$, then λ and σ satisfy what we need.
Corollary 4.3. Let m, n, X and Y be the same as in Theorem 4.2. Then $C_{0}^{(n)}(X) \cong C_{0}^{(n)}(Y) \Leftrightarrow X$ and Y are isometric under the l^{1}-norm ${ }^{2} \Leftrightarrow$ there exists a map σ on \boldsymbol{R}^{m} of the form : $\sigma=$ permutation + translation, so that $\sigma(Y)=X$.

Proof. It is trivial that X and Y are isometric under the l^{1}-norm if there exists a map $\sigma=$ permutation+translation, such that $\sigma(Y)=X$. By Theorem 4.2, it is enough to show that any isometry $\sigma: Y \xrightarrow{\text { onto }} X$ under the l^{1}-norm is of the form: $\sigma=$ permutation+translation. Now, suppose that $\sigma: Y \rightarrow X$ is such a surjective isometry, from the generalized Mazur-Ulam's Theorem (See [8]) σ can be extended to be an affine isometry σ_{*} on $\left(\boldsymbol{R}^{m},\|\cdot\|_{l^{1}}\right)$, i.e.,

$$
\boldsymbol{\sigma}_{*}(\boldsymbol{y})=I(\boldsymbol{y})+\boldsymbol{c}, \quad \forall \boldsymbol{y} \in \boldsymbol{R}^{\boldsymbol{m}}
$$

for some point $\boldsymbol{c} \in \boldsymbol{R}^{m}$ and some (surjective) linear isometry I on $\left(\boldsymbol{R}^{m},\|\cdot\|_{l^{1}}\right)$. Therefore, σ has the desired form.

Corollary 4.4. Let $m, n \geqq 1$ be integers and $X, Y \subseteq \boldsymbol{R}^{m}$ be open subsets. Then $C_{0}^{(n)}(X) \cong C_{0}^{(n)}(Y) \Leftrightarrow$ there is a homeomorphism $\sigma: Y \rightarrow X$ such that σ is isometric on each connected part of Y under the l^{1}-norm of \boldsymbol{R}^{m}.

Corollary 4.5. Let $m, n \geqq 1$ be integers and X be a connected open subset of \boldsymbol{R}^{m}. Then the isometry group of $C_{0}^{(n)}(X)$ is $S^{1} \times \Sigma$ with the group operation $\left(\lambda_{1}, \sigma_{1}\right) \circ\left(\lambda_{2}, \sigma_{2}\right)=\left(\lambda_{1} \lambda_{2}, \sigma_{2} \circ \sigma_{1}\right)$ and

$$
(\lambda, \sigma)(f)(\boldsymbol{x})=\lambda f(\boldsymbol{\sigma}(\boldsymbol{x})), \quad \forall \boldsymbol{x} \in X, f \in C_{0}^{(n)}(X),
$$

where $\Sigma=\left\{\boldsymbol{\sigma} \mid \boldsymbol{\sigma}: X \xrightarrow{\text { onto }} X\right.$ is isometric in the l^{1}-norm of $\left.\boldsymbol{R}^{m}\right\}$.
Remark 6. Although we assume that the X and Y are open subsets of \mathbf{R}^{m} in this section, it is worth to mention that all the results in Theorem $4.1 \& 4.2$ and Corollary $4.3 \sim 4.5$ remain true if we replace "open subset(s)" by "locally compact and NIP subset(s) which is(are) contained in the closure(s) of its(their) interior(s)".

Now, let us see some examples.
${ }^{2}$ That is, there exists a bijection $\varphi: X \rightarrow Y$ such that $\|\varphi(\boldsymbol{x})-\varphi(\boldsymbol{y})\|_{l^{1}}=\|\boldsymbol{x}-\boldsymbol{y}\|_{l^{1}}$, $\forall \boldsymbol{x}, \boldsymbol{y} \in X$.

Example 1. Let $n \geqq 1$ and

$$
\begin{aligned}
& X=\left\{\left(x_{1}, x_{2}\right) \in \boldsymbol{R}^{2}:\left|x_{1}\right|+\left|x_{2}\right|<\sqrt{2}\right\} \\
& Y=\left\{\left(x_{1}, x_{2}\right) \in \boldsymbol{R}^{2}:\left|x_{1}\right|<1,\left|x_{2}\right|<1\right\} .
\end{aligned}
$$

Then X and Y are isometric under the l^{2}-norm of \boldsymbol{R}^{2}, but $C_{0}^{(n)}(X) \not \equiv C_{0}^{(n)}(Y)$.
Check. Since X is a rotation of Y, X and Y are isometric in the l^{2}-nor r of \boldsymbol{R}^{2}. If $C_{0}^{(n)}(X) \cong C_{0}^{(n)}(Y)$, we must have a homeomorphism $\sigma: Y \rightarrow X$ of the form: $\sigma=$ permutation+translation. It is obvious that Y is invariant under permutations. Therefore, Y must be transferred to X by some translation which is obviously impossible.

When $X \subseteq \boldsymbol{R}^{m}$ is connected and open, the isometry group of $C_{0}^{(n)}(X)$, due to the symmetry of X, may be as large as $S^{1} \times \operatorname{IOR}(m)$ and also may be as small as S^{1}. See the next two examples.

Example 2. Let $X_{p}=\left\{\left(x_{1}, \cdots, x_{m}\right) \in \boldsymbol{R}^{m}:\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{m}\right|^{p}\right)^{1 / p}<1\right\} \quad(m \geqq 1,0$ $<p \leqq \infty)$. Then the isometry group $I_{n, x_{p}}$ of $C_{0}^{(n)}\left(X_{p}\right) \quad(n \geqq 1)$ is equal to $S^{1} \times \operatorname{IOR}(m)$ with $\left(\lambda_{1}, \sigma_{1}\right) \circ\left(\lambda_{2}, \sigma_{2}\right)=\left(\lambda_{1} \lambda_{2}, \sigma_{2} \circ \sigma_{1}\right)$ and

$$
(\lambda, \boldsymbol{\sigma})(f)(\boldsymbol{x})=\lambda f(\boldsymbol{\sigma}(\boldsymbol{x})), \quad \forall \boldsymbol{x} \in X_{p}, f \in C_{0}^{(n)}\left(X_{p}\right) .
$$

Moreover, when $m>1, n \geqq 1$ and $p \neq q$ we have $C_{0}^{(n)}\left(X_{p}\right) \neq C_{0}^{(n)}\left(X_{q}\right)$.
Check. Let Σ be the same as in Corollary 4.5. By the Mazur-Ulam's Theorem [8], each $\sigma \in \Sigma$ can be extended to be a surjective linear isometry on $\left(\boldsymbol{R}^{m},\|\cdot\|_{l^{1}}\right)$, thus, $\boldsymbol{\sigma} \in \operatorname{IOR}(m)$. On the other hand, $\boldsymbol{\sigma} \in \Sigma$ when $\boldsymbol{\sigma} \in \operatorname{lOR}(m)$. Therefore, $\Sigma=\operatorname{IOR}(m)$ and $I_{n, X_{p}}=S^{1} \times \operatorname{IOR}(m)$. The group operation is trivial.

Finally, if $m>1, n \geqq 1$ and $p \neq q \in(0, \infty]$, noting that X_{q} is invariant under permutations and $X_{q} \neq X_{p}$, we can see that there is no map σ of the form: $\sigma=$ permutation + translation, such that $\sigma\left(X_{q}\right)=X_{p}$, by Corollary 4.3, $C_{0}^{(n)}\left(X_{p}\right) \equiv \equiv$ $C_{0}^{(n)}\left(X_{q}\right)$.

Example 3.

(1) Let $m>1, a_{\imath}>0(1 \leqq i \leqq m), a_{i} \neq a_{,}(i \neq j)$ and

$$
X=\prod_{\imath=1}^{m}\left(-a_{\imath}, a_{\imath}\right) \quad \text { or } \quad X=\left\{\boldsymbol{x}=\left(x_{1}, \cdots, x_{m}\right) \in \boldsymbol{R}^{m}: \sum_{\imath=1}^{m} \frac{\left|x_{\imath}\right|}{a_{\imath}}<1\right\} .
$$

Then, the isometry group $I_{n, X}$ of $C_{0}^{(n)}(X)(n \geqq 1)$ is homeomorphic to $S^{1} \times\{-1,1\}^{m}$ and $\operatorname{IOR}(m) \nsubseteq I_{n, X}$.
(2) Let $m>1,0<a_{1}<\cdots<a_{2 m}<\infty$ and

$$
X=\left\{\begin{array}{r}
\boldsymbol{x}=\left(x_{1}, \cdots, x_{m}\right) \in \boldsymbol{R}^{m}: x_{\jmath}=-a_{2 \jmath-1} \lambda_{2 J-1}+a_{2 j} \lambda_{2,}, \lambda_{\jmath}>0 \\
(1 \leqq j \leqq m), \lambda_{1}+\cdots+\lambda_{2 m}=1
\end{array}\right\} .
$$

Then, the isometry group of $C_{0}^{(n)}(X)(n \geqq 1)$ is S^{1} and each surjective linear isometry T on $C_{0}^{(n)}(X)$ is of the form $T f=\lambda f\left(f \in C_{0}^{(n)}(X)\right)$ for some scalar $|\lambda|=1$.

Check. In both the cases (1) and (2), the lengths of the projections of X to the axes are different and invariant under translations. Thus, any surjective isometry σ (=permutation+translation) on X must keep the axes unchanged and

$$
\boldsymbol{\sigma}(\boldsymbol{x})=\left(b_{1} x_{1}, \cdots, b_{m} x_{m}\right)+\left(c_{1}, \cdots, c_{m}\right), \quad \forall \boldsymbol{x}=\left(x_{1}, \cdots, x_{m}\right) \in X
$$

for some $\boldsymbol{b}=\left(b_{1}, \cdots, b_{m}\right) \in\{-1,1\}^{m}$ and $\boldsymbol{c}=\left(c_{1}, \cdots, c_{m}\right) \in \boldsymbol{R}^{m}$.
For the case (1), since $\boldsymbol{\sigma}(\boldsymbol{x}) \in X$ for $\boldsymbol{x}=\left(0, \cdots, 0, x_{j}, 0, \cdots, 0\right) \in X$, letting $b_{j} x_{j} \rightarrow \pm a_{j}$, we get

$$
-a_{\jmath} \leqq \pm a_{j}+c_{\jmath} \leqq a_{j}, \quad 1 \leqq j \leqq m
$$

Thus, $c_{\jmath}=0(1 \leqq j \leqq m)$. On the other hand, for any $\boldsymbol{b}=\left(b_{1}, \cdots, b_{m}\right) \in\{-1,1\}^{m}$, it is obvious that $\sigma_{b}(\boldsymbol{x})=\left(b_{1} x_{1}, \cdots, b_{m} x_{m}\right)\left(\forall \boldsymbol{x}=\left(x_{1}, \cdots, x_{m}\right) \in X\right)$ determines an isometry σ_{b} on X in the l^{1}-norm. By Corollary 4.5, the isometry group $I_{n, X}$ of $C_{0}^{(n)}(X)(n \geqq 1)$ is homeomorphic to $S^{1} \times \Sigma=S^{1} \times\{-1,1\}^{m}$. Since $\operatorname{IOR}(m)$ is homeomorphic to $\{-1,1\}^{m} \times \Pi$ (from (3.9)), where $\Pi=\{$ permutation on $\{1, \cdots, m\}\} \neq\{I d\}, \operatorname{IOR}(m)$ is not contained in $I_{n, x}$.

For the case (2), it is trivial that σ is also an isometry on the closure \bar{X} of X, which can be represented by

$$
\bar{X}=\left\{\begin{array}{r}
\boldsymbol{x}=\left(x_{1}, \cdots, x_{m}\right) \in \boldsymbol{R}^{m}: x_{j}=-a_{2 J-1} \lambda_{2 J-1}+a_{2 j} \lambda_{2 j}, \lambda_{j} \geqq 0 \\
(1 \leqq j \leqq m), \lambda_{1}+\cdots+\lambda_{2 m}=1
\end{array}\right\},
$$

and the map $t \mapsto b_{\jmath} t+c_{\jmath}$ is an isometry from $\left[-a_{2 J-1}, a_{2 \jmath}\right]$ onto $\left[-a_{2 \jmath-1}, a_{2 \jmath}\right]$. For any $1 \leqq j \leqq m$, let $t \in\left[-a_{2 \jmath-1}, a_{2 \jmath}\right]$ be such that $b_{j} t+c_{\jmath}=a_{2 \jmath}$ and $\boldsymbol{x}=(0, \cdots$, $0, t, 0, \cdots, 0) \in \bar{X}$. Since $\sigma(\boldsymbol{x})=\left(c_{1}, \cdots, c_{j-1}, a_{2}, c_{j+1}, \cdots, c_{m}\right) \in \bar{X}$ with the corresponding $\lambda_{2 J}=1$, we must have $\lambda_{2}=0(\forall i \neq j)$. Therefore, $c_{\jmath}=0(1 \leqq j \leqq m)$.

Because that $\boldsymbol{\sigma}(\boldsymbol{y})=\left(0, \cdots, 0, b_{j} a_{j j}, 0, \cdots, 0\right) \in \bar{X}$, where $\boldsymbol{y}=\left(0, \cdots, 0, \underset{\langle j\rangle}{a_{2 j}}\right.$, $0, \cdots, 0) \in \bar{X}$, we have $-a_{2 j-1} \leqq b_{j} a_{2,}$. Together with the condition $0<a_{1}<\cdots$ $<a_{2 m}<\infty$ and $b_{j}= \pm 1$, we can get that $b_{j}=1(1 \leqq j \leqq m)$. Thus, $\sigma=I d_{X}$ and $\Sigma=\{I d\}$. By Theorem 4.2, each isometry T on $C_{0}^{(n)}(X)(n \geqq 1)$ is of the form $T f=\lambda f\left(f \in C_{0}^{(n)}(X)\right)$ for some scalar $|\lambda|=1$. Therefore, the isometry group of $C_{0}^{(n)}(X)$ is S^{1}.

Acknowledgement. The author is grateful to Professor Akio Orihara for his encouraging discussion and kind help in the preparation of this paper.

References

[1] M. Cambern and V.D. Pathak, Isometries of spaces of differentiable functions, Math. Japon., 26 (1981), 253-260.
[2] V.D. Pathak, Isometries of $C^{(n)}[0,1]$, Pacific J. Math., 94 (1981), 211-222.
[3] R. WANG, Isometries of $C_{0}^{(n)}(X)$, preprint, UTMS 94-64 (1994).
[4] R. Wang, On the completeness of spaces of differentiable functions, to appear in Math. Japon.
[5] R. Rudin, Real and Complex Analysis, McGraw-Hill, 1966.
[6] K. De Leeuw, Banach spaces of Lipschitz functions, Studia Math., 21 (1961), 55-66.
[7] R. Wang and A. Orihara, Isometries on the unit spheres of l^{1}-sum of Banach spaces, preprint, UTMS 93-34 (1993).
[8] P. Mankiewicz, On extention of isometries in normed linear spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 20 (1972), 367-371.

Gaduate School of Mathematics
The University of Tokyo
3-8-1 Komaba, Tokyo 153
Japan
Present address
Department of Mathematics
University of Nankai
Tianjin, 300071
P. R. China

[^0]: 1991 Mathematics Subject Classification. Primary : 46B04; Secondly : 46E15.
 Key words and phrases. isometry, representation of isometry, isometry group.
 \dagger The author is supported in part by Nihon Tea-Pack Fellowship.
 Received April 27, 1995 ; revised December 11, 1995.

[^1]: ${ }^{1}$ For the completeness of $C_{0}^{(n)}(X)$ type spaces $(n \geqq 1)$, see [4].

