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LINEAR ISOMETRIC OPERATORS ON THE CJn)(X) TYPE SPACES

RISHENG WANG

Abstract

In this paper, we try to investigate the representations of isometries,
isometry groups and the space classifications of the Cln)(X) type spaces
(X(ZRm, m , n ^ l ) .

§ 0. Introduction

Let Z+ be the set of non-negative integers. We make the following nota-
tions :

x = ( * i , x* - , Xm)^Rm r = ( n , r2, •••, r f f l ) G Z +

m

r ! = r i ! r 2 ! ••• r m ! | r | = r ! + r 2 H Yrm

drι+r2+'"+rmf(χ)
f (Γ) / VN _ •/ ^ J

1 { x )

If Ω is a locally compact Hausdorff space, C0(Ω) denotes the Banach space
consisting of continuous function / on Ω vanishing at infinity (i.e., {wefl:
|/(α>)|^e} is compact for all ε>0), with the norm | |/ | |=sup{|/(ω)| :ω^Ω}. For
any integers m, w^l, set Γ={r=(ru •••, rm)^Zf: rγΛ— +rm<n}. A subset
Z of /2m is called to be NIP: if for any line L parallel to one of the axes of
Rm the set Lr\X contains no isolated points. If X is a locally compact and
NIP subset of Rm, we use C(

o

n)(X) to denote the normed space consisting of all
function / on X which satisfies: / ( Γ ) G C 0 ( I ) for all r<=Γ, with the norm ||/| |
= s u ρ x e * Σ r e H / ( r ) ( * ) | / r ! . We set C$0 )(^)=C0(Z) and use Sn,x to denote the
unit sphere of Cίn )(Z).

For the case n=m=l and X, YQR1, the representations of surjective linear
isometries between C^iX) and C(

o

l)(Y) had been studied by Cambern and Pathak
[1] (complex case only), for m = l , n>l and X=Y=IO, 1], by Pathak [2]
(complex case only), and for m = l , n ^ l and Z, Γg f t 1 with some conditions by
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the author [3] (real case and complex case) In this paper, we try to consider
the most general case: mlt m2, nlf n 2 ^ l and l £ β m i , YQRm* are locally com-
pact and NIP. Particularly, when X and Y are open sets, a complete represen-
tation of linear isometries from C(

o

n^(X) onto C(

o

n^(Y) is obtained (Theorem
3.5), the results are true in both the real case and the complex case, extending
the results of all the papers mentioned above.

We shall begin the discussion in section § 1 with the representation of
extreme points of the unit ball of Qn)(X)*, which is very important for the
construction of the map Φτ in the next section. By using the basic lemmas
established in section § 2, we state and prove the representations of surjective
linear isometries between Cίn)(X) type spaces in section § 3. Finally, as an
application, we consider the isometry group of C^n\X) and give some interest-
ing examples in section §4.

It is easy to check that fgt=CinKX) and | | /^ | |^ | | / | | | | ^ || for all /,
thus Cin)(X) is a Banach algebra when it is complete1.

§1. The extreme points of the unit ball of Cί>n\X)*

PROPOSITION 1.1. For any xo^Rm and any ε, δ>0, there exists an
such that supp(/)SNa(x0) and (l/n\)\dnf/dxUx<>)\>l-ε.

Proof, For any <5>0, take a φ^Cί>n\Rm) with supp(p)£Λh/8(0) and
(dnφ/dxΐ)(0)Φ0 (e.g., we can take ψ^Ci

o

n)(Rm) such that suρp(^)gΛΓδ/2(0) and
ψ(U)=l for some open neighbourhood U of 0, then <p(x)—<p(x)x? (VΛΓ=(XI, •••,

m) has the desired properties!). For any k^>l, define

gk(x)=φ(kx1, x2, •••, xm), x=(xu •••, xm)<ΞRm.

It is easy to see that supp(gk)Qsupp(φ)QNδ,2(0) and

— — h r 1 « ( h Y γ . . . γ \

From which, we can show

3>(0)
w! Sxl1

Set fk=(gk/\\gk\\)<ΞSn,Λm (fe^i). Then, supp(/,)=supp(^,)gNδ/2(0) and

i^r)WI
r ! r !

, Xm)l

n!
dnφ(Q)

kn r!

1 For the completeness of C{

o

n)(X) type spaces ( n ^ l ) , see [4].
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n\
dnφ(0)

dx?

nϊ

\φirKkXu x%, — , xm)\

-IMI-0 (as *->«,).

For any ε>0, there exists a ko^l such that

(1.1)
\r\£n r !

Take a #0esupp(/a0)SA^/2(0) with

Σ i

then, from (1.1) we have

Finally, the function / defined by

/ ( * ) = / * o ( * — Ko+lfo),

belonge to SnιR™ with

snpp(f)QNd/2(x0-

and

n! Ίύ

Let X be a locally compact and NIP subset of Rm (ra^l). For any
define

: | α Γ | = l (VreΓ)}

where T7 is as before. Then, W is a locally compact Hausdorff space with the
product topology We use C0(W) to denote the Banach space of continuous
functions on W vanishing at infinity, with the sup norm.

If / e C ί n ) ( Z ) , define ?(=C0(W) by

then the mapping /—>/ is clearly a linear isometry of C^n)(X) onto a (linear)
subspace A of C0(W) (We look C(

o

n)(X) and Λ as the same space). We can
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prove, in a routine way, that any extreme point /* of the unit ball of A*=
CJn)(X)* is the restriction on A of some g*eext BCo<w)*> henceforth, g*z=Λδw

for some w=(x, a)^W and some complex number \λ\=l (See W. Rudin's book
[5]). That is

/ ^ ( Ί Λ R f (r^ ( Y}

——.—=11-^—-]—, Mf^cιn\x)

where β—λa. That means any / * e e x t Bc(
nUχ)* is of the form

for some (JC,
Now, we go to show the inverse.

LEMMA 1.2. For

defined by
ii/0=(jc0, , the linear functional δWo on Con)(X)

is an extreme point of the unit ball Bc<
nHx)* of Cbn)(X)*.

Proof. It is clear that | |d W o | | ^ l . Suppose that δ«, 0=(/f+/?)/2 for some
/*, f*^Bc<nUx)*- By the Hahn-Banach Theorem, the functional /?, ff can
be extended to be functionals gf, gf(=BCow)*> Applying the Riesz Representa-
tion Theorem (cf. [5]), there are regular Borel measures μlf μ2 on (W, Bw)
such that |/£<|(W r)=||^*||^l (ι = l, 2) and

(1.2) , ί=l,2.

From Proposition 1.1, for any ε, <5>0 there exists an /eSn,Rm such that

supp(/)gNa(Λτ0) and

dnf(x0)
n\ dxf

Especially, when δ>0 is small enough f^Cin)(X) and

1

1, therefore,

and

(1.3)

Σ - ^

>l-ε-ε=l-2ε,

gt(f)+gt(f)

r!

Since | |5rf| |^l (ι = l, 2) and | | / | | ^ 1 , from (1.3) we have | g t (/) | ^ l -
(z=l, 2), thus
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f f(w)dμi(w) =\\ f(w)dμi(w)(1.4) l

£\μi\(Nδ(x0)XSm,n), 1 = 1,2.

Letting ε-^0 in (1.4), we get

>n), V<5>0, ι = l , 2.

Since the Borel measure \μt\ is regular and K— {x0} XSm>n is compact, setting
δ^O we get

l<\μi\(K)^\μi\(W)=\\gn^l, ι=l, 2
which implies

(1.5) \μt\(W)=\μi\(K)=l, \μt\(Kc)=0, ί = l , 2.

By (1.2) and (1.5), we obtain

(1.6) gf(g)=\ g(w)dμi(w)=\ g{w)dμt{w), VgeCi KX), f=l, 2.

Take a φ^C'o
n\Rm) such that

and

where ^ 0>0 is small enough so that Nδo(x0)ΓΛX is compact and U is an open
neighbourhood of JC0. Write

r<=Γ

and define

Then ^GCS^ffi and

(1.7) a^ ( r ) (^ 0 )>0, VreΓ.

Therefore, from (1.2), (1.6) and (1.7) we have

ft(g)+ft(g) __ gt(g)+gt(g)^ l ^ ( x o ) l α Γ g ( * o ) » , ,_
Σ—Tι - Σ , ~{ -δWo(g)-

=y[J

Since \μi\(K)= \μ2\(K)=l and

we must have
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(1.8) g(w)dμi(w)=Σ^ , , '=g.0(g>» ι = l , 2 .
jK rE.Γ *

For any w<=K0=
:zK\{(x0, λa): | ^ | = 1 } , from (1.7) we can show that

Therefore, from 11^11=1 and (1.8) we must have \μi\(K0)=0 ( ί=l, 2). Thus,
from (1.8),

(1.9)
rξΞΓ

where Kί=K\K0={(x0, 2a):\λ\=l\.
Finally, for any h^C{

Q

n){X) and w=(x0, λά)^Kίt an easy calculation shows
that

thus, by (1.2), (1.5) and (1.9),

=\ fi(w)dμi(w)=\ h{w)dμi{w)
J K J K j

(Λ0, ί = l , 2,

that is, ff=ff=δWQ and 3W oeextScί»)<z) . •

Remark 1. We do not know whether for any U/=(JC, a)<=W there exists a
function" f^Cin)(X) such that

^ r r! <

r ί
J r r! J

and αr/
(r)(Λ:)>0 ( re/ 7 ) , henceforth, we can not directly use the Lemma 3.2 of

[6] as being used by many other authors, but the results concerning the repre-
sentations of the extreme points of C£n)(X)* are the same.

THEOREM 1.3. Let m, n^l and X, W be the same as before. Then,

/ * e e x t Bc<
nUx)* Φ=Φ /*=du; for some w<=W.

Moreover, the map ξ:w>->δw is a homeomorphism of W onto (ext Bc^nx)*,

weak*), where weak* means the weak-star topology.

Proof. The first part has been proved. We only prove the latter part.
Let us note that the map ξ is one-to-one and onto, we only need to show the
continuities of ξ and ξ~\ From the definition, the continuity of ξ is trivial.
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weak*

Now, if δWd—>δw (wd-(xd) ad), w=(x, a)eW), by taking g<=Cin\X) so that
snpp(g)'^N§(x)ΓΛX is compact and δw(g)φQ, then δWά(g)Φθ (Vdϊ>d0) for some
d0. Thus, jcd<=supp(g) (d^d0), without loss of generality we assume that
\ιmd xd=y^s\xpρ(g) and \\mdad=β^Smtn. For any h&Qn)(X) we have

δ(y,β)(h)=\imδWd(h)=δw(h),
d

which implies that (y, β)—w and \imdξ~\δwd)=\imd wd=^(y, β)=w=ξ~1(δw).
The continuity of ξ'1 is proved. D

§2. Some basic lemmas

In this section, we always assume that nlf n2y mlf m 2 ^ l are integers,
XQRmi and Y^R™* are locally compact and NIP, and T :
is a surjective linear isometry.

Denote

B l and W2—λ

For any (x, α)=u/ 1elΓi, since (T" 1)*: C$ni)(X)*->C^2)(F)ii< is a surjective

linear isometry and δ^eext Bc^ιUx)*, we have (T'^iδwJ^δw^ext Bc<
n2Uγ)*

for some unique w2^W2. Define

Φτ(w1)=w2.

Remark 2. It is evident that

LEMMA 2.1. ΦT:W1-+W2 is a homeomorphism.

Proof. Let
, weak*)

φ , weak*)

be as in Theorem 1.3. Since ξu ξ2 are homeomorphic and (T"1)* is a surjective
linear isometry and a weak-star isomorphism, from the following commutative
diagram

Wx —> (ext J3(7<«i)(χ)*, weak*)

Ŵ2 ^^— (ext5σo*2>(r>*, weak*)

we can easily see that ΦΓ is a homeomorphism. •
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LEMMA 2.2. For any jcoeX, define

A(xo)={y<=Y: Φτ(x0, ά)=(y, β) for some a<ΞSmiι7ll and β(BSm2,n2}.

Then M(jco)=l.

Proof. Take αi=(αiΓ), a2=(a2r)^Smi,ni such that

aί0=a20=l and alr——a2

Then,

Set Φr(x0, «i)=(lfi, j9i) and ΦΓ(JC0, a2)=(y2, β2).
Suppose that ^3Gi4(x0)\{^1, ^2}. Let U and V be two open subsets of Y

satisfying

(2.1) Ur\V=d, y1}

Since the mappings

and x^ζ)yΦr(x, βs)

are continuous (where QY:W2-*Y is the natural projection), there exists an
open neighbourhood 0 of x0 so that

(2.2) QγΦτ(x, βi), QYΦAx,a2)(ΞU, VxeO.

Let ΦΓ(*o, a3)=(y3, β3) and take a ^eCί"2 }(F) such that

(2.3) 3<f,.iίβ>te)*0,

Then, from (2.1), (2.2) and (2.3) we have

ί,(T- 1 (g))=γ[ί

Therefore,

which implies that

a contradiction. Thus, ^4(Λ:0)^ {yίt y2}.
When the scalar field is C1, ^4(x0) is the range of the continuous map

QYΦτ(xo, •) on the connected domain Smi,ni> henceforth, connected, thus *A(x0)
= 1 . When the scalar field is R\ let P:W2-*Sm n2 be the natural projection,
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then, from the continuity of PΦT and the discreteness of Sm2,n2 there exists
an open neighbourhood Oγ of x0 such that

PΦτ(x, βi)=i8i,
(2.4)

PΦτ(x, a2)=β2,

If VI^VΊJ we can take two disjoint open subsets \Jλ and Vx of Y such that
i and # 2 < Ξ F I . There exists an open neighbourhood O2 of x0 so that

(2.5) QγΦτ(x, αOeί/ i , QYΦτ(x, a2)^Vίy VJCGO 2 .

Let g E C J ^ ^ F ) satisfy supp(g)Et/i and g(U2)=βτlo,. .,o) for some open neigh-
bourhood ί/2 of #! (where βi=(βir)) Take an open neighbourhood O3 of x0 so
that

(2.6)

(2.7)

Then, from (2.4), (2.5) and (2.6) we get

[3

in particular,

(2.8) T - W > ( x o ) = 0 , l ^ l r l ^ n x .

Thus, from (2.7), (2.8) and noting that #2<ίsupp(g ), we obtain that

0=|ί( f 2 . i ϊ t)(^)l = |ί(,0.«2)(T-1(^))l = |T- 1 (^)(xo)l=γ,

which is a contradiction.
We have shown that *A(xo)=l for all xo(=X. Π

LEMMA 2.3. There exists a homeomorphism τ:X^Y such that

Φτ(x, α)=(r(jc), *) , Λ EΞZ, αGcSm i,n ]

where * zs an element in Sm2t7l2 depending on {x, a).

Proof. For any xe^Γ, from Lemma 2.2, we can define

τ(x)=QγΦτ(x, a)

which does not depend on the choice of α e J m i , n i . Then,
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Φτ(x, α)=(r(x), * ) , i l

where * depends on (x, a)<EWλ. Because that Φτ is homeomorphic, we can
verify that τ:X^Y is homeomorphic. D

Remark 3. When XQRmi and Yg:Rm* are open subsets, from Lemma 2.3,
we must have m1=m2.

COROLLARY 2.4. For any / e C ί ^ y O and

2 J i — ZJ

Proof. Let ae<Sm i > 7 l l satisfy 3 (,,β)(/)=Σιπsn 1 i/ ( r )(x)l/r! and set ΦΓ(x, α)
=(r(x), J8), then

u.y; Σι ,j—θ(X,a){f)—0(τ(

On the other hand, if β*(ΞSm2>7l2 such that ί(r(,). i8 )(T/)=Σiris» 2

/r!, let ΦΓ(x, α*)=(r(x), iβ*), then

(2.10) 2J - =o(τ(x)>β*){l / ) = d ( X i β )(/)S Σ -j

From (2.9) and (2.10) we can get the desired equality. D

LEMMA 2.5. Let U be an open subset of X. If f^C(

o

nι\X) satisfies f\u=h
then I T/(|f) |=1 (V|f€=r(ί/)) and T/<r>(y)=0 (V|fer(Z7), 1^ | r | ^ n 2 ) . // /, ^ e

satisfy f\u=zg\u=lf then Tf\τCU) = Tg\ΐ(U). Furthermore, for any

Proof. Suppose that f\u=l for some / E C ί ^ ' f f l and some open subset
of X. For any xGί/ and β^Sm2,n2, letting Φτ(x, α)=(r(x), β), from

I f(r)(x)\ \T fir)(τ(x))\
| r |gn 2 r !

We can see that {T/ ( r )(r(x)): | r | ̂  n2} has at most one non-zero term and

|7Y(r(x)) |=0 or 1,

For any yo^τ(U), by the continuity of Tf, there exists an open neighbourhood
V of #o such that VQτ(U) and

( i ) |77( i f) |=o,
(Π) or I T/(|f) 1=1,
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The case ( I ) does not exist. Otherwise,

269

a contradiction to (2.11).
For the case (Π), from (2.11) we have

For any h^C^n^{X) and x^X that satisfy A(x)=0, take «i=(α l r), α 2 =
(a2r)(ΞSmvni such that δix,a1)(h)=Σ\ri^n1\hirKx)\/r\ and

α l o = — α 2 0 = l , α l r = α 2 r ( l ^ | r | ^ n O .

Set Φτ(x, αt)=(τ(x), £<) (ί = l, 2). Take an /eC^^ff l so that f\u=l for some
open neighbourhood U of x, then |T/(τ(x))|=l, T/(Γ)(τ(x))=0 ( l^ | r |^w 2 ) and

thus, βiO+β2D=O. Now, from

3(r(,).A>(TA)=ί (,..1,(A)= Σ | / ϊ < r ' ( x ) l = Σ

we have

^Wi Γ! | r ι s n 2

^ Σ

r!

It follows that | Th(τ(x)) \ =0. By a symmetric consideration with respect to
T"1, we can also show that

Hence, for any X G Z and
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If f\u=g\u=zl for some /, g<=C(

o

ni)(X) and some open subset UQX, then
(f—gXx)=Q (x^U), from the above we have (Tf—Tg)(τ(x))=Q ( X G [ / ) , i.e.,
Tf\τω)=Tg\v(Π). Π

§3. Representations of isometries

THEOREM 3.1. Let nlf n2, mlf ra2^l be integers and XQRmi, YQRm* be
locally compact and NIP. Suppose that T: Ckni\X)^>Con2)(Y) is a surjective
linear isometry. Then there exists a homeomorphism σ: Y—>X and a continuous
modular function θ{y) on Y such that

(1) θ(r)—0 for all | r | ^ > l , and

(2) for any f^C^(X\

(3.1) Tf(y)=θ(y)f(σ(y)), VytΞY.

Proof. Let τ:X—*Y be the same as in section §2 and set σ=τ~1. For
any y<^Y, by Lemma 2.5, there exists a θ{y) in S1, the set of numbers of
absolute value 1 in K\ so that

θ{y)=Tf{y),

for all f^C{

o

n^(X) such that f\u—^ for some open neighbourhood U of τ~ι(y)
—σ{y). From Lemma 2.5, θ(y) is well defined, continuous and

Thus, θ : F-^S 1 is a continuous modular function satisfying (1).
For any g^Cbni\X) and y^Yy let / be as above, then the function h =

g—g(σ(y))f^Cini}(X) satisfies h(σ(y))—ΰ, applying Lemma 2.5 we get

Th(y)=Tg(y)-g(σ(y))Tf(y)=Tg(y)-g(σ(y))θ(y)=O,

that is,
Tg{y)=θ{y)g{σ(y))y V ^ r . D

In order to find out the relations of mlf m2, nλ and n2, we need the follow-
ing lemma.

LEMMA 3.2. Under the same conditions as in Theorem 3.1, set

Γ 1 ={r=(r 1 , •••,

Γ2={r=(rlf •••,

Then, (1) ^Γ,=^Γ2f (2) /or αw y

* ( Γ G A : / ( Γ )(x)=0} = #

- # { Γ G Γ 2 :
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where τ is as in Lemma 2.3.

Proof. (1) Let ΦT be as in section §2. By Lemma 2.1 and 2.3, PΦτ(x, •)

is a homeomorphism from c5m i,W l=S# Γi onto J W 2 ) 7 l 2 = 5 * Γ 2 (where P: W2-^Sm2,n2

is the natural projection), thus, *Γγ=*Γ2.
(2) For any / e C ^ X ) and JCGΞX, let

then S*i is homeomorphic to C= {ae<Smi(Wl: a(,.«)(/)=Σirisn1 l/
(Γ)WI/r!} and

S*2 is homeomorphic to D = { i 8 e ^ m a i n 2 : 3 ( T ( x ) f i ί , ( T / ) = Σ l r l a ! i l 2 |T/^(r(x)) |/r!}.
But, from Σ I H ^ l/ ( Γ )(x)l/r!=Σiri^»β | T / ^ ( Γ ( J C ) ) | / Γ ! (Corollary 2.4) and ί (Xiβ>(/)
z=zδ(τ{χ),pΦTix,a))(Tf), we can see that C and D are homeomorphic under the
map PΦτ(x, •)• Therefore, Skι and S*2 are homeomorphic, hence k1—k2f i.e.,

: / ( r )(x)=0} = # ( Γ G Γ 2 : T/^(Γ(JC))=0} .

It follows that

* ( Γ G Λ : /( r)(x)^0} = * Γ i - * { r e Λ : /(Γ)(x)=0}

- * Γ 2 - # { reΓ 2 : T/^>(r(x))=0}

D

THEOREM 3.3. Under the same conditions as in Theorem 3.1, we have m1=m2

and nί=n2.

Proof. Let Θ and σ—τ'1 be the same as in Theorem 3.1 and σ(yo)=xo be
fixed. There exists an a^jRmi and an open neighbourhood U of Λ:0 such that

Xj—aj>Q, V x = ( * i , •••, xmi

Take {Λ};ΐiSCίni>W so that

for some open neighbourhood V^U of x0. From Theorem 3.1, we have

(3.2) T//r(x))=fl(r(x))//x)^O, VxeF, ; = 1, - , mx.

By Lemma 3.2 and the choice of f3, we know that

(3.3) *{reΓ,:T/^>(r(x))^0}

=*{reΛ:/ j r ) (x)^0}=2, VxeF

CLAIM. / / X G F , Γ G Γ 2 and T/jr)(r(x))^0,

Otherwise, there is a r*<=Γz with l ^ | r * | = | r |—1 and
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for some l<i^m2. By the continuity of Tf(/\

(3.4) TfP(y)Φ0,

for some open neighbourhood Ogr(F) of τ(x). Clearly, Tf]r*\y)^0 on O. We
can take a #*=τ(jc*) (X*<ΞF) such that Tf(jr*\y*)Φθ, then together with (3.2)
and (3.4) we have

Tfj(y*)Φ0, TfΓ>(y*)Φ0, Tf?>(y*)Φθ

which contradicts with (3.3). The claim is true.
Now, define

/ = / i + +/

then for any r^Γ2 with | r | > l , from the above claim,

Tf«Kyo)=TfirKyo)+ .- +T/ίί>(if0)=0.

Besides, from the properties of {/,: l ^ y ^ m j we can calculate

Therefore, by Lemma 3.2 and the claim,

that is, mi^m 2. Similarly, by considering T"1, we can also get m2<^mu thus
mi=m2.

Finally, if we set m1=m2—mf then from

*{r=(r» -., r

we can easily see that n1=n2. •

From now on, we only consider the cases where m1=m2 and n1—n2.
Suppose that YQRm is NIP and F is a map from Y into Rm. Recall that the
Jacobian matrix J(F) of F at the point y<=Y is defined by
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dFm(y)
dyt

dFm(y)

273

dFm(y)

where F(y)=(F1(y), FJy), -, Fm(g)).

THEOREM 3.4. Let m, n^l be integers and X, Y^Rm be locally compact
and NIP. Suppose that T: C{

Q

n)(X)-+C{

o

n\Y) is a surjective linear isometry. Let
σ : Y—>X be the homeomorphism as in Theorem 3.1. Then for any yo^Y there
exists an open neighbourhood O of y0 and a permutation π on {1, 2, •••, m\ such
that the Jacobian matrix J(σ) is a constant matrix on O with the property

(3.5)

Proof. For any yo^Y, set xo=σ(yQ)(=X. As in the proof of Theorem 3.3,
we can take an α e / 2 m and {fj}?ίiQCίn\X) such that

for some open neighbourhood U of xo We have known that

(3.6) Tfj(y)=θ(y)fMy))=θ(yχσj(y)-aj)Φθ,

where θ is as in Theorem 3.1, τ—σ'1 is as in section §2 and σ=(σu •••, σm).
From (3.6), we know that

which implies σjr) is continuous at y0, henceforth continuous on Y ( r e / 7 ) . As
shown in the proof of Theorem 3.3, for any l^j^m and y(=τ(U) we can show
that there is a unique r(j, y)^Γ with | r | = l and

Tf?Ky)=O (|r|^l, rΦr(j, y)).

By Corollary 2.4 and (3.6), letting y=τ(x) (jceί/), we can calculate

\ό I) _L — / 1 • — s i j IJ j\X) I

Vtf er(£7).
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By the uniqueness of r(;, y), we can also show that the map r(j, •)'• τ(U)-+Γ
is continuous (where Γ equips with the discrete topology). That is, there
exists an open neighbourhood O^τ(U) of y0 so that

r(j, y)=r(j,y0), VytΞ

Now, let us show that

(3.8) r(j,yQ)Φr(k,y«), if j

In fact, if r(/, yo)=r(k, yo)=ro (]Φk)y since <τjΓo)(lfo) and σir^(y0) are real
numbers and belong to {—1, 1} (from (3.7)) we can take a real number
C E { - 1 , 1} with σ(/o)(yo)^cσ(kro)(yo)=o. Considering f=fj+cfkeCSn)(J*O, we can
calculate

2= Σ

IT f(r)(iι

= Σ ' J

r!

= I O(yoW»\Vo)+ce(yo)alro\yo) \ =0,

a c o n t r a d i c t i o n . T h u s , (3.8) is proved. Let

r ( ; , | jo)=(O, •••, 0, 1 , 0 , - , 0) , l ^ ^ m ,

t h e n f rom (3.8), π(-): {1, 2, •••, m}—>{1, 2, •••, m} is a p e r m u t a t i o n a n d

_p(MA=iσirυ,yo))(yo)^ {-I 1} ( l ^ / < m ) ,
oy*v)

where r=(0, •••, 0, 1,0, •••, 0 ) ε Γ .

Define

Since ^ • ^ ( t f ) ^ 1 ' 0 ' 1 ' ^ ) ^ {-1, 1}, by the continuities of <jj'<> *»>
we can see that Oχ is an open neighbourhood of y0. For any

Ξ { - 1 , 1},

and
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where r=(0, •••, 0, 1,0, •», 0 ) e Γ with rΦr{j, y)=r(J, Uo) Therefore, the

Jacobian matrix J(σ) of a is a constant matrix on O1 and satisfies (3.5). •

As we know (for example, from [7]) that every (linear) isometry / on
(Rm, IHIzO is of the form

(3.9) /(x)=(αi*«( i>, - , amxπ(m)), \fx=(xlf •••, xm)^Rm

for some α^ •••, α m e {—1, 1} and some permutation π on {1, •••, m). For our
convenience, we shall call the map / of the form (3.9) a permutation (of axes)
on Rm. If we use IOR(m) to denote the isometry group of (Rm, ]| -1| z1), then for
the a in Theorem 3.4, looking as a linear operator on Rm, J(o)(y) is a linear
isometry on (Rm, || ||zi) (y^Y), therefore J(σ): Y->lOR(m) is a locally constant
map. Now, let us keep the above notation, we can state the conditions for a
linear operator T to be an onto isometry between Chn)(X) and Ckn){Y), espe-
cially, the conditions for which C(

Q

n\X) = Cί>n\Y).

THEOREM 3.5. Let m, n ^ l be integers and X, Y^Rm be open sets. Then
T is a linear isometry of C(

o

n)(X) onto C(

o

n)(Y) if and only if the followings
hold:

(1) there exists a continuous modular function θ : Y^S1 such that θ{r)=0 for
all | r | ^ l ;

(2) there exists a homeomorphism a : Y—>X such that J(σ): F^IOR(m) is
locally constant

(3) for any f^C^(X\

Tf{y)=θ(y)f(σ(y)), y^Y.

Proof. The "only if" part is the direct consequence of Theorem 3.1 and
3.4. For the "if" part, let θ, σ satisfy (1), (2) and T be defined by (3). First
of all, let us show that T / e C J n ) ( r ) for all /e=Cίn>(Z). Let f<=Cln\X) be
fixed. For any yo^Y, let / ( σ ) = ( α v ) : F—•IOR(m) be constant on some open
neighbourhood O of y0 and π be a permutation on {1, •••, m\ so that

(3.10) α π 0 ) , e { - l , 1

We can calculate (Noting that 0 ( r ) =O

T h u s , for a n y r=(rlr •••, rm)^Γ a n d y<aθ,

(3.11) Tf"{y)

aϊi-. ί B ).
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It follows that Tf(r)(y) is continuous on O, especially, Tf(r)(y) is continuous at
i/o So, T / ( r ) is continuous on Y for all r^Γ. Since \β(y)\=l and α ;π-i
{—1, 1}, from (3.11) we can also show

(3.12)

For any ε>0, the set

is compact in 7. Therefore, T / e C ί n ) ( r ) and 7 is well-defined.
From (3), T is linear, and from (3.12), isometric. It remains to prove that

T is surjective. Suppose g^C{

o

n)(Y). Suffice to show that the function /
defined by

belongs to C^n\X).
For any jc o eZ, let J(σ)=(atj) be constant on some open neighbourhood O

of yo=σ~1(xo)<BY with (3.9). Then the Jacobian matrix J(σ~ι) of σ~ι is constant
on σ{0) with

Jiσ-
and

Similar calculations as in (3.11) and (3.12), for any x<=σ(O) we have

f<rKx)=θ(σ-\x))-*g^χ-Hiy- -.rπ-Hm)Kσ-iiχ))bn

for all r^Γ and

From which we can prove that / G C ί n ) ( I ) . This finishes the proof. •

Remark 4. The results of Theorem 3.5 remain true if m—\ and X,
are locally compact subsets without isolated points, under almost the same proof.
But, we do not know whether it is also true for m > l and general locally
compact and NIP subsets of Rm.

Remark 5. As a direct consequence of Theorem 3.5, C(

o

n)(X)=Cί>n\Y) if
and only if the condition (2) in the theorem holds.
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§ 4. Applications

As an application of the representations of surjective linear isometries
(Theorem 3.5), let us consider the isometry group of Cέ n ) W

THEOREM 4.1. Let m, n^l be integers and X is an open subset of Rm.
Define

Θ={θ\θ:X->Sι is continuous and θ(r)=0 (V |r |^ l)}

, y_ ( σ is a homeomorphism on X such thatλ
and l-]σ ^ ^ . X-*\0R(m) is locally constant I '

Then the isometry group In,x of C^n)(X) (n^l), with the operator topology, is
homeomorphic to ΘxΣ with the group operation (θlf tfi)°(#2, (r2)=(θi'(θ2o^ί),
o2°(J1) and the product topology of ΘxΣ, where θ equips with the uniform
topology (i.e., d(θί,θ2)=sup{\θί(x)—θ2(x)\:x<=X}) and Σ equips with the
discrete topology.

Proof. From Theorem 3.5, for any T<=In>x, there is a #<Ξ@ and a σ<=Σ
such that

(4.1) Tf(x)=θ(x)f(σ(x)), VXGI, f^dn\X).

Clearly, the correspondence T+-•(#, σ) is a bijection between In>x and ΘxΣ.
If T1*-^(θ1, σλ) and T2<->(θ2, σ2), then

d(θlf θ2), a,=a2f

from which we can easily show that T>->(θ, σ) is a homeomorphism of In,x
onto ΘxΣ. The group operation is evident from (4.1). D

THEOREM 4.2. Let m, n^l be integers and X, YQRm be connected open
subsets. Then, T : Cin\X)-*C^n){Y) is a surjective linear isometry & there exists
a number λ^K with |>l |=l and a homeomorphism σ of Y onto X of the form:
σ= permutation-{-translation, so that

Tf(y)=λf(σ(y)), V/eCί»>(*), V^Y

Proof. By Theorem 3.5, the "£=" part is trivial. For the "=Φ" part, let θ,
σ be the same as in Theorem 3.5, then θ(y) and J(σ) are locally constant on
Y. Since Y is connected, θ(y) is a constant on Y and J(σ)—(aιj) is a constant
matrix on Y with

atJ=0, (t

for some permutation π on {1, •••, m\. Using the connectedness of Y again,



278 RISHENG WANG

for each l^j^m we can show that

for some constant Cj^RK Thus,

where c=(cu •••, c m )e/2 m . Set λ—θ(y), then Λ and σ satisfy what we need. D

COROLLARY 4.3. Let m, n, X and Y be the same as in Theorem 4.2. Then
Ckn)(X)^C(

o

n)(Y)<=>X and Y are isometric under the l^norm2 Φ=» there exists a map
σ on Rm of the form: σ=permutation-}-translation, so that σ(Y)=X.

Proof. It is trivial that X and Y are isometric under the lι-novm if there
exists a map σ=permutation+translation, such that σ(Y)=X. By Theorem

onto

4.2, it is enough to show that any isometry σ: Y—>X under the Γ-norm is of
the form: tf=permutation+translation. Now, suppose that σ: Y-+X is such a
surjective isometry, from the generalized Mazur-Ulam's Theorem (See [8]) σ
can be extended to be an aίϊine isometry σ* on (Rm, \\-\\tή, i.e.,

for some point c<=Rm and some (surjective) linear isometry / on (Rm, IHIiO
Therefore, σ has the desired form. •

COROLLARY 4.4. Let myn^\ be integers and X, YQRm be open subsets.
Then C(

o

n)(X)=C(on)(Y) & there is a homeomorphism σ:Y^X such that σ is
isometric on each connected part of Y under the lι-norm of Rm.

COROLLARY 4.5. Let m, wί^l be integers and X be a connected open subset
of Rm. Then the isometry group of C(

o

n)(X) is SιxΣ with the group operation
Mi, tfi)°G*2, ^8)=Wiλ, 0 W θ and

(I σ)(f)(x)=λf(σ(x)), VXGZ, /eCί»>(ΛΓ),

onto

where Σ={σ\σ:X—>X is isometric in the I1-norm of Rm}.

Remark 6. Although we assume that the X and Y are open subsets of R m

in this section, it is worth to mention that all the results in Theorem 4.1 & 4.2
and Corollary 4.3~4.5 remain true if we replace "open subset(s)" by "locally
compact and NIP subset(s) which is(are) contained in the closure(s) of its(their)
interior(s)".

Now, let us see some examples.

That is, there exists a bijection ψ\ X^Y such that \\φ(x) — ̂ ( iO| | i i=| |«*—If lit*,
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Example 1. Let n>l and

X={(xu

Y={(xl9

Then X and F are isometric under the /2-norm of R2, but Cin\X)ψCin\Y).

Check. Since I is a rotation of Y, X and Y are isometric in the /2-nor
of /22. If Cί^yQ^Cί^QO, we must have a homeomorphism a: F->Z of the
form: σ=ρermutation+translation. It is obvious that Y is invariant under
permutations. Therefore, Y must be transferred to X by some translation
which is obviously impossible. D

When X^Rm is connected and open, the isometry group of Cin\X), due to
the symmetry of X, may be as large as S1Xl0R(m) and also may be as small
as S1. See the next two examples.

Example 2. Let Xp={(xlt •••, xm)(=Rm:(\x1\
p+- + \xm\p)1/p<l] ( m ^ l , 0

Then the isometry group In.zp of C(

o

n\Xp) ( n ^ l ) is equal to
) with (λu σ^λ^ σ^iλ^, σ^σ,) and

W, σ)(f)(x)=λf(σ(x)),

Moreover, when m > l , n ^ l and £ ^ ? we have

Check. Let J be the same as in Corollary 4.5. By the Mazur-Ulam's
Theorem [8], each σ<=Σ can be extended to be a surjective linear isometry on
(ΛMI lli1), thus, σeΙOR(m). On the other hand, σeίΣ when σeΙOR(ra).
Therefore, Σ=lOR(m) and /n.A-p=S1Xl0R(m). The group operation is trivial.

Finally, if m > l , n ^ l and pΦq^(0, oo], noting that Z g is invariant under
permutations and XqφXv> we can see that there is no map a of the form:
a—permutation+translation, such that σ(Xq)=Xp, by Corollary 4.3, C{

Q

n){Xv)ψ

cι»κχq). •
Example 3.

(1) Let m>l, αz>0 (l^ί^m), flj^fl; (/^ ) and

X=m-au α.) or Jf={x=(Xl> - , x , ) e Λ - : Σ ^ < l .
1=1 I 1=1 at J

Then, the isometry group In,x of Cέn )(^) (w^l) is homeomorphic to
SXX{-1, I}771 and IOR(m)g/n > x.

(2) Let m > l , ( K α ^ ••• <a2m<<*> and
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Then, the isometry group of C(

o

n)(X) (nϊ>l) is S1 and each surjective linear
isometry T on C(

o

n)(X) is of the form Tf=λf (/eCSn)(X)) for some scalar
\λ\=l.

Check. In both the cases (1) and (2), the lengths of the projections of X
to the axes are different and invariant under translations. Thus, any surjective
isometry a (=permutation+translation) on X must keep the axes unchanged and

σ(x)=(bιxu -", bmxm)+(c» — , cm), Vx=(xlt •», xm)^X

f o r s o m e b=(bίf •••, fcTO)e {—1, l}m a n d c=(cu •••, cm)^Rm.
F o r t h e c a s e (1), s i n c e σ{x)^X f o r x = ( 0 , •••, 0, x J } 0, •••, 0 ) e I , l e t t i n g

± a j , w e g e t

Thus, c,=0 ( l ^ y ^ m ) . On the other hand, for any b=(b» •••, U e {—1, l} m ,
it is obvious that σb(x)=(biXu ••-, bmxm) (VJC=(*I, •••, I J G X ) determines an
isometry σb on Z in the lι-novm. By Corollary 4.5, the isometry group In,x
of C(

o

n)(X) (n>l) is homeomorphic to S1xΣ=Sίx{-l, l}m. Since IOR(m) is
homeomorphic to {—1, l}mx77 (from (3.9)), where 77 = {permutation on
{1, •••, m}\ Φ {Id}, IOR(m) is not contained in In,x-

For the case (2), it is trivial that σ is also an isometry on the closure X
of X, which can be represented by

and the map t>-*bjt+Cj is an isometry from [— a2j-i, α 2 j onto [— α2<7_i, a2j].

For any l ^ y ^ m , let ί e [ — α 2 i 7 - i , α2i7] be such that bjt-\-Cj—a2j and x = ( 0 , •••,

0, t, 0, •••, 0 ) 6 Ϊ Since ff(jc)=(ci, •••, Cy_i, α 2 ;, ^+i , ••-, cm)(=X with the corre-

sponding ^ = 1 , we must have λt=0 QiiΦj). Therefore, ^ = 0 ( l ^ ^ m ) .
Because that σ(y)=(0, •••, 0, bsq%3, 0, ••-, 0 ) E Ϊ , where | f=(0, ••-, 0, α 2 ; ,

0, •••, 0 ) ε ΐ , we have —a2j-ι^bja2j. Together with the condition 0 < α i < •••
<02m<°° and bj=±l, we can get that bj—l (l^j<m). Thus, σ—lάx and
Σ={Id}. By Theorem 4.2, each isometry T on C^iX) ( n ^ l ) is of the form
Tf=λf (f<ΞC(

o

n)(X)) for some scalar \λ\=l. Therefore, the isometry group of
C(

o

n\X) is S\ D
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