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ON THE BIFURCATION SET OF A POLYNOMIAL

FUNCTION AND NEWTON BOUNDARY, II

ALEXANDRU ZAHARIA

1. Introduction

1.1. Let / : Cn-*C be a polynomial function and let us denote by Bf the
bifurcation set of /, i.e. Bf is the smallest subset ΓQC such that the restriction
/ : Cn\f~\Γ)-^C\Γ is a locally trivial fibration. It is well known that Bf is
a finite set (see for example [13], [3], [11]) containing not only the set Σf of
critical values of /, but also some extra values, corresponding to the so called
"critical points at infinity". The problem of describing the bifurcation set Bf

was considered by several authors, see for example: [3], [1], [10], [2], [12], [7].
In this note we would like to prove that certain values, given in [7] as possible
elements of Bf, really belong to the bifurcation set of a Newton nondegenerate
polynomial /.

1.2. We recall now some definitions and notations. Let f:Cn—>C be a
polynomial function. We shall assume that /(0)=0 If

/ ( * ) : = Σ avz\
v<ΞNn

we denote:

supp(Z) : =

supp(/) :=the convex closure in Rn of supp(/),

Γ_(/):=the convex closure in Rn of {0}Wsuρp(/).

For ΔgjR71 we put

/Δ := Σ avz
v

and we say that / is nondegenerate on Δ if the system of equations

has no solutions in (C\{0})\ We say that / is Newton nondegenerate if for
every compact face Δ of Γ_(/), with O^Δ, we have that / is nondegenerate
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on Δ. Here and below, by face we shall understand face of any dimension. /
is called convenient if the intersection of supp(/) with each coordinate axis is
non-empty.

A closed face Δ of supp(/) is called bad if :

(i) the affine subvariety of dimension=dimΔ spaned by Δ contains the
origin, and

(ii) there exists a hyperplane HQRn with equation αiXi+ ••• + anxn—0,
where xlf •••, xn are the coordinates in Rn, such that:

(iia) there exist / and / with aι-aj<$

(iib) //Γ\supp(/)=Δ.

More geometrically, condition (iia) says that H contains from the interior
of the positive octant of Rn.

We denote by & the set of bad faces of suρρ(/). For Δ G ^ , we define:

ΣA:={fΔ(zo)\z°(=Ξ(C\{0})n and grad/Δ(z°)=0}.

In [7] it is proved the following

1.3. THEOREM. Suppose that f is a polynomial Newton nondegenerate, not
convenient and /(0)=0. Then

BfQ{0}uΣf\J U ΣA.

Also, in [7] it is conjectured that for each Δ G ^ , we have Σ^Bf. Our
aim is to prove that certain values in 2Ά belong to Bf, for any n ^ 2 . Note
that for n—2, this is proved in [7]. We intend to use toric varieties and the
extra assumptions we need give us that some "critical points at infinity" are
isolated. In the next Section we recalled the construction of toric varieties.
In Section 3 we study an interplay between the orbits at infinity of a toric
variety and the fibers of /. In Section 4 we derive our main result and in the
last Section we give some remarks and examples.

Acknowledgements. During the work to this paper I got hospitality and
support from the Department of Pure Mathematics of the Bordeaux I University.
Several discussions with Professors M. Oka and A. Dimca were very useful.

2. Toric varieties

2.1. For the construction of toric varieties we use here, we refer to [4]
and [8]. Let (Rn)* denote the dual space of Rn. For a<Ξ{Rn)* we denote by
Δα the face of /*_(/) where the function
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takes its minimal value which we denote by da. We define an equivalence
relation on (Rn)* by:

a^b if and only if Aa=Ab.

We shall denote by σ+ the positive octant of (i?n)*. Note that for any a in
the interior of σ+, we have:

da=0 and Aa = {0} QΓ_(f)QRn.

Hence all the vectors in the interior of the positive octant of (Rn)* are equiva-
lent.

2.2. The equivalence classes of this equivalence relation are polyhedral
cones. The set of the closures of all such equivalence classes is a conic poly-
hedron in (R71)*, denoted by Γ_(/)*. Next we take K, a unimodular simplicial
subdivision of Γ_(/)*, such that σ+ is one of the cones of K. The dimension
of a cone σ^K will be the dimension of the vector space generated by σ in
(/271)*, and the interior of a will mean the interior in this vector subspace.

For a in the interior of σ, we put Aσ :—Aa this does not depend on the
choice of a, by construction of K. Note that if dim<r=&, then ά\mA°<n — ky

and if σQσf, then Δ'^Δ*7 '.
Choosing ωeΔ σ , we obtain that for any α e σ , the minimal value of the

function

is equal to <α, ω}. This means that the support function of / is linear on σ.
Note also that when OeΔ0" we shall take ω=0.

2.3. The tori of dimension n, (C\{0})n, is a group with multiplication on
components as a law. For q—(qu •••, qn)^Zn

y the character Xq is defined by

To each cone σ^K of dimension & it is associated a tori Φ\_σ~] of dimen-
sion 72—&, namely the factor group of (C\{0})n by the subgroup generated by

The disjoint union of all the tori Φ[σ], for <re/ί, is the set of points of a
toric variety, denoted by Mκ.

2.4. Let σ<=K and let σ be the conic polyhedron associated to σ, i.e. σ is
the set of all cones σ'^K which are contained in σ. By Md we denote the
corresponding toric variety. As a set of points, Md is the disjoint union of the
tori Φ[V], for σ'<=σ. The variety M* is isomorphic to
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%:={u=(uίf .-., un)<=Cn\uk+1

We recall the construction of this isomorphism.
The dual of the cone σQ(Rn)* is the cone σ*^Rn defined by

The cone σ*QRn contains a vector subspace of dimension n — k, namely

, <α, x)=0}.

This vector subspace contains the vector space associated to the affine subvariety
(of dimension <±n—k) generated by Aσ, hence

If alt •••, α* is a basis of the cone σ, then we can choose A—{mly •••, mn},
a basis of <r*<=jβΛ, such that

<αt, mJ}=δiJ, ί = l, •••, &, ; = 1, •••, n.

Hence

and yσ* is generated by m*+i, •••, mn.
For q<^σ*Γ\Zn, the character X3 will be extended to Φ[(τ] as the zero

function, if it does not factorize for the natural projection (C\{0})7l-^Φ[(τ].
Otherwise, the extension will be the factorization through Φ[<τ].

The isomorphism between Md and Cϊ is given by the following chart:

(1) φA:M9—> Ch φA(c) :=(X7\c), - , Z?»(c)).

In this formula, X™1 is obtained from the character X™1 by extending it to
all the orbits Φ[σ'], for σ'&σ.

By glueing all the varieties Md we obtain a compactification M^ of Cn.
Note that for <τ+ we have that M5- is the affine space Cn. Mκ is a disjoint
union of several tori (C\{0})*, for ife=0, •••, n. There are only one torus
(C\{0\)n and, by convention, (C\{0})° :=one point. Those tori of Mκ which
are not lying in M^—Cn will be called the orbits at infinity of Mκ. We have:

Mκ\Cn—& normal crossing divisor of Mκ

whose irreducible components are in one-to-one correspondence with the set of
cones {σG/C|dim <τ=l, σ^σ+\. Note also that the orbits at infinity of Mκ

correspond to cones σ^K which do not belong to the conic polyhedron asso-
ciated to σ+. If dim<r=&, then Md is isomorphic to C™ and the orbit Φ[<τ] is
described, using the chart (1), as
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i.e. is isomorphic to (C\{0})n~k.

LEMMA. The closure of the orbit Φ[_σ~\ is smooth and equals to the union of

the orbits Φ[σ'] with σ^σf (or, equivalently, with a^σ').

3. Orbits at infinity and fibers of /

3.1. We continue to use the notations introduced in Section 2. Let mx—
(milf •••, mtn) and let us consider the matrices

/mil ••• mln\ /wn ••• wln\
M:= i i i and W'.^M'^i i i i .

Wm ••• mnj \wnl ••• wnn)

If wι:—(wiί> •••, wtn), then Ψ~A{U)—{UW\ •••, ww ? ι). The polynomial function
/ on Cn can be extended at C?, via the diagram

(C\{0})»
\ /

Cn —>C

to a Laurent polynomial function

3.2. On the other hand OeΓ_(/) and for all αe<τ we have

0=<α, 0>^ min <α, x>=<a, ω>.
ajef_(/)

Hence

and for any vef_(/) we have a decomposition (which depends on the choice
of ώ)

v=ω+λ1(v)m1+ -" +λn{v)mn.

It follows that

vW=ωW+&(»), - , i«(p)) and fw(u)=uωW> S αy ^ i ( y ) M^<^

with ^i(v)^0, »., ^Λ(v)^0. Note also that
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3.3. We distinguish four types of orbits at infinity of Mκ (compare with
section 2.6 in [4]):

(A) orbits which correspond to cones σ<^{Rn)* such that
(B) orbits which correspond to cones σQ(Rn)* such that Δσ={0} (hence

Δ"nsupp(/)=0);
(C) orbits which correspond to cones <r<i(7?n)* such that 0eΔσ^{0} and

such that ΔσΠsuρp(/) is not a bad face of supp(/)
(D) orbits which correspond to cones σ<^(Rn)* such that 0<=Δσ and such

that ΔσΓ\supp(/) is a bad face of supp(/).

We shall denote by JlA, 3lB, Jlc and U2D the union of all the orbits of type
(A), (B), (C) and respectively (D). Also, we shall denote by JLff(Y) the affine
subvariety spaned by a subset YQRn. We have the following characterization
of the orbits of type (D):

LEMMA. Let Φ[<x] be an orbit at infinity. Equivalent are:

(a) Φ[>] is of type (D).

(b) 0e. i#(Δ*niu^(7J) .

(c) Δ'ΠsuppC/) is a bad face of supp(/).

Proof. The implications (a) =} (c) =4 (b) follow directly from the definitions.

(b)=Φ(c). Let Φ[σ] be an orbit at infinity such that O^Jίff(AσΓ\supp(f));

then condition (i) from the definition of bad faces is fulfiled, for ΔσΠsupp(/),

and suppose that condition (ii) is not fulfield, i.e. for any hyperplane H^Rn

such that //Πsuρp(/)=ΔσΠsupp(/), we have that H does not contain any point

from the interior of the positive octant of Rn. It follows that AσΓ\snpp(f) is

contained in the intersection of n—dimΔσ hyperplanes of coordinates of Rn and

that σ<==σ+. Hence Φ[tf] is not an orbit at infinity, a contradiction. Thus, we

proved that (b)<=»(c).
(c)=3(a). Suppose that Φ[<τ] is not an orbit of type (D). It is easy to see

that Φ|>] can not be an orbit of type (C) or of type (B). Hence Φ[<τ] is an
orbit of type (A). Then 0^Δσ, and since Aσ is a face of Γ_(/)—convex closure
of {0}Wsupp(/), it follows that 0<£Jlff(Aσ), hence O£Jlff(Aσr\$uρp(f), a contra-
diction. D

COROLLARY. Let Φ[σ'] be an orbit of type (D) and let />°eφ[<τ'] be a
point which is in the closure of an orbit at infinity, Φ\_<J~]. Then Φ[_σ~\ is an

orbit of type (D).

Proof. Since />°eΦ[>']nΦ[>], it follows, by Lemma 2.4, that Φ[>']gΦ[>].
Now use again Lemma 2.4 and next the above Lemma. D



224 ALEXANDRU ZAHARIA

3.4. PROPOSITION. JiA IS compact and is a normal crossing divisor of Mκ.

Proof. It is enough to show that:

(a) the closure of an orbit of type (A) is a union of orbits of type (A)
(β) any orbit of type (A) is included in the closure of an orbit of type (A)

of dimension n—1.

Let Φ[>] be an orbit of type (A). Then O^Δ", hence for all σ'^σ we
have that 0<£Δσ', i.e. all such orbits Φ\_σ'~] are of type (A). Now (a) follows,
for Φ[σ], from Lemma 2.4.

To prove (/3), it is enough to show that any orbit Φ[σ] of type (A) is in
the closure of an orbit Φ[<x'] of type (A), with dim Φ[<7'] = rc—1, or, equiv-
alently, with dimc ' ^ l . Let au •••, ak be a basis of σ. Then the cones σt of
dimension 1, defined by σt=[0, oo)χaτ, i=l, •••, k, have the properties

Φ[ff]£φ[>t] and 0<£Aσ= Γ\A°J.
.7 = 1

hence for some i, the orbit Φ\_ot~] is of type (A).

3.5. For t(ΞC we denote by Xt the closure of f~\t)QCn in Mκ. Xt is a
compact variety whose intersection with an orbit of type (A) does not depend
on t. Indeed: for σ a cone of dimension k such that Φ[>] is an orbit of type
(A), the equation / — ί = 0 is written, in Cf, like

(2) fw(u)-t=uωW- S av'U*iw uλ

nn
w-t>u° w=0.

v(=Nn

Note also that

f and

Since 0<=Fσ* and ωψVa*, it follows that in the decomposition of

) m 1 + -. +λn(O) mn

we have that at least one of Λi(0), •••, λk(0) is not equal to 0, hence is > 0 .

And now, the equation (2), after dividing by uωW, gives us in Φ [ > ]

dv' Uk + i Un — U ,

i.e. is independent of t.
In fact, by the Newton nondegeneracy condition, we have that the inter-

section between Xt and an orbit of type (A) is transverse and that Xt is
smooth in a neighbourhood of this orbit, see [4].

3.6. Let a be a cone such that the corresponding orbit is of type (B), (C)
or (D). Then we take ω=0 as ω^Aσ. Hence the decomposition of
will be
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0=0+;i1(0) m 1 + ••• +λn(O)'mn

with all ^(0)=0. Note that f_(f)Qσ*, hence / can be extended holomorph-
icaly to Cf, hence to MK\W.A. The equation f—t—Q is written in C? like

/ ^ ( M ) - ^ Σ α* uί l ( l ; ) K^-^O

and for z/χ= ••• =uk=Q gives us

( 3 ) Λ(0, .», 0, iίA+1, » , un)-t= Σ flp u ί ί ί 1 0 0

 uy
v)-t=0.

3.7. Let Φ[>] be an orbit of type (B). Then, if tΦO, we have XtΓ\Φ[σ~]
=0, while for t=0 we get Φ\_σ~\^XQ. This follows from the equation (3),
since Aσ={0\ and /(0)=0.

3.8. Let <7<=(jRn)* be a cone of dimension k such that the corresponding
orbit, Φ[<τ], is of type (C). Hence Δ^IO} and Lemma 3.3 shows us that
condition (i) from the definition of bad faces is not fulfilled; thus Δ^ΠsΰppOO
is contained in a hyperplane which does not contains the origin. It follows
that /Δ<Γ can be considered as a weighted homogeneous polynomial, for suitable
integer weights for the coordinates. With a good choice of mk+1, •••, mny we
obtain that λk+1(v)^0, •••, λnM^Q, for all vEΔ f f, and that

J \\)y •••, U, Uk + ι, '" , Un)— 2 J Gv'Uk+ι Un

is a weighted homogeneous polynomial with integer weights for the coordinates
Uk+ι, •••, un. Hence, in

the hypersurfaces {fwY\t)r\Φ\_σ']—Xtr\Φ\_σ'](^Φ\_σ'] are diffeomorphic, when ί
varies in C\{0}, since we can construct a trivialization of the global Milnor
fibration

9(0, .~, o, uk+1, - , M n)

which respect the action of C\{0} on Φ[>], associated to the integer weights
of the coordinates uk+i, •••, un.

The case of orbits of type (D) is discussed in the next Section.

4. Main result

4.1. Let σ^(Rn)* be a cone such that Φ[>] is of type (D). Then AσΓ\

suρp(/) is a bad face of supp(/). The following Proposition describes a reason
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for which the elements of Σj±, for Δ a bad face of supp(/), should be "special"
values of /.

PROPOSITION. Let f be as in Theorem (1.3) and let to<=C. Then there
exists Δ e ^ such that to^Σ^ if and only if there exists an orbit Φ[σ~] of type
(D) such that either Xto is not smooth in a point situated in Φ[σ], or Xto is
smooth in any point of Φ[tf] but does not intersect transversally the orbit Φ[tf].
Moreover, if one of these conditions holds, we have

Proof. Suppose that there exists a bad face Δ G ^ such that to^Σ&. This
means that there exists a point z°^(C\{0})n such that grad/Δ(^°)=0 and /ΔU°)
=t0. Let us denote by Δ' the convex closure of {0} UΔ. Then Δ' is a face of
Γ_(/). Condition (ii) for the bad face Δ and construction of K imply that
there exists a cone σ^K\{σ+} such that Δσ—Δ'. For such a cone σ we have
ΔσΠsupp(/)=Δ and 0<^Jlff(AσΓ\supp(f) hence Φ[σ] is of type (D). Let k =
dim σ and let uQ—{u\, •••, u%)^Ck be the point which corresponds to z° in
chart (1). Then u\Φθ, •••, u°kΦθ and the function

h:Ci — > C,

which corresponds to ft, in chart (1), does not depend on uly •••, uk, by (3.2).
We denote p° :=(0, •••, 0, MJ+ 1, ••, MJ) and let ^ = 7 ^ be the function which
corresponds t o / . Then ί ° G Φ W , g(p»)=h(pQ)=h(u°)=t0, grad /*Qί>0)=grad Λ(M°)
= 0 and

Hence {XtQΓ\Φ\_o'], Φ\_a~\) is singular at p° and according to the values of the
partial derivatives

du,F h ' duk

xy

we have one of the following two situations:

• either Xt is not smooth in £°eΦ[<7], or
• XtQ is smooth in £°<Ξφ[σ] but Xto does not intersect transversally the

orbit Φ[>] in the point p°. Equivalently: Xto is smooth in p° but K O ΠΦ[(J] ,
Φ[>]) is singular at p°.

Conversely, let us suppose that there exists an orbit Φ[tf], of type (D),
such that Xto is not smooth in a point ί °Gφ[(j], or XtQ is smooth in ^°eφ[(j]
but XtQ does not intersect transversally the orbit Φ[<x] in the point p°:—(0, •••, 0,
/>*+i> ••*> ί i ) . It follows, in both cases, that g(p°)=t0 and

dg o ^^
duk+ί dun
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hence ftoπΦW, Φ[β~\) is singular at p°. Since h{ul9 ••, un)=g(0, •••, 0,
Wft+i, •••, wn), it follows that in the point

v*:=a, ~ , 1, ί ϊ + i , - , ί i )

we have h(y°)=t0 and grad /z(z;o)=O. Next, the point v° corresponds to a point
2°€=(C\{0})n and then we apply Lemma 3.3. D

We shall consider the following

4.2. HYPOTHESIS. The singular points of XtQ^Mκ situated in mD are iso-

lated. Also, for any orbit Φ[σ~\ of type (D), the singular points of I

£ Φ [ σ ] are isolated. We denote by μ(Xt0, P°) and by μ{Xt{iΓ\ΦΪ~σ], p°) the cor-

responding Milnor numbers in a point po^XtQΓ\U2D such that p°^Φ\_σ~\.

We shall see later conditions on supp(/) which imply that / satisfies this
Hypothesis.

Our main result is the following

4.3. THEOREM. Suppose that f is a polynomial Newton nondegenerate, not
convenient and /(0)=0. Let K be a conic polyhedron constructed as in (2.2).
For a bad face Δ e ^ , let to^I& be such that to^{O\KjΣf and let us suppose
that Hypothesis 4.2 is satisfied for t0. Then to^Bf and for tψBf, we have

( 4 ) Kf-\U))-X{f-\t))

\μ{XtQ,

Note that, by Hypothesis 4.2, we have μ(Xh, p°)=μ(X'tonΦ[<r], p°)=Q for
all, but a finite numbers of points p°<=XtoΓΛJlD.

4.4. Proof. Let p°^Xtor\tnD be such that ^ Π Φ M , p°)^0 for at least
one cone σ, and let s(/>°)>0 be a Milnor radius for the Milnor fibrations of

o ] , for any σ with p°^Φ\_σ~] this includes also the case when σ={0}.
Let B(p°) be the open Milnor ball centered at p°, of radius ε(p°). We denote
by B the union of all such Milnor balls.

We shall denote Y : = ^ ΰ U J l c U ^ . For any t^C we have:

X(Γ\t))=X(Xt\{mAJY))

=X(Xt\&AKjB))-X((XtnY)\B)+X((Xt\Y)ίΛB).

The function / can be extended holomorphically to a function fκ: Mκ\ϋ2A

and f~κ(t)=Xt\JlA. Let Λ^C be a small disc centered at t0, such that
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Ar\({O}UΣfU\J ΣΛ={t0}.

Theorem 4.3 follows from the following Lemmas, in which is described the
variation of

X{Xt\{mA\JB)), !{{Xtr\Y)\B) and %({Xt\Y)Γ\B)

when t^Λ. •

4.5. LEMMA. The restriction of fκ,

(5) fκ : (Mκ\(mAuB))Γλf-\Λ) —> A,

is a locally trivial fibration. In particular, %(Xt\(31AUB)) does not depend on

Proof. To see this, we apply the Ehresmann fibration theorem, outside a
small neighbourhood of 7lA and in a neighbourhood of VI A, we can construct a
vector field which produce a trivialisation of (5). The vector field can be con-
structed since outside B, Xt is smooth and intersects transversally any orbit
Φ[<x], for any t<=Λ. Namely, there exists a vector field w, defined in a small
neighbourhood U of JlAΓ\Xto such that if t is sufficiently close to t0, then in
any point p^XtΓ\U we have ιv(p)chTpXt> and if ί e Φ [ σ ] π ί / S ^ 2 4 , then
u?(jί>)eTpΦ[>] the construction of w is done using the prolongation of a
tangent vector to a vector field, the compactness of ϋϊAίλXt0 and a partition of
unity. •

4.6. LEMMA. X((XtΓ\Y)\B) does not depend on t(=Λ.

Proof. By the additivity of the Euler characteristic, it is enough to show
that

does not depend on feΛ, for any orbit Φ[σ] of type (B), (C) or (D). When
Φ|>] is of type (B) or (C), this follows from Corollary 3.3 and from (3.7) and
(3.8). When Φ[σ] is of type (D), it can be proved, similarly to the proof of
Lemma 4.5, that the restriction

fK : (Φίσl\(mAUB))nr\Λ) —> A

is a locally trivial fibration. Π

4.7. LEMMA, (a) The pair (YnB(p°), B(p0)) is isomorphic to {{xx xk

=0}, Cn), for some l^k£n-l.
(b) For t^A\{to\ we have
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X((Xto\Y)Γ\B)-X((Xt\Y)ΓΛB)

( - l ) - 1 Σ

/V00/. (a) From (2.4), 57^UF is a normal crossing divisor. By Corollary
3.3, we can choose ε(p°) sufficiently small such that mAΓ\B(p0)=mBΓΛB(p0)=
mcr\B(p°)=Q. Hence

and this proves part (a).
(b) For any point p°^XtoίΛ7lD and for any t<=Λ\{t0} we have:

From [6] we have that X{XHr\B{p^)-ϊiXtr\B{p^)={-l)n'ι'μ{Xtfif p°) and from
[5] we know that XtΓ\YΓλB(p°) has the homotopy type of a bouquet of (n—2)-
sphere. The number of spheres in this bouquet is equal to

this formula is a consequence of the following result, proved, for example, in
[14], where it is considered the more general case of an isolated singularity
defined on an arrangement of hyperplanes. D

4.8. THEOREM. Let JL—{HU •••, Hk} be an arrangement of hyperplanes in
Cn such that Oe/^π ••• Γ\Hk and let £{J) denote the intersection poset of JL.
Let f: (Hι\J ••• \JHkf 0)—*C be a germ of a holomorphic function in the origin
with the property that the restriction of f to any XG£(JL), XφCn, Xφ{0},
has an isolated critical point in 0. Let's denote by F the Milnor fiber of /.
For XtΞ£(J), XφCn, Xφ{0}, let μ(f\x) denote the Milnor number of the
restriction of f to X for {0} <= £(J) we put μ(f\{0})=L Let μ\ £{J)-*Z be
the Mb'bius function of £{J). Then we have:

0, for iΦn-2
), for i—n—2.

As a general reference on arrangements, we refer to [9].

5. Examples and remarks

5.1. Theorem (4.3) is similar to the results in [3], [10] and [12], since in
all these cases the "singularities at infinity" are isolated.
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5.2. The following lemma will help us to prove that Hypothesis 4.2 is
satisfied, if for all Δ G ^ we have dimΔ=n—1.

LEMMA. Let f: Cn—>C be a Newton nondegenerate polynomial function such
that /(0)=0. Suppose that the hypersurface f~\t)^Cn has non-isolated singular-
ities. Then either tΦΰ and there exists a bad face A of supp(/) such that t<=I&,
or t=0.

Proof. Suppose that for some ίeC\{0} the hypersurface f~\t) has non-
isolated singularities. Then there exists a Laurent series p{s)^f~\f), for s>0
sufficiently small, such that grad f(p(s))=0 and such that Ilί(s)||->oo as s-»0.
Suppose that

+ 1 + •••, 0, •••, 0 )

with <2ii tf2i tfM^O, fli^α2^ ••• ^ίak, fli<0, and let HQRn be the hyper-

plane of equation GiXi+ ••• + akXk=0. We shall prove that Δ—i/πsuρp(/) is a

bad face of supp(/).
Suppose that k—n and let l:Rn-+R be the function defined by / ( x ^ α ^ !

+ a2x2-{ \-anxn; hence /"1(0)=i/. Let Δ° be the face of f_(/) where the
restriction of / to Γ_(f) takes its minimal value, and let d° be this minimal
value. We have d°£0 since O e f _(/).

If Δ° is also a face of supρ(/), then the condition grad /(/)(S))ΞO gives us
that grad/Δθ(απ, •••, anl)=0, which is in contradiction with the nondegeneracy
condition on the face Δ°.

It remains that Δ° is not a face of supp(/), hence 0eΔ° and d°=0. Con-

sider now the restriction of / to supp(/) and let d be the minimal value of

this restriction. Since supp(/)£Γ_(/), we have d^d°=0.

If d>0, then f(p(s))^0 as s->0, and this contradicts the hypothesis that
f(P(s))=tΦ0.

Hence we have that d=0. This implies that an>0, hence condition (ii)
from the definition of a bad face is satisfied for Δ=//Πsupρ(/)=Δ°Πsupρ(/).
Suppose now that condition (i) is not fulfilled. Then, as above, the non-
degeneracy condition fails on the face Δ, a contradiction. Hence the condition
(i) is also satisfied for the face Δ, i.e. Δ is a bad face of supp(/). And now
it is easy to see that t=f(p(s))=f&(au •••, an).

It remains to consider the case when k<n. By taking the restriction of /

to CkX {0}, we reduce the case K n to the situation k — n. We have only to

remark that, for tΦO, the condition p($)<Ξf~Xt) implies that supp(/)Π(Λ*X {0})

=£0. D

5.3. PROPOSITION. Let f be a polynomial as in Theorem 1.3 and suppose,
moreover, that for all Δ G J we have dimΔ=:n—1. Then Hypothesis 4.2 is
satisfied for all
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In particular, we have

ΣS\J ( \ { \ ) f { \ f U
Δeiδ Δe<3

Proof. Suppose that there exists Δ G ^ and to^Σ^\{O}\Σf such that Hypo-
thesis 4.2 is not fulfilled for t0. Then there exists p°(=XtoΓ\JID and an orbit
Φ\_σ~\ of type (D), with / ) ° G Φ [ ( J ] , such that either £° is one of the non isolated
singular points of XtQ^Mκ contained in Φ[σ], or Xt{iΓλΦ\_σ~\<^Φ\_σ~] has a non
isolated singularity at p°. In both cases, using chart (1), we obtain that the
restriction gσ of fw (=the function which corresponds to /) to Φ[σ] has a non
isolated singularity in p°, hence, by Lemma 5.2, there exists bad faces for
the Newton polyhedron of gσ. But this Newton polyhedron corresponds to

Δ:=ΔσΠsupp(/)=bad face of supp(/); hence supp(/) should have bad faces of
codimension at least 2, included in Δ, which is in contradiction with our
hypothesis. •

5.4. Remark. In fact, the same argument as in the proof of Proposition
5.3 gives us that for any bad face Δ G ^ of dimension dimΔ=n —1, we have
that

5.5. Example. Let f:C*-^C be the polynomial function defined by
f(x, y, z)=x2y2z2—2xyz+x2jry2. It is easy to see that there exists three bad
faces for supp(/), namely Δ^ with f^1 = xzy2z2—2xyz+x2, Δ2, with fA2=x2y2z2

—2xyz+y2 and Δ=Δ!nΔ 2 , with /Δ — x2y2z2—2xyz. Next, we have: Σf={0],
ΣAI=ΣA2=0 and Σι={-1] hence Bf^{0, -1} . We shall see that Theorem
4.3 gives us that —l<=Bf.

The vectors v» : = ( - l , - 1 , 1), vλ :=(0, 1, -1), v* :=(1, 0, -1) and v0 :=(0, 0, 1)
are orthogonal to the faces of dimension 2 of Γ'_(/) and generates the cones
of dimension 1 in /*_(/)*. We can obtain a unimodular simplicial subdivision
of Γ_(f) by subdividing the cone generated in (i23)* by the vectors {v0, vu v2},
into the cones generated by the vectors {vQ, eu e2}, {elf e2, ez}, {elt e3, v2],
{e2, eif Vι} and {vlf v2, ez), where

eγ :=(1, 0, 0), e2 :=(0, 1, 0) and e3 :=(1, 1, -1)=-Voo.

Let (T^(723)* be the cone generated by the vectors vlf v2 and ez. Then the
dual cone of σ^(/23)* is the cone σ*QRz generated by m i = ( - 1 , 0, —1), m 2 =
(0, — 1, -1) and m s =(l, 1, 1). Hence
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-1 0 - 1

0 - 1 - 1

1 1 1

and W—M x—

0 1 1

1 0 1

- 1 - 1 - 1

By the isomorphism between Md and C\ given by the chart (1), the function /

gives us

g:Cl—>C, g(ulf u2> u3)=ul—2us+u2

1

It is easy to see that in the point p°=(0, 0, 1 ) G I _ I , the restrictions of g to the

subspaces {u^Uz^O}, {u1=0}f {ι/2=0} and the function g have an isolated

singularity of type Aλ, It follows, by Theorem 4.3, that —l^.Bf and for

t<=C\Bf we have

5.6. Finally, we remark that when / is a convenient Newton nondegener-

ate polynomial, then, cf. [1], / is a tame polynomial, hence Bf=Σf.
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