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ON THE BIFURCATION SET OF A POLYNOMIAL
FUNCTION AND NEWTON BOUNDARY, II

ALEXANDRU ZAHARIA

1. Introduction

1.1. Let f:C*—C be a polynomial function and let us denote by B, the
bifurcation set of f, i.e. B is the smallest subset /'S C such that the restriction
F:C\f'(I")=>C\I" is a locally trivial fibration. It is well known that B is
a finite set (see for example [13], [3], [11]) containing not only the set X, of
critical values of f, but also some extra values, corresponding to the so called
“critical points at infinity”. The problem of describing the bifurcation set B;
was considered by several authors, see for example: [3], [1], [10], [2], [12], [7].
In this note we would like to prove that certain values, given in [7] as possible
elements of By, really belong to the bifurcation set of a Newton nondegenerate
polynomial f.

1.2. We recall now some definitions and notations. Let f:C*—C be a
polynomial function. We shall assume that f(0)=0 If

f@2):= 2 a2,

VENT
we denote :

supp(f) := {vEN"|a, #0} S R",
supp(f) :=the convex closure in R* of supp(f),
f-( f):=the convex closure in R" of {0} \Usupp(f).
For ASR" we put
fa :—_—EAa,,z”
and we say that f is nondegenerate on A if the system of equations

ofa, . _0fa, .
9z, A= =5, @=0

has no solutions in (C\ {O})".~ We say that f is Newton nondegenerate if for
every compact face A of I'_(f), with 0¢A, we have that f is nondegenerate

Received April 5, 1995; revised August 4, 1995.

218



BIFURCATION SET 219

on A. Here and below, by face we shall understand face of any dimension. f
is called convenient if the intersection of supp(f) with each coordinate axis is
non-empty.

A closed face A of supp(f) is called bad if :

(i) the affine subvariety of dimension=dim A spaned by A contains the
origin, and

(ii) there exists a hyperplane HSR" with equation a;x;+ -+ +a,x,=0,
where x,, ---, x, are the coordinates in R", such that:

(iia) there exist 7 and j with a,-a;<0

(iis) HNsupp(f)=A.

More geometrically, condition (ii,) says that H contains from the interior
of the positive octant of R™.

We denote by @ the set of bad faces of supp(f). For A= 3, we define:
Y= {fa(z%)|2°€(C\ {0})* and grad fa(z*)=0}.

In [7] it is proved the following

1.3. THEOREM. Suppose that [ is a polynomwal Newton nondegenerate, not
convenient and f(0)=0. Then

B,S{0}US,U U Za.
Aes

Also, in [7] it is conjectured that for each A< 8, we have X, EB,;. Our
aim is to prove that certain values in X, belong to By, for any n=2. Note
that for n=2, this is proved in [7]. We intend to use toric varieties and the
extra assumptions we need give us that some “critical points at infinity” are
isolated. In the next Section we recalled the construction of toric varieties.
In Section 3 we study an interplay between the orbits at infinity of a toric
variety and the fibers of f. In Section 4 we derive our main result and in the
last Section we give some remarks and examples.

Acknowledgements. During the work to this paper 1 got hospitality and
support from the Department of Pure Mathematics of the Bordeaux I University.
Several discussions with Professors M. Oka and A. Dimca were very useful.

2. Toric varieties

2.1. For the construction of toric varieties we use here, we refer to [4]
and [8]. Let (R™)* denote the dual space of R*. For a=(R")* we denote by
A® the face of I'_(f) where the function

f_(f)sx —><a, x)>:=a(x)eR
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takes its minimal value which we denote by d®. We define an equivalence
relation on (R™)* by:
a~b if and only if A®=A"

We shall denote by ¢, the positive octant of (R")*. Note that for any a in
the interior of ¢,, we have:

d*=0 and A*= {0} SI'_(f)SR".

Hence all the vectors in the interior of the positive octant of (R™)* are equiva-
lent.

2.2. The equivalence classes of this equivalence relation are polyhedral
cones. The set of the closures of all such equivalence classes is a conic poly-
hedron in (R™)*, denoted by I'( f)*. Next we take K, a unimodular simplicial
subdivision of I'_( f)*, such that ¢, is one of the cones of K. The dimension
of a cone c=K will be the dimension of the vector space generated by ¢ in
(R™)*, and the interior of ¢ will mean the interior in this vector subspace.

For a in the interior of o, we put A’ :=A%; this does not depend on the
choice of a, by construction of K. Note that if dim o=Fk, then dimA°<n—=Fk,
and if ¢ZSo’, then A72A°",

Choosing w=A’, we obtain that for any a<c¢, the minimal value of the
function

I' (f)>x+—><a, x)ER

is equal to <a, w). This means that the support function of f is linear on .
Note also that when 0€A° we shall take w=0.

2.3. The tori of dimension n, (C\{0})*, is a group with multiplication on
components as a law. For ¢=(g,, ---, ¢g.)EZ™, the character X? is defined by

X (C\{O) —> C\ {0} = €', X%(xy, =+, Xp) i=27 o0 - X350
To each cone oK of dimension 2 it is associated a tori @®[¢] of dimen-
sion n—k, namely the factor group of (C\{0})" by the subgroup generated by
{(taly Tty tan>ltEC\{0}, (ah Tty an)eol}‘

The disjoint union of all the tori @[¢], for =K, is the set of points of a
toric variety, denoted by Mk.

2.4. Llet 6K and let & be the conic polyhedron associated to g, i.e. ¢ is
the set of all cones ¢’K which are contained in ¢. By M; we denote the
corresponding toric variety. As a set of points, M; is the disjoint union of the
tori @[¢'], for ¢’=s. The variety M; is isomorphic to
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Cii={u=(uy, -, un)EC" [Upyr+ -+ - u#0}.

We recall the construction of this isomorphism.
The dual of the cone ¢ S(R™)* is the cone ¢*S R" defined by

o*¥:={xeR"|Vaecao, {a, x)>=0}.
The cone o0*S R™ contains a vector subspace of dimension n—/k, namely
Va:={xeR"|Vacao, <a, x>=0}.

This vector subspace contains the vector space associated to the affine subvariety
(of dimension <n—*%) generated by A?, hence

A'SV &= ANV 0 & 0€A°.

If a,, -+, a, is a basis of the cone ¢, then we can choose A= {m,, -+, my},
a basis of ¢*S R", such that

<au m]>:5i1y Z.:l) Tty k} ]:lJ e, M
Hence

a*:{éximmieR, Ay e, zkgo}

and V.« is generated by m,,., -+, M,.

For g=o*NZ™, the character X* will be extended to ®@[¢] as the zero
function, if it does not factorize for the natural projection (C\{0})*—®@[c].
Otherwise, the extension will be the factorization through @[a].

The isomorphism between M, and C} is given by the following chart:

(L) Pa: Mz —> C2, pu(c) :=@7"(c), -, X5™(c)).

In this formula, X7* is obtained from the character X™* by extending it to
all the orbits @[a’], for d'€é.

By glueing all the varieties M; we obtain a compactification My of C™.
Note that for ¢, we have that M5 is the affine space C*. My is a disjoint
union of several tori (C\{0})*, for %£=0, ---, n. There are only one torus
(C\{0})* and, by convention, (C\{0})°:=one point. Those tori of My which
are not lying in Mzz=C™ will be called the orbits at infinity of Mx. We have:

Mg\C"=a normal crossing divisor of Mg

whose irreducible components are in one-to-one correspondence with the set of
cones {g=K|dimo=1, o&0,}. Note also that the orbits at infinity of Mg
correspond to cones ¢=K which do not belong to the conic polyhedron asso-
ciated to o,. If dim o=k, then M; is isomorphic to C} and the orbit @[a] is
described, using the chart (1), as
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{fueCtlu,= - =u,=0},
i.e. is isomorphic to (C\{0})""*.

LEMMA. The closure of the orbit @[a] is smooth and equals to the union of
the orbits ®[e’] with a=a’ (or, equivalently, with ¢<Sa’).

3. Orbits at infinity and fibers of f

3.1. We continue to use the notations introduced in Section 2. Let m,=
(msy, -+, my,) and let us consider the matrices

My =2 Min Wiy = Win
M= : : : and W:=M"1=| : : 1 |,
My Mapn Wnpy** Wan

If w,:=(wy, -+, w.a), then ¢z'(w)=(u"1, ---, u¥»). The polynomial function
f on C™ can be extended at C}, via the diagram

M, 24 o
/
(C\{0})" ; )
c" —C
to a Laurent polynomial function

=3 a,u™.

vENT

3.2. On the other hand 0€I’_(f) and for all ac¢ we have

0=<a, 0>= min <a, x>=<a, ®).
zel_p)
Hence _
I'_ () Sw+o*:={w+alacsa*}

and for any vel ( f) we have a decomposition (which depends on the choice
of w)
yv=0+A4¥)m,+ - +2,)m,.
It follows that
W =W +(4,(), -, 2a(v)) and [Fu)=uY- 3 a, - ulr®. ... .yta®

VENT

with A,(0)=0, -+, 2,(»)=0. Note also that

Ay)= - =2;(v)=0 = veA’.
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3.3. We distinguish four types of orbits at infinity of My (compare with
section 2.6 in [4]):

(A) orbits which correspond to cones g S(R™)* such that 0£A’;

(B) orbits which correspond to cones ¢S (R™)* such that A°={0} (hence
A’Nsupp(f)=0);

(C) orbits which correspond to cones ¢Z(R™* such that 0€A°+ {0} and
such that A’Nsupp(f) is not a bad face of supp(f);

(D) orbits which correspond to cones ¢ZS(R™)* such that 0€A’ and such

that A°N\supp(f) is a bad face of supp(f).

We shall denote by Ji4, Tlp, Jlc and Jlp the union of all the orbits of type
(A), (B), (C) and respectively (D). Also, we shall denote by Af(Y) the affine
subvariety spaned by a subset Y S R". We have the following characterization
of the orbits of type (D):

LEMMA. Let @[o] be an orbit at infinity. Equivalent are:

(a) @[a] is of type (D).
(b) 0€Af (A" Nsupp(f)).
(¢) A’Nsupp(f) is a bad face of supp(f).

Proof. The implications (a)=(c)=(b) follow directly from the definitions.

(b)=>(c). Let @[g] be an orbit at infinity such that 0= Af(A Nsupp(f));
then condition (i) from the definition of bad faces is fulfiled, for A?N\supp(f),
and suppose that condition (ii) is not fulfield, i.e. for any hyperplane HS R"
such that HNsupp(f)=A’Nsupp(f), we have that H does not contain any point
from the interior of the positive octant of R™. It follows that A’ \supp(f) is
contained in the intersection of n—dim A° hyperplanes of coordinates of R® and
that 6<o,. Hence @[o] is not an orbit at infinity, a contradiction. Thus, we
proved that (b)e(c).

(¢)=(a). Suppose that @[c¢] is not an orbit of type (D). It is easy to see
that @[¢] can not be an orbit of type (C) or of type (B). Hence @[s] is an
orbit of type (A). Then 0&£A’, and since A’ is a face of I"_(f)=convex closure
of {0} Usupp(f), it follows that 0&Aff(A%), hence 0& A (A’ Nsupp(f), a contra-
diction. O

COROLLARY. Let @[c'] be an orbit of type (D) and let p°=®[6’] be a
point which is in the closure of an orbit at infinity, @®[c]. Then @®[a] is an
orbit of type (D).

Proof. Since p°=@[a’IND[a], it follows, by Lemma 2.4, that @[¢’]SD[c].
Now use again Lemma 2.4 and next the above Lemma. O
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3.4. PROPOSITION, J14 s compact and 1S a normal crossing divisor of Mg.

Proof. 1t is enough to show that:

(@) the closure of an orbit of type (A) is a union of orbits of type (A);
(B) any orbit of type (A) is included in the closure of an orbit of type (A)
of dimension n—1.

Let @[o] be an orbit of type (A). Then 0¢&A° hence for all ¢’'20¢ we
have that 0¢£A°’, i.e. all such orbits @[¢’] are of type (A). Now (a) follows,
for @[o], from Lemma 2.4.

To prove (B), it is enough to show that any orbit @[¢] of type (A) is in
the closure of an orbit @[¢’] of type (A), with dim @[¢’]=n—1, or, equiv-
alently, with dim ¢’=1. Let a,, ---, a, be a basis of ¢. Then the cones ¢, of
dimension 1, defined by ¢,=[0, «)Xa,, i=1, ---, k, have the properties

P[e]1SP[o,] and OQEA“:(]'\A";.
s=1
hence for some 7, the orbit @[ec,] is of type (A).

3.5. For teC we denote by X, the closure of f~Y(t)SC™ in Mg. X, is a
compact variety whose intersection with an orbit of type (A) does not depend
on ¢. Indeed: for ¢ a cone of dimension %k such that @[¢] is an orbit of type
(A), the equation f—t=0 is written, in C%, like
(2) fPu)—t=u"+ 3 a, uh® . o ydn 0y W =(),

yvENT

Note also that
0l (f)Sw+a*, 0£A° and wsA°.

Since 0V« and we&V ., it follows that in the decomposition of 0= R™
0=w+A,(0)-m,+ -+ +4,(0)-m,

we have that at least one of 4,(0), ---, 4x(0) is not equal to 0, hence is >0.
And now, the equation (2), after dividing by u®¥, gives us in @[c]

3 gy upkt® e e upn® =0,
veA o
i.e. is independent of t.
In fact, by the Newton nondegeneracy condition, we have that the inter-
section between X, and an orbit of type (A) is transverse and that X, is
smooth in a neighbourhood of this orbit, see [4].

3.6. Let ¢ be a cone such that the corresponding orbit is of type (B), (C)
or (D). Then we take w=0 as w=A°’. Hence the decomposition of 0=R"
will be
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0=0+2,(0)-m;+ -+ +2,(0)-m,

with all 2,00)=0. Note that I"_(f)Sa*, hence f can be extended holomorph-
icaly to C?, hence to Mx\714,. The equation f—¢=0 is written in C? like

fW(u)—t: E av.ufl(y). .uin(y)_tzo
VENT
and for u,= --- =u,=0 gives us
A1 2,0
(3) fW(Or ) Oy Ukyry, "y un)—-t: ZAaav'ukl:iH IR ‘unn g '_t:O
ve

3.7. Let @[c] be an orbit of type (B). Then, if {0, we have X, N\@[c]
=@, while for t=0 we get ®[c]=X, This follows from the equation (3),
since A= {0} and f(0)=O0.

3.8. Let ¢S (R™* be a cone of dimension k2 such that the corresponding
orbit, @[¢], is of type (C). Hence A% {0} and Lemma 3.3 shows us that
condition (i) from the definition of bad faces is not fulfiled; thus A?Nsupp(f)
is contained in a hyperplane which does not contains the origin. It follows
that fas can be considered as a weighted homogeneous polynomial, for suitable
integer weights for the coordinates. With a good choice of mg,,, -+, m,, we
obtain that 4,,,(»)=0, ---, 2,(»)=0, for all y€A?, and that

2 ) Ap W)
fW(O’ ] 01 Uk, "' un): E av.ukfi“ Yo uR" v
veEAC
is a weighted homogeneous polynomial with integer weights for the coordinates
Ukt 5 Un. Hence, in

Olol={ucsClu= " =u;=0}

the hypersurfaces (f7) ' (O)NPLo]=X:N\P[d]=P[o] are diffeomorphic, when ¢
varies in C\ {0}, since we can construct a trivialization of the global Milnor
fibration

(fW)—l(C\ {0} )m@[aje(oy ) 0’ Upyr, ", un)
}_)fW(OJ vty Ukgyy oty un)EC\{O}
which respect the action of C\{0} on @[s], associated to the integer weights

of the coordinates .1, -+, Un.
The case of orbits of type (D) is discussed in the next Section.

4. Main result

4.1. Let dS(R™)* be a cone such that @[¢] is of type (D). Then AN
supp(f) is a bad face of supp(f). The following Proposition describes a reason
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for which the elements of X, for A a bad face of supp(f), should be “special”
values of f.

PROPOSITION., Let f be as in Theorem (1.3) and let t,C. Then there
exists A= B such that tyeXn if and only if there exists an orbit ®[c] of type
(D) such that either X, is not smooth in a point situated in ®[c], or X,, is
smooth in any point of ®[a] but does not intersect transversally the orbit @[a].

Movreover, if one of these conditions holds, we have A°Nsupp(f)=A.

Proof. Suppose that there exists a bad face A= ® such that t,&Xs. This
means that there exists a point z°<(C\ {0})" such that grad fa(z°)=0 and fa(2°)
=t,. Let us denote by A’ the convex closure of {0}\UA. Then A’ is a face of
f_(f). Condition (ii) for the bad face A and construction of K imply that
there exists a cone c=K\ {o,} such that A’=A’. For such a cone ¢ we have
A’Nsupp(f)=A and 0 ff(A°Nsupp(f); hence @[] is of type (D). Let k=
dim o and let u°=(ul, ---, u4)eC}? be the point which corresponds to z° in
chart (1). Then u}+0, ---, ul+#0 and the function

h:Cr—>C, hw):=3auit® - uir®
velA
which corresponds to fa in chart (1), does not depend on wu,, ---, ux, by (3.2).

We denote p°:=(0, ---, 0, ul,,, ---, uy) and let g=f" be the function which
corresponds to f. Then p’e®[a], g(p")=h(p)=h(u’)=t,, grad h(p®)=grad h(u®)
=0 and

08 o .. _08 o
FO (P)= - —aZ(P )=0.
Hence (X;,N®[a], @[g]) is singular at p° and according to the values of the
partial derivatives

08 (. 08 .o
—371(75 ) auk(Z) )s
we have one of the following two situations:

- either X, is not smooth in p’€®[a], or

+ X,, is smooth in p’€®P[o] but X, does not intersect transversally the
orbit @®[¢] in the point p°. Equivalently: X, is smooth in p° but (X, N®@[a],
@[o]) is singular at p°.

Conversely, let us suppose that there exists an orbit @[e¢], of type (D),
such that X, is not smooth in a point p°€®[a], or X, is smooth in p’c®P[c]
but X,, does not intersect transversally the orbit @[] in the point p°:=(0, ---, 0,
Pl -, PY). It follows, in both cases, that g(p°)=t, and

og

08 o . _08 .,
T, P= =5, (09=0,

auk+l
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hence (X;N\@[o], P[o]) is singular at p°. Since h(u,, -+, un)=g(0, ---, 0,
Uiet, -, Un), it follows that in the point

v0:=(1: ) 1: p2+1) Tty 1721.)

we have h(v®)=t, and grad h(»°)=0. Next, the point v° corresponds to a point
2’ (C\ {0})" and then we apply Lemma 3.3. O

We shall consider the following

4.2. HyPOTHESIS. The singular points of X, SMx situated in Jip are iso-
lated. Also, for any orbit ®[a] of type (D), the singular points of X;of\m
S O[] are isolated. We denote by p(X,, p°) and by w(X.,NO[a], p°) the cor-
responding Milnor numbers in a point p°€X, NIp such that p°EP[a].

We shall see later conditions on supp(f) which imply that f satisfies this
Hypothesis.
Our main result is the following

4.3. THEOREM. Suppose that [ is a polynomial Newton nondegenerate, not
convenient and f(0)=0. Let K be a conic polyhedron constructed as in (2.2).
For a bad face Ac B, let ty,Xs be such that t,&{0}\U2Y; and let us suppose
that Hypothesis 4.2 is satisfied for t,. Then t,&B; and for t& By, we have

(4) X (t)— X (2))
== % [g(xto, P+ D pX,NBled, p°>].

pOeX; NTp o1 p, BleIop0

Note that, by Hypothesis 4.2, we have u(X,, p*)=p(X,,N®[a], p°)=0 for
all, but a finite numbers of points p°’€X, NIip.

4.4. Proof. Let p"=X,NTp be such that u(X,,N@[a], p°)+0 for at least
one cone o, and let &(»p°)>0 be a Milnor radius for the Milnor fibrations of
X.,N®[a], for any ¢ with p°€®[a]; this includes also the case when o= {0}.
Let B(p°) be the open Milnor ball centered at p° of radius &(p°). We denote
by B the union of all such Milnor balls.

We shall denote Y :=315\UJ1;\UTlp. For any teC we have:

X O)=HX\TVY))
=XX\TUB)—X(XNY)N\B)+X(X\Y)NB).

The function f can be extended holomorphically to a function fx: Mx\J14
—C and fZ@®)=X\94 Let ASC be a small disc centered at ¢, such that



228 ALEXANDRU ZAHARIA
Am({O} (URVAY! Za)= {to} .
Acd

Theorem 4.3 follows from the following Lemmas, in which is described the
variation of

XX \@4UB)), XX.NY)\B) and X(X\Y)N\B)
when te 4. O

4.5. LEMMA. The restriction of fx,
(5) fr: M\ T IBINfH(A)—> 4,

is a locally trivial fibration. In particular, XX \(T14UB)) does not depend on
te .

Proof. To see this, we apply the Ehresmann fibration theorem, outside a
small neighbourhood of J1,; and in a neighbourhood of J14, we can construct a
vector field which produce a trivialisation of (5). The vector field can be con-
structed since outside B, X, is smooth and intersects transversally any orbit
@[a], for any te /4. Namely, there exists a vector field w, defined in a small
neighbourhood U of 91,NX,, such that if ¢ is sufficiently close to £, then in
any point peX,NU we have w(p)hT,X, and if pe@Le]NUSI, then
w(p)eT,P[o]; the construction of w is done using the prolongation of a
tangent vector to a vector field, the compactness of 71,N\X,, and a partition of
unity. d

4.6. LEMMA. X(X.N\Y)\B) does not depend on t< /.

Proof. By the additivity of the Euler characteristic, it is enough to show
that

X(X.NPLoI\B)

does not depend on t=/, for any orbit @[¢] of type (B), (C) or (D). When
@[o] is of type (B) or (C), this follows from Corollary 3.3 and from (3.7) and
(3.8). When @[o¢] is of type (D), it can be proved, similarly to the proof of
Lemma 4.5, that the restriction

fr: (@LeNTLAIBYNfHA)—> 4
is a locally trivial fibration. O
4.7. LEMMA. (a) The pair (Y NB(p®), B(p®) is isomorphic to ({x,+ -+ x4

=0}, C"), for some 1Sk<n—1.
(b) For t= A\ {t,} we have
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(X \Y)NB)—X(X\Y)NB)
= S [y O+ R u(X,nBT, )

pY€X;y NTip Dol T p, PloIop?

Proof. (a) From (2.4), 91,UY is a normal crossing divisor. By Corollary
3.3, we can choose &(p° sufficiently small such that 9,N\B(p)=N\B(p")=
JNeNB(p°)=0. Hence

YNB(p")=91pNB(p°) STpN\B(p") S (T4 Y )NB(P)=TpNB(p°),

and this proves part (a).
(b) For any point p°€X, NJlp and for any teA\{,} we have:

(X \YINB(p)—X(XA\YINB(D®)
=X, "B(p°)) =KX NB(p*)— XX, Y NB(p))—UXNY NB(p").

From [6] we have that X(X,of\B(jﬂ))—X(X;ﬂB(p°))=(—1)"‘1~;1(Xto, p°) and from
[5] we know that X, \YNB(p°) has the homotopy type of a bouquet of (n—2)-
sphere. The number of spheres in this bouquet is equal to

S X NBTAT, 1
PloIsT p, PloIp°
this formula is a consequence of the following result, proved, for example, in
[14], where it is considered the more general case of an isolated singularity
defined on an arrangement of hyperplanes. O

4.8. THEOREM. Let A={H,, ---, H,} be an arrangement of hyperplanes in
C" such that 0&6H,N --- N\H, and let .L(A) denote the intersection poset of .
Let f:(H\J - \UHy, 0)—C be a germ of a holomorphic function in the origin
with the property that the restriction of f to any Xe.L(A), X+C", X+ {0},
has an isolated critical poini in 0. Let’s denote by F the Milnor fiber of f.
For Xe.£(4), X+#C", X+#{0}, let p(flx) denote the Milnor number of the
restriction of f to X; for {0} €L(A) we put p(flw)=1. Let p: LA)—Z be
the Mobius function of L(A). Then we have:

0, for i#=n—2
X)) |- pu(flx), for i=n—2.

Xe.[‘(J),X;eC”'

dim HAF):{

As a general reference on arrangements, we refer to [9].

5. Examples and remarks

5.1. Theorem (4.3) is similar to the results in [3], [10] and [12], since in
all these cases the “singularities at infinity” are isolated.
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5.2. The following lemma will help us to prove that Hypothesis 4.2 is
satisfied, if for all A= 8 we have dimA=n—1.

LEMMA. Let f:C"—C be a Newton nondegenerate polynomial function such
that f(0)=0. Suppose that the hypersurface f~'(t)SC™ has non-isolated singular-
ities. Then either t+0 and there exists a bad face A of supp(f) such that tE2,,
or t=0.

Proof. Suppose that for some tC\{0} the hypersurface f~'(f) has non-
isolated singularities. Then there exists a Laurent series p(s)e f~'(t), for s>0
sufficiently small, such that grad f(p(s))=0 and such that [ p(s)]|— as s—0.
Suppose that

P(S)=(a11S% 1+ 8% 1 4 v oor ) @R S%kF @St IA o 0, +oe, 0)

plane of equation a,x,+ --- +a,x,=0. We shall prove that A=HNsupp(f) is a
bad face of supp(f).

Suppose that 2=n and let {: R*— R be the function defined by I(x)=a,x,
+ayxy+ - +anx,; hence [Y(0)=H. Let A° be the face of I'_(f) where the
restriction of [ to I'_(f) takes its minimal value, and let d° be this minimal
value. We have d°<0 since 01" _(f).

If A® is also a face of supp(f), then the condition grad f(p(s))=0 gives us
that grad fao(a,;, -+, @n;)=0, which is in contradiction with the nondegeneracy
condition on the face A°.

It remains that A° is not a face of supp(f), hence 0€A® and d°=0. Con-
sider now the restriction of / to supp(f) and let d be the minimal value of
this restriction. Since supp(f)SI’_(f), we have d=d°=0.

If d>0, then f(p(s))—0 as s—0, and this contradicts the hypothesis that
F(p(s)=t+0.

Hence we have that d=0. This implies that a,>0, hence condition (ii)
from the definition of a bad face is satisfied for A=HNsupp(f)=A’\supp(f).
Suppose now that condition (i) is not fulfilled. Then, as above, the non-
degeneracy condition fails on the face A, a contradiction. Hence the condition
(i) is also satisfied for the face A, i.e. A is a bad face of supp(f). And now
it is easy to see that t=f(p(s))=falay, -, an).

It remains to consider the case when k<n. By taking the restriction of f
to C*x {0}, we reduce the case £<n to the situation k=n. We have only to
remark that, for ¢+0, the condition p(s)ef~I(¢) implies that supp(f)N\(R*x {0})
*0. O

with @y s -+ ~ap #0, a,5a,< -+ <ay, a,<0, and let HSR™ be the hyper-

5.3. PROPOSITION. Let f be a polynomial as in Theorem 1.3 and suppose,
moreover, that for all A€ B we have dimA=n—1. Then Hypothesis 4.2 is
satisfied for all
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te( U, T\ O, .
In particular, we have

2, U U A\ 0HSB, S {0} U U U 2.
A3 Ac3

Proof. Suppose that there exists A= 8 and #,&2,\ {0} \2; such that Hypo-
thesis 4.2 is not fulfilled for #,. Then there exists p°€X; NJlp and an orbit
@[o] of type (D), with p°=@[o], such that either p° is one of the non isolated
singular points of X, My contained in @[a], or X, \®[¢]SP[o] has a non
isolated singularity at p°. In both cases, using chart (1), we obtain that the
restriction g, of f% (=the function which corresponds to f) to @[¢] has a non
isolated singularity in »° hence, by Lemma 5.2, there exists bad faces for
the Newton polyhedron of g,. But this Newton polyhedron corresponds to
A=A’Nsupp(f)=Dbad face of supp(f); hence supp(f) should have bad faces of
codimension at least 2, included in A, which is in contradiction with our
hypothesis. |

5.4. Remark. In fact, the same argument as in the proof of Proposition
5.3 gives us that for any bad face A= 8 of dimension dim A=n—1, we have
that

EA\ {0} \((EA%EQZ 5)2 Bj ’

5.5. Example. Let f:C*—C be the polynomial function defined by
f(x, v, 2)=x?y2z2*—2xyz+x*+y% It is easy to see that there exists three bad
faces for supp(f), namely A,, with fa =x°y*2°—2xyz+x°, A, with fa,=xy%2*
—2xyz+y* and A=A NA,, with fa=x?y*z22—2xyz. Next, we have: X ;= {0},
3y,=24,=0 and Yy={—1}; hence B, {0, —1}. We shall see that Theorem
4.3 gives us that —1=By.

The vectors v., :=(—1, —1, 1), v, :=(0, 1, —1), v,:=(1, 0, —1) and v, :=(0, 0, 1)
are orthogonal to the faces of dimension 2 of I"_(f) and generates the cones
of dimension 1 in I'_(f)*. We can obtain a unimodular simplicial subdivision
of I'_(f) by subdividing the cone generated in (R%* by the vectors {v,, vy, vs},
into the cones generated by the vectors {v,, e, @}, {e, e, e}, {ey, e vs},
{e,, es, vi} and {v,, v, es}, Where

e :=(1,0,0), e:=(01,0) and ¢;:=(1, I, —1)=—vw.
Let ¢ S(R®)* be the cone generated by the vectors v;, v, and e;. Then the

dual cone of oS (R®)* is the cone o0*S R® generated by m;=(—1, 0, —1), m,=
0, —1, —1) and m;=(1, 1, 1). Hence
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-1 0 -1 0 1 1
M=| 0-1-1| and W=M"'= 1 0 1].
1 1 1 -1 -1 -1

By the isomorphism between M; and C¢ given by the chart (1), the function f
gives us

g:Ci—>C, g(uy, us, us)=uj—2us+uiui+uiuj.

It is easy to see that in the point p°=(0, 0, 1)&X_,, the restrictions of g to the
subspaces {u;=u,=0}, {u,=0}, {u,=0} and the function g have an isolated
singularity of type A,. It follows, by Theorem 4.3, that —l=B; and for
teC\B; we have

XfH(=1D)—X(@®)=4.

5.6. Finally, we remark that when f is a convenient Newton nondegener-
ate polynomial, then, cf. [1], f is a tame polynomial, hence B,=2%.
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