S. FUKUDA KODAI MATH. J. 19 (1996), 191—199

ON BASE POINT FREE THEOREM

SHIGETAKA FUKUDA

§ **1. Introduction**

Let X be a non-singular projective variety with dim $X=n$ over C. And let $\Delta = \sum_{i=1}^{s} A_i$ be a reduced divisor on X with only simple normal crossings.

Let **Strata** $(A) := \{ \Gamma | 1 \leq k \leq n, 1 \leq i_1 < i_2 < \cdots < i_k \leq s, \Gamma \}$ is an irreducible component of $\Delta_{i_1} \cap \Delta_{i_2} \cap \cdots \cap \Delta_{i_k} \neq \emptyset$. A divisor R on (X, Δ) is, by definition, *nef and log big* if *R* is nef and big and $R\vert r$ is nef and big for any member Γ of **Strata** (Δ) (due to Reid [8, 10.4]).

Note that if *R* is ample then *R* is nef and log big on *(X, Δ).*

The purpose of this paper is to prove the following:

MAIN THEOREM ("log effective freeness"). *Let L be a nef divisor on X such that* $aL-(K_X+{\bf 1})$ *is nef and log big on* $(X, {\bf 1})$ *for some* $a\geqq 0$.

Then there exists a natural number l u depending only on n and a, such that the complete linear system $\vert l_1L\vert$ *is base point free.*

The paper is organized as follows. In Section 2 we recall known base point free theorems. In Section 3 we give a proof to Reid's "log eventual freedom" theorem in the "smooth" case. In Section 4 we prove the main theo rem. In Section 5 we show some results concerning the log canonical divisor.

We follow the notation and terminology of [Utah].

The results of the present paper have been announced in [Résumé].

Acknowledgement. The author would like to thank Prof. S. Mukai for his warm encouragement.

§2. **Known results concerning base point freeness**

Concerning base point freeness of linear systems on higher dimensional algebraic varieties, the following results are known.

THEOREM 1 ("eventual freedom") (Kawamata-Shokurov [4, Theorem 3-1-1]). *If L is a nef divisor on X and aL* $-(K_X+A)$ *is ample for some* $a\geq 0$ *, then* $|lL|$

Received March 1, 1995.

192 SHIGETAKA FUKUDA

is base point free for every $l \gg 0$.

THEOREM 2 ("effective freeness") (Kollar [5]). *Notation as in Theorem* 1. *There exists a natural number* l_0 *depending only on n and a such that* $|l_0L|$ *is base point free.*

Proof. For $0 < d \le 1$, $aL - (K_X + (1-d)A)$ is ample and $(X, (1-d)A)$ is Kawamata-log-terminal. Thus the assertion immediately follows from Kollar $[5, 1.1].$ Q.E.D.

THEOREM 3 ("log eventual freedom") (Reid [8, 10.4]). If L is a nef divisor *on* X *and al*— $(K_X + \varDelta)$ is nef and log big on (X, \varDelta) for some $a \ge 0$, then $\lfloor l/L \rfloor$ is *base point free for every* $l \gg 0$.

Remark. This theorem is stated in Reid [8] with the idea for its proof. We give the theorem a proof based on this idea in the next section.

This theorem is not valid under the condition that $aL - (K_X + \Delta)$ is not "nef and log big" on (X, Δ) but "nef and big" (Zariski [4, Remark 3-1-2], Kawamata [3, Introduction]).

The Main Theorem of this paper is the generalization of Theorem 2 to "log effective freeness".

§ 3. **Norimatsu Type Vanishing and proof of Theorem** 3

THEOREM 4 (cf. Ein-Lazarsfeld [1, 2.4] and Norimatsu [7]) ("Norimatsu Type Vanishing"). *Let R be a nef and log big divisor on {X, Δ). Then*

$$
H^i(X, \mathcal{O}_X(K_X + \Delta + R)) = 0 \quad \text{for } i > 0.
$$

Proof (similar to the proof of [1, 2.4]). The assertion follows from the following exact sequence by induction on (n, s) , by virtue of Kawamata-Viehweg vanishing theorem:

$$
0 \longrightarrow \mathcal{O}_X(K_X + \sum_{j < s} d_j + R) \longrightarrow \mathcal{O}_X(K_X + \Delta + R)
$$
\n
$$
\longrightarrow \mathcal{O}_{d_s}(K_{d_s} + \sum_{j < s} d_j |_{d_s} + R |_{d_s}) \longrightarrow 0,
$$
\nwhere $\Delta = \sum_{j=1}^s d_j$. Q. E. D.

Now we give Theorem 3 a proof relying on "Norimatsu Type Vanishing" and the method of Kawamata [3].

Proof of Theorem 3 (based on Reid's idea [8, 10.4]). We shall prove the theorem by induction on $n=\dim X$. In the case where $\Delta=0$, this is a Kawamata-Shokurov result [4, Remark 3-1-2]. So we may assume that $\Delta \neq 0$.

For any $i \in \{1, 2, \cdots, s\}$, we consider the following exact sequence:

$$
0 \longrightarrow \mathcal{O}_X(lL - \Delta_i) \longrightarrow \mathcal{O}_X(lL) \longrightarrow \mathcal{O}_{\Delta_i}(lL) \longrightarrow 0 \, .
$$

We assume that $l \ge a$. Thus $lL-A_i-(K_X+\sum_{j\neq i}A_j)=lL-(K_X+A)$ is nef and log big on $(X, \sum_{j\neq i} d_j)$.

Hence $H^1(X, \mathcal{O}_X(lL-\Delta_i))=0$ from Theorem 4.

And $aL|_{d_i} - (K_{d_i} + \sum_{j\neq i} d_j |_{d_i}) = (aL - (K_X + d))|_{d_i}$ is nef and log big on $(A_i, \sum_{j\neq i} A_j|_{A_i})$. Thus by induction hypothesis, Bs $|lL|_{A_i}|=0$ for every $l\gg 0$. Therefore Bs $|lL| \cap$ Supp $\Delta = \emptyset$ for every $l \gg 0$.

From now, we use the technique of Kawamata [3, Proof of Lemma 2]. Now fix a prime number p. We claim that $Bs|p^mL| = 0$ for $m \gg 0$.

Take a sufficient large natural number m_0 such that $Bs|\, p^{m_0}L\,| \bigcap \mathrm{Supp}\, \varDelta = \emptyset.$ We assume that $Bs|p^{m_0}L| \neq \emptyset$.

Take a log resolution $\mu: Y \rightarrow X$ (all relevant divisors F_j are smooth and cross normally) such that

- (a) $K_Y = \mu^*(K_X + \Delta) + \sum_j a_j F_j$
- (b) $|\mu^*(p^{m_0}L)| = |M| + \sum_j r_j F_j$ ($|M|$ is the movable part and is free), and
- (c) $\mu^*(aL-(K_X+4))-\sum_j \delta_j F_j$ is ample (where $\delta_j \in \mathbf{Q}$ and $0 \leq \delta_j \ll 1$).

Let $c:=\min_{r_i\neq 0} ((a_j+1-\delta_j)/r_j)$.

Here $c > 0$, because if $a_j = -1$ then $\mu(F_j) \subset \text{Supp } \Lambda$ and therefore $r_j=0$.

We may assume that the minimum is attained at exactly one value $j=j_0$. Note that $F_{\lambda_0} \cap \mu^{-1}(\Lambda) = \emptyset$.

Put $A := \sum_j (-cr_j + a_j - \delta_j)F_j$ and $A' := \Gamma(A + F_{j_0} + \mu^{-1}(A))\Gamma = \Gamma A\Gamma + F_{j_0} + \mu^{-1}(A)$ (where $\mu^{-1}(A)$ denotes the set theoretical inverse image with a reduced structure).

Then $A' \ge 0$ and $\mu_*A' = 0$.

We consider a Q-divisor $N := \mu^*(p^m L) + A - K_Y \equiv cM + \mu^*((p^m - c p^m))L$ $-(K_X+4))-\sum \delta_j F_j.$

If $p^m - c p^m o \ge a$, then N is ample and hence $H^1(Y, \mathbb{R})$ We consider the following exact sequence:

$$
0 \longrightarrow \mathcal{O}_Y(\mu^*(p^m L) + \lceil A \rceil) \longrightarrow \mathcal{O}_Y(\mu^*(p^m L) + A')
$$

$$
\longrightarrow \mathcal{O}_{F_{10}}(\mu^*(p^m L) + A') \oplus \mathcal{O}_{\mu^{-1}(A)}(\mu^*(p^m L) + A') \longrightarrow 0.
$$

By the Nonvanishing theorem of Shokurov,

$$
H^0(F_{\jmath_0}, \mathcal{O}_{F_{\jmath_0}}(\mu^*(p^m L) + A')) \neq 0 \quad \text{for } m \gg 0,
$$

because $p^m \mu^* L \mid_{F_{J_0}} + (A + F_{J_0} + \mu^{-1}(A)) \mid_{F_{J_0}} - K_{F_{J_0}} = (\mu^* (\rho^m L) + A - K_Y) \mid_{F_{J_0}} = N \mid_{F_{J_0}}$ is ample.

Thus, for $m \gg 0$, $Bs|p^m L|$ does not include $\mu(F_{j_0})$ but $Bs|p^{m_0} L|$ includes $\mu(F_{J_0})$. Hence the method of KMM [4, Theorem 3-1-1] implies the theorem. Q.E.D.

194 SHIGETAKA FUKUDA

§4. **Main theorem (log effective freeness)**

MAIN THEOREM ("log effective freeness"). *Assume that L is a nef divisor on* X and that $aL-(K_X+4)$ is nef and log big an $(X, 4)$ for some $a\geq 0$. Then *there exists a natural number f(n, a)* (which is $\ge a$), depending only on n and a, *such that the complete linear system* $| f(n, a)L |$ *is base point free.*

LEMMA 1. Let L be a nef divisor on X such that $aL-(K_X+A)$ is nef and *log big on* (X, Δ) for an integer $a \ge 0$. Then $B\vert f(n-1, a)L \vert \cap \Delta = \emptyset$.

Proof. Put $m_1 := f(n-1, a)$. We consider the exact sequence

 $0 \longrightarrow \mathcal{O}_X(m_1L - A_i) \longrightarrow \mathcal{O}_X(m_1L) \longrightarrow \mathcal{O}_{A_i}(m_1L) \longrightarrow 0$

for all $1 \leq i \leq s$. By Theorem 4, $H^1(X, \mathcal{O}_X(m_1L - A_i))=0$ because $m_1L - A_i$ $(K_X+\sum_{i\neq i}A_j)$ is nef and log big on $(X, \sum_{j\neq i}A_j)$. Here $Bs|m_1L|_{A_i}=0$, because $aL|_{d_i} - (K_{d_i} + \sum_{j \neq i} d_j|_{d_i})$ is nef and log big on $(d_i, \sum_{j \neq i} d_j|_{d_i})$. Thus $Bs|m_1L|$ $\bigcap \Delta = \emptyset$. Q.E.D.

Let $g: X \rightarrow S$ be the morphism defined by the linear system $|lL|$ for $l \gg 0$ (Theorem 3). Here there exists a Cartier divisor L_s on S such that L is linearly equivalent to $g * L_s$, because $\Phi_{\{l|l\}} = \Phi_{\{(l+1)|l\}} = g$ for $l \gg 0$. We may assume that *L=g*L^s .*

For any effective divisor *H* on *X* which is linearly equivalent to *mL* for *m* \in **N**, there exists a divisor H_s on S such that $H=g*H_s$, because Φ _{*HH*} $=$ $\Phi_{(l+1)H}=g$ for $l\gg0$.

Because $g_*\mathcal{O}_x = \mathcal{O}_s$, for any Cartier divisor *D* on *S* such that $g*D$ is linearly equivalent to 0, $\mathcal{O}_S \cong g_*g^*\mathcal{O}_S(D) = g_*\mathcal{O}_S\otimes_S(D) = \mathcal{O}_S(D)$.

Thus $|mL|=g^*|mL_s|$ for any $m \in \mathbb{N}$.

LEMMA 2. Let m be a natural number such that $|mL| \neq 0$ and $B\sin L\Gamma\Lambda$ $= 0.$

Let Z_s be an irreducible component of $Bs|mL_s|$ and set $k=codim(Z_s, S)$. *Then* Bs $|\frac{km+j+a+1}{L_s}|$ does not include Z_s for $j \ge 0$ except at most dim Z_s *different values of j .*

Proof (using Kawamata-Shokurov-Kollar's method [5]). Taking general elements $B_i \in |mL|$, put $B=(1/2m)B_0+B_1+\cdots+B_k$. Then $(X, \Delta+B)$ is log canonical outside $B\sin L\vert$ and $(X, A+B)$ is not log canonical at the points belonging to the inverse image of the generic point of Z_s by g (by the argu ment of Kollár [5, 2.2.1]).

Let $M_0 := aL - (K_X + 4) + (1/2)L$.

Take a log resolution $f: Y \rightarrow X$ *(i.e. Y* is smooth and all relevent divisors are smooth and cross normally). Let

$$
K_{Y} = f^{*}(K_{X} + \Delta) + \sum_{i} e_{i}E_{i} \quad (e_{i} \ge -1);
$$

\n
$$
f^{*}B = \sum_{i} b_{i}E_{i};
$$

\n
$$
f^{*}M_{0} = A + \sum_{i} p_{i}E_{i} \quad (A \text{ is an ample } Q\text{-divisor and } 0 \le p_{i} \ll 1).
$$

Put $c := min \{(e_i + 1 - p_i)/b_i | Z_s \subset gf(E_i) ; b_i > 0\}$. By changing the p_i slightly, we may assume that the minimum is achieved for exactly one index. Let us denote the corresponding divisor by *E^o .*

Put $W := \bigcup_{e_i - b_i \leq -1} gf(E_i)$.

CLAIM 1. $0 < c < 1$.

Proof of Claim 1. We prove $c > 0$. If $Z_s \subset gf(E_t)$, $b_t > 0$ and $e_t = -1$, then *f*(E_t) $\subset \Delta$. But this can not occur, because $g^{-1}(Z_s) \cap \Delta = \emptyset$ from Bs|*mL*| $\cap \Delta = \emptyset$.

Next we prove $c < 1$. Let z be a scheme-theoretic point on X such that $g(z)$ is the generic point of Z_s . Because $(X, \Delta + B)$ is not log canonical at z, $z \in f(E_j)$ and $e_j - b_j < -1$ for some *j*. Q.E.D.

CLAIM 2. Put $c' := \max\{(e_i+1)/b_i | e_i+1. Then $c \leq c' < 1$ and c' is not$ *affected by pi's.*

Proof of Claim 2. From the proof of Claim 1, $(e_j+1)/b_j < 1$ and $gf(E_j) \supset Z_s$ for some j . Q.E.D.

CLAIM 3. If W does not include $gf(E_i)$, then $cb_i-e_i+p_i<1$ or $f(E_i)\subset\Delta$.

Proof of Claim 3. Here $e_i - b_i \geq -1$. If $b_i \neq 0$, then $e_i - cb_i \geq e_i - c'b_i > -1$ by Claim 2. If $b_i=0$ and $e_i>-1$, then $e_i-cb_i=e_i>-1$. If $b_i=0$ and $e_i=-1$, then $f(E_i)\subset \mathcal{A}$. Q. E. D.

CLAIM 4. $gf(E_0)=Z_s$. If $cb_i-e_i+p_i\geq 1$ and $i\neq 0$, then $gf(E_i)$ does not *include Zs.*

Proof of Claim 4. If $cb_i - e_i + p_i \geq 1$, then $gf(E_i) \subset W$ or $f(E_i) \subset \Delta$, by Claim 3. Because $cb_0 - e_0 + p_0 = 1$, $Z_s \subset gf(E_0)$ and $g^{-1}(Z_s) \cap \Delta = \emptyset$, we get $gf(E_0) \subset W$. Here Z_s is an irreducible component of *W*. Thus $gf(E_0) = Z_s$. If $cb_i - e_i + p_i \ge 1$ and $Z_s \subset gf(E_i)$, then $p_i < 1 + e_i$, because Δ does not include $f(E_i)$. So $b_i > 0$. Thus $c = (e_i + 1 - p_i)/b_i$ by the definition of c. Hence $i = 0$. Q.E.D.

CLAIM 5. If $cb_i-e_i+p_i<0$, then E_i is f-exceptional.

Proof of Claim 5. Because $c > 0$ (Claim 1), $e_i > 0$. Thus E_i is f-exceptional. Q.E.D.

Proof of Lemma 2 Continued. Let $N_j:=(km+j+a+1)L$ and $N'_j:=f*N_j$ $-\sum_{i\neq 0} [cb_i - e_i + p_i]E_i$

We consider the exact sequence

$$
0 \longrightarrow \mathcal{O}_Y(N'_j - E_0) \longrightarrow \mathcal{O}_Y(N'_j) \longrightarrow \mathcal{O}_{E_0}(N'_j) \longrightarrow 0.
$$

Note that

$$
N'_J - E_0 {\equiv} K_Y + A + (1 - c)f^*B + jf^*L + \sum_{i \neq 0} \{cb_i - e_i + p_i\} E_i
$$

and

$$
N'_J|_{E_0} = K_{E_0} + (A + (1 - c)f^*B + jf^*L)|_{E_0} + \sum_{i \neq 0} \{cb_i - e_i + p_i\} E_i|_{E_0}.
$$

By Claim 1, Kawamata-Viehweg vanishing implies $H^1(Y, \mathcal{O}_Y(N'_j - E_0)) = 0$ and

 $h^0(E_0, O_{E_0}(N'_j))$ is a nonzero polynomial of degree dim Z_s in j for $j \ge 0$ (by $argument$ of Kollár [5, p. 600]).

By Claim 4 and Claim 5, $Bs|N_j|$ does not include $f(E_0)$ for all $j \ge 0$ except at most dim Z_s different values of *j*.

Noting that $Bs|N_j| = g^{-1}Bs|(km-$ Noting that *B\$\Nj\=g~Bs\(km+i+a+ϊ)Ls\,* we end the proof of this

Proof of Main Theorem. By using Lemma 1 and Lemma 2, the same argument as in Kollár [5, 2.3] implies the theorem. Q. E.D.

Remark. The function *f(n, a)* is given as follows.

When $n=1$, we put $f(1, a) := 2^{2}(1+1)!(a+1)$.

When $n \ge 2$, we put $f(n, a) := 2^{n+1}(n+1)! (a + n)f(n-1, a)$.

Thus $f(n, a) = \prod_{i=1}^{n} (2^{i+1}(i+1)!(a+i)).$

Proof of the Remark Above. When $n=1$, if $\Delta \neq 0$, then $Bs|2(a+1)L|\cap \Delta = \emptyset$ from the proof of Lemma 1, because $2(a+1)\ge a$. If $\Delta=0$, then $\frac{|2(a+1)L|}{\alpha}$ from Kollár [5, 2.4]. Therefore $Bs|2^1(1+1)|2(a+1)L| = 0$ from the argument of Kollár [5, 2.3], by using Lemma 2.

When $n \ge 2$, if $\Delta \ne 0$, then $Bs|2(a+n)f(n-1, a)L|\bigcap \Delta = \emptyset$ from Lemma 1. If $\Delta = 0$, then $|2(a+n)L| \neq 0$ from Kollar [5, 2.4], thus $|2(a+n)f(n-1, a)L| \neq 0$. Therefore $Bs|2^n(n+1)|2(a+n)f(n-1, a)L| = \emptyset$ from the argument of Kollár [5, 2.3], by using Lemma 2. Q, E, D .

§ **5. Appendix**

In this section we show some results concerning the log canonical divisor *Kx+Δ.*

THEOREM 5. Assume that L is a nef divisor on X and that $aL-(K_X+A)$ *is nef and log big on* (X, Δ) for some $a \ge 0$. Let Γ be a member of **Strata**(Δ) *and d*: \equiv dim Γ . Then Bs|mL| does not include Γ for every m\\pm 2(d+a).

Remark. For the proof, we use the following two propositions.

PROPOSITION 1. *Let R be a nef and log big divisor on (X, Δ) and Γ a member of* **Strata**(Δ). Let π : $\widetilde{X} \rightarrow X$ be the blow up with center Γ and E the *exceptional divisor. Then*

$$
0 \longrightarrow H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(\pi^*(K_X + \Delta + R) - E) \longrightarrow H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(\pi^*(K_X + \Delta + R)))
$$

$$
\longrightarrow H^0(E, \mathcal{O}_E(\pi^*(K_X + \Delta + R))) \longrightarrow 0
$$

is exact and $\mathcal{O}_E(\pi^*(K_X + \Delta + R)) \cong \pi|_E^* \mathcal{O}_\Gamma(K_X + \Delta + R).$

Proof. Let $e := \text{codim}(F, X)$. We may assume that $\Gamma \subset \Lambda_1 \cap \Lambda_2 \cap \cdots \cap \Lambda_e$. Let $Δ'_i$ be the strict transform of $Δ_i$. Thus $π*(K_x+Δ+R)-E=K_{\tilde{X}}-(e-1)E+$ $\pi^*(A_1+A_2+\cdots+A_e)+\sum_{i>e}d_i'+\pi^*R-E=K_{\tilde{X}}-(e-1)E+\sum_i d_i'+eE+\pi^*R-E=K_{\tilde{X}}$ $+ \sum_i A'_i + \pi^*R$ and π^*R is nef and log big on $(\widetilde{X}, \sum_i A'_i)$ (where $\sum_i A'_i$ is with only simple normal crossings). Therefore, by Theorem 4, $H^{1}(\tilde{X}, \mathcal{O}_{\tilde{X}}(\pi^{*}(K_{X} + \mathcal{O}_{\tilde{X}}(\pi^{*}(K_{X} + \mathcal{O}_{\tilde{X}}(\pi^{*}(K_{X} + \mathcal{O}_{\tilde{X}}(\pi^{*}(K_{X} + \mathcal{O}_{\tilde{X}}(\pi^{*}(K_{X} + \mathcal{O}_{\tilde{X}}(\pi^{*}(K_{X} + \mathcal{O}_{\tilde{X}}(\pi^{*}(K_{X} +$ $+R$ *)-E))*=0. Q.E.D.

Remark. Let *Γ* be a member of **Strata(J).** We may assume that

(*)
$$
\Gamma \subset \Lambda_1 \cap \Lambda_2 \cap \cdots \cap \Lambda_e
$$
 (where $e = \text{codim}(T, X)$).

Then $(K_X + A)|_P = (K_X + A_1 + A_2 + \cdots + A_e + \sum_{i > e} A_i)|_P = K_P + \sum_{i > e} A_i|_P$.

PROPOSITION 2. Let L be a nef divisor on X such that $aL-(K_X+A)$ is nef and log big on (X, Δ) for some $a \ge 0$. Let Γ be a member of **Strata**(Δ) and $d := \dim \Gamma$. Then $H^0(\Gamma, \mathcal{O}_\Gamma(mL)) \neq 0$ for every $m \geq 2(d + a)$.

Proof. We may assume (*) in the remark above. If $m \ge a$, then

$$
(mL)|_{\Gamma} = K_{\Gamma} + \sum_{k>0} A_k |_{\Gamma} + (mL - (K_X + \Delta))|_{\Gamma},
$$

where $(mL-(K_X+4))|_{\Gamma}$ is nef and log big on $(\Gamma, \Sigma_{i\geq \ell} A_i|_{\Gamma})$. Thus $h^0(\Gamma, \Sigma_i)$ $\mathcal{O}_\Gamma(mL)$) is a polynomial in *m* for $m \ge a$, of degree at most *d*, by Theorem 4. Note that $h^0(\Gamma, \mathcal{O}_\Gamma(mL))$ is a nonzero polynomial by Theorem 3. Thus the same argument as in Kollár $[5, 2.4]$ implies the assertion. $Q.E.D.$

Proof of Theorem 5. Let $R := mL - (K_X + \Delta)$. Then the assertion follows a Proposition 1 and Proposition 2. Q.E.D. from Proposition 1 and Proposition 2.

THEOREM 6 (Kollar-Matsuki [6, 4.12.1.2], cf. Iitaka [2, Example 11.6]). *Let* $f: Y \rightarrow X$ be a birational morphism between non-singular projective varieties.

198 SHIGETAKA FUKUDA

Suppose that $K_Y = f^*(K_X + \Delta) + \sum_{i=1}^k e_i E_i$ and that the union of Supp $\sum_{i=1}^k E_i$ and $\text{Exc}(f)$ is a divisor with only simple normal crossings. Then $f(E_i) \in \text{Strata}(\Delta)$ *for all i such that* $e_i = -1$.

Remark. We give Theorem 6 an alternative proof, using Iitaka's Loga rithmic Ramification formula [2].

Proof. We assume that $e_i = -1$ and that $f(E_i)$ is not a member of **Strata**(Δ), and we shall derive a contradiction.

Note that $f(E_i) \subset \text{Supp}(\Delta)$. Let *Γ* be the minimal member of **Strata**(Δ) which includes $f(E_j)$. We may assume that Γ is an irreducible component of $\Lambda_1 \cap \Lambda_2$ $\cap \cdots \cap A_e$ (where $e = \text{codim}(F, X)$). Note that $f(E_j) \subsetneq \Gamma$.

Take a general smooth point p of $f(E_i)$. From now in the proof of this theorem, we consider the problem analytically. There exists a neighborhood *U* of *p* in *X* and a smooth prime divisor Δ_0 on *U*, such that Δ_0 , Δ_1 , Δ_2 , \cdots , Δ_e are crossing normally and that $f(E_i) \cap U \subset \mathcal{A}_0$. We may assume that $\mathcal{A}_i \cap U = \emptyset$ for any $l > e$.

If we write

$$
K_{f^{-1}(U)} = (f|_{f^{-1}(U)})^*(K_U + A|_U + A_0) + \left(\sum_{i=1}^t d_i E_i|_{f^{-1}(U)} - E_0\right)
$$

(where E_0 is the strict transform of Δ_0 by f), then $d_0 \ge -1$ from Iitaka's Logarithmic Ramification Formula ([2, Theorem 11.5]). Therefore e_1 > -1 because $(f |_{f^{-1}(U)})^* \Delta_0 \geq E_J |_{f^{-1}(U)}$. This is a contradiction. Q.E.D.

Remark. At first the author thought that these two theorems in this section are usefull to get an estimate concerning Main Theorem.

REFERENCES

- [1] L. EIN AND R. LAZARSFELD, Global generation of pluricanonical and adjoint linear series on smooth projective threefolds, J. Amer. Math. Soc, 6 (1993), 875-903.
- [2] S. IITAKA, Algebraic Geometry, Grad. Texts in Math., 76, Springer, New York, 1981.
- [3] Y. KAWAMATA, Log canonical models of algebraic 3-folds, Internat. J. Math., 3 (1992), 351-357.
- [4] Y. KAWAMATA, K. MATSUDA AND K. MATSUKI, Introduction to the minimal model problem, Algebraic Geometry, Adv. Stud. Pure Math., 10, 1987, 283-360.
- [5] J. KOLLAR, Effective base point freeness, Math. Ann., **296** (1993), 595-605.
- [6] J. KOLLÁR AND K. MATSUKI, Termination of canonical flips, Astérisque, 211 (1992), 59-68.
- [7] Y. NORIMATSU, Kodaira vanishing theorem and Chern classes for ∂ -manifolds, Proc. Japan Acad. Ser. A Math. Sci., 54 (1978), 107-108.
- [8] M. REID, Commentray by M. Reid. § 10 of Shokurov's paper "3-fold log flips", Russian Acad. Math. Izv. Sci., 40 (1993), 195-200.

[Resume] S. FUKUDA, A note on base point free theorem, Proc. Japan Acad. Ser. A Math. Sci., 70 (1994), 173-175.

[Utah] J. KOLLÁR, Flips and abundance for algebraic threefolds, Astérisque, 211 (1992).

SUZUKA COLLEGE OF TECHNOLOGY (SUZUKA KŌSEN) SHIROKO-CHO, SUZUKA CITY, MIE PREFECTURE 510-02, JAPAN