S. FUKUDA KODAI MATH. J. 19 (1996), 191-199

ON BASE POINT FREE THEOREM

SHIGETAKA FUKUDA

§1. Introduction

Let X be a non-singular projective variety with dim X=n over C. And let $\Delta = \sum_{i=1}^{s} \Delta_i$ be a reduced divisor on X with only simple normal crossings.

Let **Strata** $(\varDelta) := \{ \Gamma | 1 \le k \le n, 1 \le i_1 < i_2 < \dots < i_k \le s, \Gamma$ is an irreducible component of $\varDelta_{i_1} \cap \varDelta_{i_2} \cap \dots \cap \varDelta_{i_k} \neq \emptyset \}$. A divisor R on (X, \varDelta) is, by definition, *nef and log big* if R is nef and big and $R|_{\Gamma}$ is nef and big for any member Γ of **Strata**(\varDelta) (due to Reid [8, 10.4]).

Note that if R is ample then R is nef and log big on (X, Δ) .

The purpose of this paper is to prove the following:

MAIN THEOREM ("log effective freeness"). Let L be a nef divisor on X such that $aL - (K_x + \Delta)$ is nef and log big on (X, Δ) for some $a \ge 0$.

Then there exists a natural number l_1 , depending only on n and a, such that the complete linear system $|l_1L|$ is base point free.

The paper is organized as follows. In Section 2 we recall known base point free theorems. In Section 3 we give a proof to Reid's "log eventual freedom" theorem in the "smooth" case. In Section 4 we prove the main theorem. In Section 5 we show some results concerning the log canonical divisor.

We follow the notation and terminology of [Utah].

The results of the present paper have been announced in [Résumé].

Acknowledgement. The author would like to thank Prof. S. Mukai for his warm encouragement.

$\S 2$. Known results concerning base point freeness

Concerning base point freeness of linear systems on higher dimensional algebraic varieties, the following results are known.

THEOREM 1 ("eventual freedom") (Kawamata-Shokurov [4, Theorem 3-1-1]). If L is a nef divisor on X and $aL-(K_x+\Delta)$ is ample for some $a \ge 0$, then |lL|

Received March 1, 1995.

SHIGETAKA FUKUDA

is base point free for every $l \gg 0$.

THEOREM 2 ("effective freeness") (Kollár [5]). Notation as in Theorem 1. There exists a natural number l_0 depending only on n and a such that $|l_0L|$ is base point free.

Proof. For $0 < d \ll 1$, $aL - (K_X + (1-d)\Delta)$ is ample and $(X, (1-d)\Delta)$ is Kawamata-log-terminal. Thus the assertion immediately follows from Kollár [5, 1.1]. Q.E.D.

THEOREM 3 ("log eventual freedom") (Reid [8, 10.4]). If L is a nef divisor on X and $aL - (K_X + \Delta)$ is nef and log big on (X, Δ) for some $a \ge 0$, then |lL| is base point free for every $l \ge 0$.

Remark. This theorem is stated in Reid [8] with the idea for its proof. We give the theorem a proof based on this idea in the next section.

This theorem is not valid under the condition that $aL - (K_X + \Delta)$ is not "nef and log big" on (X, Δ) but "nef and big" (Zariski [4, Remark 3-1-2], Kawamata [3, Introduction]).

The Main Theorem of this paper is the generalization of Theorem 2 to "log effective freeness".

§3. Norimatsu Type Vanishing and proof of Theorem 3

THEOREM 4 (cf. Ein-Lazarsfeld [1, 2.4] and Norimatsu [7]) ("Norimatsu Type Vanishing"). Let R be a nef and log big divisor on (X, Δ) . Then

$$\mathrm{H}^{i}(X, \mathcal{O}_{X}(K_{X}+\varDelta+R))=0$$
 for $i>0$.

Proof (similar to the proof of [1, 2.4]). The assertion follows from the following exact sequence by induction on (n, s), by virtue of Kawamata-Viehweg vanishing theorem:

where $\Delta = \sum_{j=1}^{s} \Delta_{j}$.

Now we give Theorem 3 a proof relying on "Norimatsu Type Vanishing" and the method of Kawamata [3].

Proof of Theorem 3 (based on Reid's idea [8, 10.4]). We shall prove the theorem by induction on $n=\dim X$. In the case where $\Delta=0$, this is a Kawamata-Shokurov result [4, Remark 3-1-2]. So we may assume that $\Delta \neq 0$.

192

For any $i \in \{1, 2, \dots, s\}$, we consider the following exact sequence:

$$0 \longrightarrow \mathcal{O}_{\mathbf{X}}(lL - \mathcal{A}_{i}) \longrightarrow \mathcal{O}_{\mathbf{X}}(lL) \longrightarrow \mathcal{O}_{\mathcal{A}_{i}}(lL) \longrightarrow 0.$$

We assume that $l \ge a$. Thus $lL - \mathcal{A}_i - (K_X + \sum_{j \ne i} \mathcal{A}_j) = lL - (K_X + \mathcal{A})$ is nef and log big on $(X, \sum_{j \ne i} \mathcal{A}_j)$.

Hence $H^1(X, \mathcal{O}_X(lL - \mathcal{A}_i)) = 0$ from Theorem 4.

And $aL|_{\mathcal{A}_i} - (K_{\mathcal{A}_i} + \sum_{j \neq i} \mathcal{A}_j|_{\mathcal{A}_i}) = (aL - (K_X + \mathcal{\Delta}))|_{\mathcal{A}_i}$ is nef and log big on $(\mathcal{A}_i, \sum_{j \neq i} \mathcal{A}_j|_{\mathcal{A}_i})$. Thus by induction hypothesis, $\operatorname{Bs}|lL|_{\mathcal{A}_i}| = \emptyset$ for every $l \gg 0$. Therefore $\operatorname{Bs}|lL| \cap \operatorname{Supp} \mathcal{A} = \emptyset$ for every $l \gg 0$.

From now, we use the technique of Kawamata [3, Proof of Lemma 2]. Now fix a prime number p. We claim that $\operatorname{Bs}|p^m L| = \emptyset$ for $m \gg 0$.

Take a sufficient large natural number m_0 such that $Bs|p^{m_0}L| \cap Supp \Delta = \emptyset$. We assume that $Bs|p^{m_0}L| \neq \emptyset$.

Take a log resolution $\mu: Y \to X$ (all relevant divisors F_j are smooth and cross normally) such that

- (a) $K_Y = \mu^*(K_X + \Delta) + \sum_j a_j F_j$,
- (b) $|\mu^*(p^{m_0}L)| = |M| + \sum_j r_j F_j$ (|M| is the movable part and is free), and
- (c) $\mu^*(aL (K_X + \Delta)) \sum_j \delta_j F_j$ is ample (where $\delta_j \in Q$ and $0 \leq \delta_j \ll 1$).

Let $c := \min_{r_j \neq 0} ((a_j + 1 - \delta_j)/r_j).$

Here c>0, because if $a_j=-1$ then $\mu(F_j) \subset \text{Supp } \Delta$ and therefore $r_j=0$.

We may assume that the minimum is attained at exactly one value $j=j_0$. Note that $F_{j_0} \cap \mu^{-1}(\varDelta) = \emptyset$.

Put $A := \sum_j (-cr_j + a_j - \delta_j)F_j$ and $A' := \lceil (A + F_{j_0} + \mu^{-1}(\varDelta)) \rceil = \lceil A \rceil + F_{j_0} + \mu^{-1}(\varDelta)$ (where $\mu^{-1}(\varDelta)$ denotes the set theoretical inverse image with a reduced structure).

Then $A' \ge 0$ and $\mu_* A' = 0$.

We consider a Q-divisor $N := \mu^*(p^m L) + A - K_Y \equiv cM + \mu^*((p^m - cp^{m_0})L - (K_X + \Delta)) - \sum \delta_j F_j.$

If $p^m - cp^{m_0} \ge a$, then N is ample and hence $H^1(Y, \mathcal{O}_Y(\mu^*(p^m L) + \lceil A \rceil)) = 0$. We consider the following exact sequence:

$$0 \longrightarrow \mathcal{O}_{\mathbf{Y}}(\mu^{*}(p^{m}L) + \lceil A \rceil) \longrightarrow \mathcal{O}_{\mathbf{Y}}(\mu^{*}(p^{m}L) + A')$$
$$\longrightarrow \mathcal{O}_{F_{10}}(\mu^{*}(p^{m}L) + A') \bigoplus \mathcal{O}_{\mu^{-1}(d)}(\mu^{*}(p^{m}L) + A') \longrightarrow 0.$$

By the Nonvanishing theorem of Shokurov,

$$\mathrm{H}^{0}(F_{\mathcal{J}_{0}}, \mathcal{O}_{F_{\mathcal{J}_{0}}}(\mu^{*}(p^{m}L) + A')) \neq 0 \quad \text{for } m \gg 0,$$

because $p^m \mu^* L |_{F_{j_0}} + (A + F_{j_0} + \mu^{-1}(\Delta))|_{F_{j_0}} - K_{F_{j_0}} = (\mu^*(p^m L) + A - K_Y)|_{F_{j_0}} = N|_{F_{j_0}}$ is ample.

Thus, for $m \gg 0$, Bs $|p^m L|$ does not include $\mu(F_{j_0})$ but Bs $|p^{m_0}L|$ includes $\mu(F_{j_0})$. Hence the method of KMM [4, Theorem 3-1-1] implies the theorem. Q. E. D.

SHIGETAKA FUKUDA

\S 4. Main theorem (log effective freeness)

MAIN THEOREM ("log effective freeness"). Assume that L is a nef divisor on X and that $aL-(K_x+\Delta)$ is nef and log big an (X, Δ) for some $a \ge 0$. Then there exists a natural number f(n, a) (which is $\ge a$), depending only on n and a, such that the complete linear system |f(n, a)L| is base point free.

LEMMA 1. Let L be a nef divisor on X such that $aL - (K_X + \Delta)$ is nef and log big on (X, Δ) for an integer $a \ge 0$. Then Bs $|f(n-1, a)L| \cap \Delta = \emptyset$.

Proof. Put $m_1 := f(n-1, a)$. We consider the exact sequence

 $0 \longrightarrow \mathcal{O}_{X}(m_{1}L - \mathcal{A}_{i}) \longrightarrow \mathcal{O}_{X}(m_{1}L) \longrightarrow \mathcal{O}_{\mathcal{A}_{i}}(m_{1}L) \longrightarrow 0$

for all $1 \leq i \leq s$. By Theorem 4, $H^1(X, \mathcal{O}_X(m_1L - \mathcal{\Delta}_i)) = 0$ because $m_1L - \mathcal{\Delta}_i - (K_X + \sum_{j \neq i} \mathcal{\Delta}_j)$ is nef and log big on $(X, \sum_{j \neq i} \mathcal{\Delta}_j)$. Here $\operatorname{Bs}|m_1L|_{\mathcal{\Delta}_i}| = \emptyset$, because $aL|_{\mathcal{\Delta}_i} - (K_{\mathcal{\Delta}_i} + \sum_{j \neq i} \mathcal{\Delta}_j|_{\mathcal{\Delta}_i})$ is nef and log big on $(\mathcal{\Delta}_i, \sum_{j \neq i} \mathcal{\Delta}_j|_{\mathcal{\Delta}_i})$. Thus $\operatorname{Bs}|m_1L| \cap \mathcal{\Delta} = \emptyset$. Q. E. D.

Let $g: X \to S$ be the morphism defined by the linear system |lL| for $l \gg 0$ (Theorem 3). Here there exists a Cartier divisor L_s on S such that L is linearly equivalent to g^*L_s , because $\Phi_{|lL|} = \Phi_{|(l+1)L|} = g$ for $l \gg 0$. We may assume that $L = g^*L_s$.

For any effective divisor H on X which is linearly equivalent to mL for $m \in \mathbb{N}$, there exists a divisor H_S on S such that $H = g^*H_S$, because $\Phi_{|lH|} = \Phi_{|(l+1)H|} = g$ for $l \gg 0$.

Because $g_*\mathcal{O}_{\mathfrak{X}} = \mathcal{O}_S$, for any Cartier divisor D on S such that g^*D is linearly equivalent to 0, $\mathcal{O}_S \cong g_*g^*\mathcal{O}_S(D) = g_*\mathcal{O}_{\mathfrak{X}} \otimes_{\mathcal{O}_S} \mathcal{O}_S(D) = \mathcal{O}_S(D)$.

Thus $|mL| = g^* |mL_s|$ for any $m \in \mathbb{N}$.

LEMMA 2. Let m be a natural number such that $|mL| \neq \emptyset$ and $Bs|mL| \cap \Delta = \emptyset$.

Let Z_s be an irreducible component of $Bs|mL_s|$ and set $k=codim(Z_s, S)$. Then $Bs|(km+j+a+1)L_s|$ does not include Z_s for $j \ge 0$ except at most dim Z_s different values of j.

Proof (using Kawamata-Shokurov-Kollár's method [5]). Taking general elements $B_i \in |mL|$, put $B = (1/2m)B_0 + B_1 + \cdots + B_k$. Then $(X, \Delta + B)$ is log canonical outside Bs|mL| and $(X, \Delta + B)$ is not log canonical at the points belonging to the inverse image of the generic point of Z_s by g (by the argument of Kollár [5, 2.2.1]).

Let $M_0 := aL - (K_X + \Delta) + (1/2)L$.

Take a log resolution $f: Y \rightarrow X$ (*i.e.* Y is smooth and all relevent divisors are smooth and cross normally). Let

$$K_{\mathbf{Y}} = f^*(K_{\mathbf{X}} + \Delta) + \sum_{i} e_i E_i \quad (e_i \ge -1);$$

$$f^*B = \sum_{i} b_i E_i;$$

$$f^*M_0 = A + \sum_{i} p_i E_i \quad (A \text{ is an ample } \mathbf{Q} \text{-divisor and } 0 \le p_i \ll 1).$$

Put $c := \min \{(e_i + 1 - p_i)/b_i | Z_s \subset gf(E_i); b_i > 0\}$. By changing the p_i slightly, we may assume that the minimum is achieved for exactly one index. Let us denote the corresponding divisor by E_0 .

Put $W := \bigcup_{e_i - b_i < -1} gf(E_i)$.

Claim 1. 0 < c < 1.

Proof of Claim 1. We prove c>0. If $Z_s \subset gf(E_i)$, $b_i>0$ and $e_i=-1$, then $f(E_i) \subset \mathcal{A}$. But this can not occur, because $g^{-1}(Z_s) \cap \mathcal{A} = \emptyset$ from $\operatorname{Bs}|mL| \cap \mathcal{A} = \emptyset$.

Next we prove c < 1. Let z be a scheme-theoretic point on X such that g(z) is the generic point of Z_s . Because $(X, \Delta + B)$ is not log canonical at z, $z \in f(E_j)$ and $e_j - b_j < -1$ for some j. Q. E. D.

CLAIM 2. Put $c' := \max\{(e_i+1)/b_i | e_i+1 < b_i\}$. Then $c \leq c' < 1$ and c' is not affected by p_i 's.

Proof of Claim 2. From the proof of Claim 1, $(e_j+1)/b_j < 1$ and $gf(E_j) \supset Z_s$ for some j. Q. E. D.

CLAIM 3. If W does not include $gf(E_i)$, then $cb_i - e_i + p_i < 1$ or $f(E_i) \subset \mathcal{A}$.

Proof of Claim 3. Here $e_i - b_i \ge -1$. If $b_i \ne 0$, then $e_i - cb_i \ge e_i - c'b_i > -1$ by Claim 2. If $b_i=0$ and $e_i > -1$, then $e_i - cb_i = e_i > -1$. If $b_i=0$ and $e_i = -1$, then $f(E_i) \subset \mathcal{A}$. Q. E. D.

CLAIM 4. $gf(E_0)=Z_s$. If $cb_i-e_i+p_i\geq 1$ and $i\neq 0$, then $gf(E_i)$ does not include Z_s .

Proof of Claim 4. If $cb_i - e_i + p_i \ge 1$, then $gf(E_i) \subset W$ or $f(E_i) \subset \mathcal{A}$, by Claim 3. Because $cb_0 - e_0 + p_0 = 1$, $Z_S \subset gf(E_0)$ and $g^{-1}(Z_S) \cap \mathcal{A} = \emptyset$, we get $gf(E_0) \subset W$. Here Z_S is an irreducible component of W. Thus $gf(E_0) = Z_S$. If $cb_i - e_i + p_i \ge 1$ and $Z_S \subset gf(E_i)$, then $p_i < 1 + e_i$, because \mathcal{A} does not include $f(E_i)$. So $b_i > 0$. Thus $c = (e_i + 1 - p_i)/b_i$ by the definition of c. Hence i = 0. Q. E. D.

CLAIM 5. If $cb_i - e_i + p_i < 0$, then E_i is f-exceptional.

Proof of Claim 5. Because c > 0 (Claim 1), $e_i > 0$. Thus E_i is f-exceptional. Q. E. D. Proof of Lemma 2 Continued. Let $N_j := (km+j+a+1)L$ and $N'_j := f^*N_j - \sum_{i \neq 0} \lfloor cb_i - e_i + p_i \rfloor E_i$.

We consider the exact sequence

$$0 \longrightarrow \mathcal{O}_{Y}(N'_{j} - E_{0}) \longrightarrow \mathcal{O}_{Y}(N'_{j}) \longrightarrow \mathcal{O}_{E_{0}}(N'_{j}) \longrightarrow 0.$$

Note that

$$N'_{j} - E_{0} \equiv K_{Y} + A + (1 - c)f^{*}B + jf^{*}L + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i}$$

and

$$N'_{j|_{E_{0}}} \equiv K_{E_{0}} + (A + (1 - c)f^{*}B + jf^{*}L)|_{E_{0}} + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - e_{i} + p_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - cb_{i} + b_{i}\} E_{i|_{E_{0}}} + \sum_{i \neq 0} \{cb_{i} - cb_{i}\} + \sum$$

By Claim 1, Kawamata-Viehweg vanishing implies $H^1(Y, \mathcal{O}_Y(N'_j - E_0)) = 0$ and $h^0(E_0, \mathcal{O}_{E_0}(N'_j)) = \chi(\mathcal{O}_{E_0}(N'_j))$.

 $h^{0}(E_{0}, \mathcal{O}_{E_{0}}(N'_{j}))$ is a nonzero polynomial of degree dim Z_{s} in j for $j \ge 0$ (by the argument of Kollár [5, p. 600]).

By Claim 4 and Claim 5, $Bs|N_j|$ does not include $f(E_0)$ for all $j \ge 0$ except at most dim Z_s different values of j.

Noting that $Bs|N_j|=g^{-1}Bs|(km+j+a+1)L_s|$, we end the proof of this lemma. Q.E.D.

Proof of Main Theorem. By using Lemma 1 and Lemma 2, the same argument as in Kollár [5, 2.3] implies the theorem. Q. E. D.

Remark. The function f(n, a) is given as follows.

When n=1, we put $f(1, a) := 2^{2}(1+1)!(a+1)$.

When $n \ge 2$, we put $f(n, a) := 2^{n+1}(n+1)!(a+n)f(n-1, a)$.

Thus $f(n, a) = \prod_{i=1}^{n} (2^{i+1}(i+1)! (a+i)).$

Proof of the Remark Above. When n=1, if $\Delta \neq 0$, then $Bs|2(a+1)L| \cap \Delta = \emptyset$ from the proof of Lemma 1, because $2(a+1) \ge a$. If $\Delta = 0$, then $|2(a+1)L| \ne \emptyset$ from Kollár [5, 2.4]. Therefore $Bs|2^{i}(1+1)!2(a+1)L|=\emptyset$ from the argument of Kollár [5, 2.3], by using Lemma 2.

When $n \ge 2$, if $\Delta \ne 0$, then Bs $|2(a+n)f(n-1, a)L| \cap \Delta = \emptyset$ from Lemma 1. If $\Delta = 0$, then $|2(a+n)L| \ne \emptyset$ from Kollár [5, 2.4], thus $|2(a+n)f(n-1, a)L| \ne \emptyset$. Therefore Bs $|2^n(n+1)! 2(a+n)f(n-1, a)L| = \emptyset$ from the argument of Kollár [5, 2.3], by using Lemma 2. Q. E. D.

§5. Appendix

In this section we show some results concerning the log canonical divisor $K_x + \Delta$.

196

THEOREM 5. Assume that L is a nef divisor on X and that $aL-(K_X+\Delta)$ is nef and log big on (X, Δ) for some $a \ge 0$. Let Γ be a member of Strata (Δ) and $d := \dim \Gamma$. Then Bs|mL| does not include Γ for every $m \ge 2(d+a)$.

Remark. For the proof, we use the following two propositions.

PROPOSITION 1. Let R be a nef and log big divisor on (X, Δ) and Γ a member of Strata(Δ). Let $\pi: \tilde{X} \to X$ be the blow up with center Γ and E the exceptional divisor. Then

$$\begin{array}{l} 0 \longrightarrow H^{\scriptscriptstyle 0}(\widetilde{X}, \ \mathcal{O}_{\widetilde{X}}(\pi^*(K_X + \varDelta + R) - E) \longrightarrow H^{\scriptscriptstyle 0}(\widetilde{X}, \ \mathcal{O}_{\widetilde{X}}(\pi^*(K_X + \varDelta + R))) \\ \longrightarrow H^{\scriptscriptstyle 0}(E, \ \mathcal{O}_{E}(\pi^*(K_X + \varDelta + R))) \longrightarrow 0 \end{array}$$

is exact and $\mathcal{O}_E(\pi^*(K_X + \varDelta + R)) \cong \pi|_E^* \mathcal{O}_\Gamma(K_X + \varDelta + R).$

Proof. Let $e := \operatorname{codim}(\Gamma, X)$. We may assume that $\Gamma \subset \mathcal{A}_1 \cap \mathcal{A}_2 \cap \cdots \cap \mathcal{A}_e$. Let \mathcal{A}'_i be the strict transform of \mathcal{A}_i . Thus $\pi^*(K_X + \mathcal{A} + R) - E = K_{\tilde{X}} - (e-1)E + \pi^*(\mathcal{A}_1 + \mathcal{A}_2 + \cdots + \mathcal{A}_e) + \sum_{i > e} \mathcal{A}'_i + \pi^*R - E = K_{\tilde{X}} - (e-1)E + \sum_i \mathcal{A}'_i + eE + \pi^*R - E = K_{\tilde{X}} + \sum_i \mathcal{A}'_i + \pi^*R$ and π^*R is nef and log big on $(\tilde{X}, \sum_i \mathcal{A}'_i)$ (where $\sum_i \mathcal{A}'_i$ is with only simple normal crossings). Therefore, by Theorem 4, $H^1(\tilde{X}, \mathcal{O}_{\tilde{X}}(\pi^*(K_X + \mathcal{A} + R) - E)) = 0$. Q. E. D.

Remark. Let Γ be a member of **Strata**(Δ). We may assume that

(*)
$$\Gamma \subset \mathcal{A}_1 \cap \mathcal{A}_2 \cap \cdots \cap \mathcal{A}_e$$
 (where $e = \operatorname{codim}(\Gamma, X)$).

Then $(K_X + \Delta)|_{\Gamma} = (K_X + \Delta_1 + \Delta_2 + \dots + \Delta_e + \sum_{i>e} \Delta_i)|_{\Gamma} = K_{\Gamma} + \sum_{i>e} \Delta_i|_{\Gamma}$.

PROPOSITION 2. Let L be a nef divisor on X such that $aL - (K_X + \Delta)$ is nef and log big on (X, Δ) for some $a \ge 0$. Let Γ be a member of Strata (Δ) and $d := \dim \Gamma$. Then $H^0(\Gamma, \mathcal{O}_{\Gamma}(mL)) \ne 0$ for every $m \ge 2(d+a)$.

Proof. We may assume (*) in the remark above. If $m \ge a$, then

$$(mL)|_{\Gamma} = K_{\Gamma} + \sum_{i>\sigma} \Delta_i |_{\Gamma} + (mL - (K_X + \Delta))|_{\Gamma}$$
,

where $(mL - (K_X + \Delta))|_{\Gamma}$ is nef and log big on $(\Gamma, \sum_{i>e} \Delta_i|_{\Gamma})$. Thus $h^o(\Gamma, \mathcal{O}_{\Gamma}(mL))$ is a polynomial in *m* for $m \ge a$, of degree at most *d*, by Theorem 4. Note that $h^o(\Gamma, \mathcal{O}_{\Gamma}(mL))$ is a nonzero polynomial by Theorem 3. Thus the same argument as in Kollár [5, 2.4] implies the assertion. Q. E. D.

Proof of Theorem 5. Let $R := mL - (K_X + \Delta)$. Then the assertion follows from Proposition 1 and Proposition 2. Q. E. D.

THEOREM 6 (Kollár-Matsuki [6, 4.12.1.2], cf. litaka [2, Example 11.6]). Let $f: Y \rightarrow X$ be a birational morphism between non-singular projective varieties.

SHIGETAKA FUKUDA

Suppose that $K_Y = f^*(K_X + \Delta) + \sum_{i=1}^t e_i E_i$ and that the union of $\operatorname{Supp} \sum_{i=1}^t E_i$ and $\operatorname{Exc}(f)$ is a divisor with only simple normal crossings. Then $f(E_i) \in \operatorname{Strata}(\Delta)$ for all i such that $e_i = -1$.

Remark. We give Theorem 6 an alternative proof, using litaka's Logarithmic Ramification formula [2].

Proof. We assume that $e_j = -1$ and that $f(E_j)$ is not a member of **Strata**(\mathcal{A}), and we shall derive a contradiction.

Note that $f(E_j) \subset \operatorname{Supp}(\Delta)$. Let Γ be the minimal member of $\operatorname{Strata}(\Delta)$ which includes $f(E_j)$. We may assume that Γ is an irreducible component of $\Delta_1 \cap \Delta_2 \cap \cdots \cap \Delta_e$ (where $e = \operatorname{codim}(\Gamma, X)$). Note that $f(E_j) \subsetneq \Gamma$.

Take a general smooth point p of $f(E_j)$. From now in the proof of this theorem, we consider the problem analytically. There exists a neighborhood U of p in X and a smooth prime divisor Δ_0 on U, such that Δ_0 , Δ_1 , Δ_2 , \cdots , Δ_e are crossing normally and that $f(E_j) \cap U \subset \Delta_0$. We may assume that $\Delta_l \cap U = \emptyset$ for any l > e.

If we write

$$K_{f^{-1}(U)} = (f|_{f^{-1}(U)})^* (K_U + \Delta|_U + \Delta_0) + \left(\sum_{i=1}^{t} d_i E_i|_{f^{-1}(U)} - E_0\right)$$

(where E_0 is the strict transform of Δ_0 by f), then $d_j \ge -1$ from litaka's Logarithmic Ramification Formula ([2, Theorem 11.5]). Therefore $e_j > -1$ because $(f|_{f^{-1}(U)})^* \Delta_0 \ge E_j|_{f^{-1}(U)}$. This is a contradiction. Q. E. D.

Remark. At first the author thought that these two theorems in this section are usefull to get an estimate concerning Main Theorem.

References

- [1] L. EIN AND R. LAZARSFELD, Global generation of pluricanonical and adjoint linear series on smooth projective threefolds, J. Amer. Math. Soc., 6 (1993), 875-903.
- [2] S. IITAKA, Algebraic Geometry, Grad. Texts in Math., 76, Springer, New York, 1981.
- [3] Y. KAWAMATA, Log canonical models of algebraic 3-folds, Internat. J. Math., 3 (1992), 351-357.
- [4] Y. KAWAMATA, K. MATSUDA AND K. MATSUKI, Introduction to the minimal model problem, Algebraic Geometry, Adv. Stud. Pure Math., 10, 1987, 283-360.
- [5] J. KOLLÁR, Effective base point freeness, Math. Ann., 296 (1993), 595-605.
- [6] J. KOLLÁR AND K. MATSUKI, Termination of canonical flips, Astérisque, 211 (1992), 59-68.
- Y. NORIMATSU, Kodaira vanishing theorem and Chern classes for ∂-manifolds, Proc. Japan Acad. Ser. A Math. Sci., 54 (1978), 107-108.
- [8] M. REID, Commentray by M. Reid. §10 of Shokurov's paper "3-fold log flips", Russian Acad. Math. Izv. Sci., 40 (1993), 195-200.

198

[Résumé] S. FUKUDA, A note on base point free theorem, Proc. Japan Acad. Ser. A Math. Sci., 70 (1994), 173-175.

[Utah] J. KOLLÁR, Flips and abundance for algebraic threefolds, Astérisque, 211 (1992).

Suzuka College of Technology (Suzuka Kōsen) Shiroko-cho, Suzuka City, Mie Prefecture 510-02, Japan