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ON THE VALUE DISTRIBUTION OF // (

CHUNG CHUN YANG* AND PEI CHU HU

Abstract

Let / be a transcendental entire function. In this paper we will prove
that if / is of finite order, then there exists at most one integer k^2 such
that // ( A 0 may have non-zero and finite Picard exceptional value. We also
give a class of entire functions which have no non-zero finite Picard values.
If / is a transcendental meromorphic function, we obtain that for non-negative
integers n,nlt f nk with n ^ l , nx-\ \-nk^l} if δ(0,/)>3/(3n+3nH \-Znk

+1), then fn(f/)7ll'"(fk)nk has no finite non-zero Picard values.

I. Introduction and main results

Let / be a transcendental meromorphic function. In 1959, W. K. Hayman
[4] proved that if n is an integer satisfying n^3, then fnf takes every
non-zero complex value a infinitely often. He conjectured [5] that this remains
valid for n = l and n=2. The case n=2 was settled by E. Mues [9] on 1979.
The case n = l is still open.

J. Clunie [3] proved that Hayman's conjecture is true when / is entire and
n = l. W. Hennekemper [7] extended Clunie's result and proved

(1) T{r, f)<U+—τ)\N<r, /)+JV(-—F_-fi )\+S(r, f)

for k^N, C E C - { 0 } , where the argument used here is based on the Nevanlinna
theory, its associated standard symbols and notations, see, e.g. [6]. Particularly,
S(r, f) will be used to denote any quantity that satisfies S(r, f)=o{T(r, /)} as
r-+oo and rφ.E with E being a set of r values of finite linear measure. W.
Bergweiler and A. Eremenko [2] proved this for functions of finite order.
Recently, Q. Zhang [16] extended Hennekemper's result (1) for k—l and c is
replaced by any small function a{z) (^0) of/, i.e. a(z) satisfies T(r, a)=S(r, /).
W. Bergweiler [1] proved that if / is a transcendental meromorphic function of
finite order and if a is a polynomial which does not vanish identically, then
ff'—a has infinitely many zeros.
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Recently a conjecture was raised in [14], it states that for any integer k^>2,
and nonzero value c, the function ff{k) — c has infinitely many zeros. More
generally is it true that for any non-negative integers n, nu •••, nk with w=l,
nx+ ••• + n * ^ l and for any non-zero value c, the function fn(f')ni ••• (f(kψk — c
always has infinitely many zeros? C.C. Yang, L. Yang and Y.F. Wang [15]
proved that if / is a transcendental entire function and if n, k are non-negative
integers with n ^ 2 and fc^O, then the only possible Picard value of / ( / ( f e ) ) n is
the value zero. In this note we shall provide some results in towards to a
complete solution of the conjecture.

THEOREM 1. Let f be a transcendental entire function of finite order. Then
there exists at most one integer k>2, such that ff(k) has a non-zero and finite
exceptional value.

T H E O R E M 2. Take non-negative integers n, nu •••, nk with n ^ l , nγ-\- •••
* ^ l and define d=n-\-nι-\- ••• +w*. Let f be a transcendental meromorphic

function with 5(0, / )>3/(3d + l). TAβw /or αn y non-zero value c, the function
fn(f')nι ••• (f(k))nk — c always has infinitely many zeros.

T H E O R E M 3. Take clf c2, c 3 e C , k<=N with K0=2k + l+2cίφ0, and define

(2) P{f)={fΎ+cJ(fγ-*f''+cJKf')k-\n2+cJ\f>)k-*f»>

where cl=c2=ci=0 if k — l, Cι—cz—Q if k—2 and c2=0 if k=3. Write

(3) K ^

( 4 )

( 5 )

Assume that (i) c^+Cι+CtΦ-1 and (l+c1+c2+c3)X2+(cl+2cz-{-3c3)X+cz+2c^0
has no roots of positive integers; (ii) AφO and B/AψN— {1}. // / is a trans-
cendental meromorphic function, then, for C G C - { 0 } ,

(6) T(r, /)<;(4+
T
i
T
){ff(r, f)+N(r,

 fp
^
f)
_
c
)}+S(r, f).

Remarks. If k — l, Theorem 3 yields Clunie's result. If n>2, then the
deficient condition in Theorem 2 can be omitted, see e.g. [11]. Furthermore,
when n—\, d^l, and Nλ(r, l//)=5(r, /) , then Zhang-Li [17] obtained some
results similar to that of Theorem 2. Also see [10].

2. Proof of Theorem 1

We first prove the following key point in the verification of Theorem 1.
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LEMMA. Let pt(z) (^έθ, ι = l, 2) and q^z) (^constants, ι — \, 2)

nomials, with degί7i=deg<72, and ax and a2 are two constants. If

ι = l, 2,

159

some poly-

mL « i ± ί ! * L \ = β ( 1 ) T ( r >
V a<>-\-ϋ<>eqΊ/

then qγ and q2 have the same leading coefficient.

Proof. By definition,

m\r, —
\ α9a2+p2e

q*2/ 2π)
log+ aι+p1(reiθ)eqi(re

dθ

Let qJ{z)=bh2*+bJιs*-1+ ••• + ^ ί . 1 2 ' + ^ β Q^h 7 = 1, 2 and
Then clearly on | z | = r , for z<=J0)= {θ |Re ^ 0

i θ i θ

0

7 = 1,2, the value
0

aj+pj(reiθ)eqj<reiθ)\, (; = 1, 2) is dominated by the term e%*. Thus if
(either arg^ l o^arg^2o or arg ̂ 1 0 =arg b20), the integrand in /, when r>r0 will be
^εrq for some fixed ε>0 along a piece of arc Jf on | z | = r with meas/*^c o >O,
ô is a fixed positive number depends on q. Hence there exists a positive number

ε0 such that when r>r0

m(r> £ i=l, 2,

a contradiction. The lemma is thus proved.
Now we proceed to prove the theorem by contradiction.
Assume that there exist two distinct integers kγ and k2 &i>&2^2 and

constants ax and a2 such that both ffikl) — ax and ff<k2> — a2 have only finitely
many zeros. By this and the fact that / is of finite order, we have

(7)

and

(8)

where pt (^0) and qt(z) (^constant) are polynomials.
It follows that

(9) ff^ = a1+pι^

and

(10)

Hence

(11)



160 CHUNG CHUN YANG AND PEI CHU HU

We recall that kλ>k2. By applying the lemma of logarithmic derivative to
(11), we have

(12) m(r, /££)=S(r, /(*«>)=S(r,

On the other hand, it is not difficult to verify that for any entire function
/ of finite order, ff(k) and / have the same order. Thus we have deg<7i=
άegq2. Hence it follows from (12) and the lemma we conclude immediately
that <7i and q2 have the same leading coefficient. Hence

where b=blo=b2O, and At(z) (* = 1, 2) are functions of order no greater than q—1.
In the following we shall treat two cases (i) aί=a2 and (ii) aλψa2 separately.

Case (i) ax—a2. Then from equations (9) and (10), we obtain

(13) / ( / ( * i ) - / ( * ) ) = β 6 β β ( M i - ί . Λ ) .

If /(*i)-/(*2)=0 then this yields / ( z ^ Σ ί - i ^ ' * 1 , where pt ( ι=l , 2, •••, q)
are roots of the unity and c% (i=l, 2, •••, q) are constants.

Substituting the form of / into (9) or (10) and then applying lemma on
Borel type of identity [12], we can easily derive a contradiction.

Thus /<*i>—/<*2>:£0 and it follows from (13) and the fact that the order of
(pιAι—p2A^)iLq—l, we have

N(r, \)<N\ fJ- p1Aί-p2A2

= O(l)re"1.

Hence / assume the form:

(14) f(z)=h(z)ee",

where T(r, h)=O{l)rq~ι and c is a constant ^0.
Substituting this into either (9) or (10) and applying lemma on Borel type

of identity again, we will derive a contradiction.
Now case (ii): axψa2. Let axja2—ά for some constant d (=£()). Then

equation (10) is equivalent to

Combining this and (9), and by following arguments similar to case (i)'s proof,
we will arrive at the same contradiction.

This also completes the proof of the theorem.
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3. Proof of Theorem 2

We first prove the following key point in the verification of Theorem 2.

T H E O R E M 4. Take non-negative integers n, nly •••, nk with n1-\- •
and define

(15) d^n + nλ+ ••• +nk, w =

Let f be a transcendental meromorphic function and set

(16) φ=af»(f')»i >»(/<*>)»> ( α e C - { 0 } ) .

Then either

(17) (3d-2)T(r, f)<(3d+w(r, y)+4iv(r, ^-^-2N(r, ^~)+S(r, f)

or φ satisfies the identity

(18) (W-n)^

Proof. If Ni(r, f) counts simple poles of / and if Nt(r, f) counts multiple
poles of /, each counted only once irrespective of multiplicity, then

(19) N(r, f)=Nι(r, f)+Nt(r, f),

(20) N1(r, f)+2N,(r, f)<N(r,

Note that (see Hu [8])

(21) dT{r, mN(r, f)+dN(r, j

Then (20) and (21) imply

(22) (d-DNάr, f)+(2d-l)Nt(r, f)<dN(r, j ^

+S(r, /).

Suppose that z0 is a simple pole of /. Then we may write

(23) / ( 2 ) = — * — + fj bt(z-zty (bΦO)
Z — ZQ 1=0

near z=z0. Consequently

(24) ^ ) = _A
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where

(25) λ=abd(-l)w-dn(i\)n*.

Then we have

0'(*) ~ z - z 0

+ u ft +

near z=z0. Combining (26) and (27) we obtain, near z~

Noting that, near z=z0,

Then

By (28), (30), it follows that, near z=z0,

( 3 1 ) h ( z ) : ^ ^

=O(z-z0).

Now suppose that (18) is not true, i.e., Λ^O. Then h(zo)=O, and thus we have

(32) N.ir, mN(r, j).

Applying Jensen's formula to h> (32) yields

(33) Nfc, f)<m(r, h)+N(r9 A)+O(l)=ΛΓ(r, h)+S(r, / ) .

Note that h(z) can only have simple poles at zeros and poles of φ'y φ—\ and /
which are not simple poles of /. Thus

(34) N(r, h)^N2(r, /)+βJv(r, j

where e = l if nΦO, and ε=0 if n=0. Therefore by (22), (33) and (34), we
have
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(35) (3d-2)Nί(r, f)<dN(r, l)+e(2</-l)jv(r, j)+2dN(r, ^~~

Multiply (35) by d/(3d-2) and add to (22) to obtain

(36) (3d-2)N(r, f)^2dN(

Hence (21) and (36) yield

(37) (3<f-2)T(r, f)^

Now (17) follows from (37). Q. E. D.

Now we proceed to prove Theorem 2 by contradiction.
Assume that there exists c<=C— {0} such that fn(f')nι ••• (f(k))Uk — c has only

finitely many zeros. Set a = l/c and define ψ by (16). Then

(38) N(r, ̂ z τ ) =

If (17) is true, then

It follows that

i.e., 3(0, /)^3/(3d+l), which is a contradiction.

Now suppose that (18) is true. Integrating (18) to obtain

(39) (ψ'T/iψ— l)ι—cjf2n

where m=w — n, l=(n/w)+w + l—n, c^C— {0}. Solving (39) to obtain

1

Then (38) and (40) (or (39)) yield
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Hence (21), (38) and (41) imply

(d-l)T(r, mS(r, f)

which is impossible.

Thus we complete the proof of Theorem 2.

4. Proof of Theorem 3

Set b—\/c and consider the following differential polynomial

(42) φ=bfP(f)

where P(f) is defined by (2). Define

(43) * = - ^ p

and

(44) F^i^-KoKz

+(2Kl--K0Kι+K0K2--K0Ks-2Kί)h2h'

+(KoKι-Kl)hh"-KoK1h*Bo.

According to W. Hennekemper [7], we prove the following properties:

(iii) If z0 is a p-ίo\ά zero of /, then z0 is at least a p4olά zero of F;
(iv) F don't vanish identically
(v) T(r, F)^4iV(r, /)+4J7(r, l/(ψ-ϊ))+S(r, / ) .

Firstly, we prove (iii). Trivially one see

(45) ψ'+hψ-h=0.

Differentiating (45) successively we obtain

(46) ψ"+hψ'+hfψ-h'^,

(47) ψ'ff+hψ"+2hfψ'+h"ψ-h"=0.

If p=l, then by (42) and (2), we obtain

(48) #*o)=O,

(49) ψ'(zo)=b(f'(zo))k+\

(50) ψ"{zo)=bKQ{f'{z«))kf'f{z»),

(51) 0%*o)=Mfi(/^o))VW^

By (45), (48) and (49), we have
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(52) λ(*o)=&(/'(*o))*+1.

By (46), (48)-(50) and (52), then

(53) h'(zo)=(h(zo)y+Koh(zo)f"(zo)/f'(zo)

and (47)-(53) yield

(54) A * ( ί , ) = / f 1 A ( z , ) ^ ^ ^ i f ^

Note that Bo is regular at z—z0 according to (52) and (53), and that

Substituting (52)-(55) into (44), by simple computation we see F(zo)=0.
If p^2, then z0 is at least (& + l)(/>—l)-fold zero of h. Hence zQ is at least

zero point of F of order 2(fe + l)(/>—1)—2(^/>). Thus we obtain (iii).
Next we prove (iv). If z0 is a pole of / of order p, writing

near ^^^o. We have, near ^=2 0 ,

where

(56) α ^ K - α ) " ί *

By the condition (i), we see άφQ. Hence, near z—z^ we have Laurent
expansions

h=(k(p+ΐ)+p)/(z-zo)+ -

F=a'/(z-zoy+
where

(57)

The condition (ii) implies a'ΦO, thus
Now we proceed to prove (iv) for entire functions / by contradiction.

Assume that there exists an entire function / such that F=Q. Then we have

(58) K\
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Note that the sum of the coefficients of ψ is

Obviously, the sum of the coefficients of ψa) is (k+l)ιa0. Hence the sum of
the coefficients of former five summands in (58) is

Let σ2 denote the sum of the coefficients of later four summands in (58). By-
using the theory of Wiman-Valiron (see [13]), there exists complex sequences
{ξn\, iδn} and {Δn} ( n = l , 2, •••) such that

l im |£ n |=oo, limdn=:

and for all weTV,

(60) 0<\f(ξn)\=M(\ξn\, f),

where we apply the formula (8) of Chapter I from [13], into (58) to obtain (61).
Thus for all neiV, we have

which implies σx=0 since / is transcendental with

We get a contradiction. This complets the proof of (iv).
By the definition of F, we see

(62) mir, F)=S(r, / ) .

Note that poles of F only come from poles of / and zeros of φ—1; its multi-
plicities are 4 at most. Hence

(63) N(r, F)£

Thus (v) follows.
Finally, we prove Theorem 3. By (iii), (iv) and (v), we have

(64) JV(r, j)^N(r, j)^T(r9 F)+O(l)^4Jv(r, ^γ)+4iV(r, f)+S(r, f)
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Theorem 1 of Hu [8] yields

(65) T{r, mj^Nir, f)+N(r, j)+^N(rf ^)+S(r, f).

Then (6) follows from (64) and (65). Q. E. D.
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