H. TSUJI KODAI MATH. J. 19 (1996), 137–143

ON THE UNIVERSAL COVERING OF PROJECTIVE MANIFOLDS OF GENERAL TYPE

Hajime Tsuji

1. Introduction

Around 1970, S. Kobayashi proposed the following conjecture ([3]).

CONJECTURE 1. Let M be a compact Kähler manifold. Suppose that M is measure hyperbolic. Then M is of general type.

We note that a compact complex manifold M of general type is always measure hyperbolic ([4, p. 9, Lemma 1]).

Recently M. Gromov introduced the notion of Kähler hyperbolicity and proved that Kähler hyperbolic manifolds are projective of general type ([2]). The main tools in the paper are Atiyah's L^2 -index theorem and a Lefschetz type theorem. We note that Kähler hyperbolicity is a property of the universal covering manifold.

Although Gromov's theorem is a partial affirmative answer of Kobayashi's conjecture it seems to be hard to check that a given complex manifold is Kähler hyperbolic.

In this paper we shall give a partial affirmative answer for Kobayashi's conjecture for a compact quotient of a universal covering of a projective manifold of general type.

THEOREM 1. Let X be a projective manifold of general type and let $\pi: D \rightarrow X$ be the universal covering of X. Then any compact unramified quotient of D is of general type.

Remark 1. If the canonical bundle of X is ample, X carries a Kähler-Einstein metric g_E of negative Ricci curvature by the solution of Calabi's conjecture ([1, 7]). By Yau's Schwarz lemma ([8]), π^*g_E is invariant under the action of Aut(D). Hence every compact unramified quotient of D carries a metric of strictly negative Ricci curvature. This implies that every compact quotient of D has ample canonical bundle. In particular such a manifold is of general type.

Received October 27, 1994; revised June 27, 1995.

HAJIME TSUJI

2. Proof of Theorem 1

Let X be a projective manifold of general type and let $\pi: D \rightarrow X$ be the universal covering of X.

DEFINITION 1. Let M be a complex manifold of dimension n and let L be a line bundle on M. L is said to be big, if

$$\limsup_{m \to +\infty} m^{-n} \dim H^0(M, \mathcal{O}_M(L^{\otimes m})) > 0$$

holds

LEMMA 1 (Kodaira's lemma) ([5, Appendix]). Let M be a smooth projective variety and let D be a big divisor on X. Then there exists an effective Q-divisor E on X such that D-E is an ample Q-divisor.

Since K_X is big, there exists an effective Q-divisor E such that $K_X - E$ is ample. Let $E = \sum_{i=1}^{k} a_i E_i$ be the irreducible decomposition of E. Let $\sigma_i \in H^0(X, \mathcal{O}_X(E_i))$ be a holomorphic section such that $(\sigma_i) = E_i$. Then by Kodaira's lemma there exists C^{∞} hermitian metrics h_0 on K_X and h_i on $\mathcal{O}_X(E_i)$ $(1 \le i \le k)$ respectively such that

$$\omega_{\mathbf{X}} = \operatorname{curv} h_0 - \sum_{i=1}^k a_i \operatorname{curv} h_i$$

is a Kähler form on X, where curv denotes $\sqrt{-1}\,\overline{\partial}\partial \log$ (operator which takes the curvature form of a hermitian metric).

DEFINITION 2. Let M be a complex manifold and let L be a holomorphic line bundle on M. h is said to be a singular hermitian metric on L if there exists a C^{∞} hermitian metric h_0 on L and a locally L^1 function φ such that

 $h = e^{-\varphi} h_0$

holds. We define the curvature current curv h by

$$\operatorname{curv} h = \operatorname{curv} h_0 + \sqrt{-1} \partial \bar{\partial} \varphi$$

where curv $h_0 = \sqrt{-1} \, \bar{\partial} \partial \log h_0$ is the usual curvature form and $\partial \bar{\partial}$ of φ is taken in the sense of current.

DEFINITION 3. Let T be a closed positive (1, 1) current on a complex manifold M. T is said to be strictly positive, if for every point $x \in M$, there exists an open neighborhood U_x and a C^{∞} Kähler form ω_x such that $T - \omega_x$ is a closed positive current on U_x .

Let σ_i be a holomorphic section of $\mathcal{O}_X(E_i)$ with divisor E_i respectively. We set

$$h = \frac{h_0}{\prod_{i=1}^k h_i(\boldsymbol{\sigma}_i, \, \boldsymbol{\sigma}_i)^{a_i}}$$

h is a singular hermitian metric on X and satisfies

curv
$$h = \boldsymbol{\omega} + \sum_{i=1}^{k} a_i E_i$$
.

In particular h has strictly positive curvature current. Then $\pi_X^* h$ is a singular hermitian metric of K_D with strictly positive curvature current. We denote $\pi^* \omega_X$ by ω and $\pi_X^* h$ again by h for simplicity. The following theorem follows from the standard L^2 -estimate for $\bar{\partial}$ -operator due to Hörmander.

THEOREM 2 ([6, p. 561]). Let (M, ω_M) be a complete Kähler manifold and let (L, h_L) be a singular hermitian line bundle on M such that

 $\operatorname{curv} h_L + \operatorname{Ric}_M \geq c \omega_M$

holds for some positive constant c. Let $\mathcal{L}^2(L, h_L)$ denote the sheaf of germs of local L^2 holomorphic sections of (L, h_L) . Then we have

$$H^{q}_{(2)}(M, \mathcal{L}^{2}(L, h_{L}))=0$$

holds for every $q \ge 1$ and $\mathcal{L}^2(L, h_L)$ is a coherent sheaf of \mathcal{O}_X -module.

CORORALLY 1.

$$H^{0}_{(2)}(D, \mathcal{L}^{2}(K_{D}^{\otimes m}, h^{\otimes m})) \longrightarrow \mathcal{L}^{2}(K_{D}^{\otimes m}, h^{\otimes m})/\mathcal{M}_{x} \cdot \mathcal{M}_{y}$$

is surjective for every $x, y \in D$, where \mathcal{M}_x (resp. \mathcal{M}_y) denotes the maximal ideal sheaf at x (resp. y).

Proof. The following proof is routine. First we shall consider the case $x \neq y$. Let r_x (resp. r_y) denote the distance function from x (resp. y) with respect to the Kähler form ω . And let U_x (resp. U_y) be a small open neighbourhoods of x (resp. y) let W_x (resp. W_y) be an open neighbourhood of x (resp. y) such that $W_x \Subset U_x$ (resp. $W_y \Subset U_y$). Let ρ be a nonnegative C^{∞} function such that $\rho \equiv 1$ on $W_x \cup W_y$ and $\text{Supp } \rho \subset U_x \cup U_y$. We set $\phi = (2n+2)\rho(\log r_x + \log r_y)$. Noting that ϕ is plurisubharmonic on a neighbourhood of x and y, by direct calculation we see that there exists a positive constant c such that

$$\sqrt{-1}\partial\bar{\partial}\phi > -c\omega$$

holds on D, there exists a positive integer m such that

$$m \operatorname{curv} h + \sqrt{-1} \partial \bar{\partial} \log \psi + \operatorname{Ric}_{\omega} \geq \omega$$

holds on D. Then by the above vanishing theorem

HAJIME TSUJI

$$H^{q}_{(2)}(D, \mathcal{L}^{2}(L^{\otimes m}, e^{-\psi}h^{\otimes m}))=0$$

holds for every $q \ge 1$. Hence by the definition of ϕ ,

$$H_2^0(D, \mathcal{L}^2(L^{\otimes m}, h^{\otimes m})) \longrightarrow \mathcal{L}^2(L^{\otimes m}, h^{\otimes m})/\mathcal{M}_x \cdot \mathcal{M}_y$$

is surjective. In the case of x=y, the proof is similar. Q.E.D.

By Corollary 1, $H^0_{(2)}(D, \mathcal{L}^2(K_D^{\otimes m}, h^{\otimes m}))$ separates generates general points of D.

Let Γ be a discrete cocompact subgroup of $\operatorname{Aut}(D)$ acting D without fixed point. Let σ be a nontrivial L^2 holomorphic section of $K_D^{\otimes m}$. For $k \ge 2$, we set

$$av(\sigma^{\otimes k}) = \sum_{\gamma \in \Gamma} \gamma^* \sigma^{\otimes k}.$$

At this moment, $av(\sigma^{\otimes k})$ is not well defined because Γ may not be an isometry.

To show that $av(\sigma^{\otimes k})$ is well defined, we shall use the measure hyperbolicity of *D*. We shall review the definition of measure hyperbolic manifolds. Let *M* be an *n*-dimensional connected complex manifold. Let Δ^n denote the unit open polydisk in \mathbb{C}^n . Let us take a point $x \in M$. Let $f: \Delta^n \to M$ be a holomorphic mapping such that f(O) = x and f is nondegenerate at 0. Let \mathcal{Q}_0 be the Poincaré volume form on Δ^n defined by

$$\Omega_0 = \prod_{i=1}^n \frac{4}{|z_i|^2 (\log |z_i|)^2} (\sqrt{-1})^n dz_1 \wedge d\bar{z}_1 \wedge \cdots \wedge dz_n \wedge d\bar{z}_n \,.$$

By inverse function theorem there exists 0 < r < 1 and a neighbourhood U of x = f(0) such that $f | \Delta^n(r) : \Delta(r)^n \to U$ is a biholomorphic mapping, where $\Delta^n(r)$ denotes the polydisk of radius r with center O. We set

$$\Psi_{M,f}(x) = (f^{-1} | \Delta(r)^n) * \Omega_0(O)$$

$$\Psi_M(x) = \inf \{\Psi_{M,f}(x)\},$$

where the infimum is taken for all holomorphic mapping $f:\Delta^n \to M$ such that f(O)=x and nondegenerate at O. Then Ψ_M is a pseudo-volume form on M. We call Ψ_M the hyperbolic volume form of M. It is easy to check that Ψ_M is an upper semicontinuous 2n-form on M. Ψ_M defines a measure μ_M on M. We call the measure μ_M the hyperbolic measure of M. M is said to be measure hyperbolic, if $\mu_M(B)>0$ for any non-empty open subset $B \subset M$. The following propositions are well known (cf. [3]).

PROPOSITION 1. Let M be a projective manifold of general type. Then M is measure hyperbolic.

PROPOSITION 2. Let M be a complex manifold and let $\pi: \tilde{M} \to M$ be an unramified covering. Then $\Psi_{\tilde{M}} = \pi^* \Psi_M$ holds. In particular M is measure hyperbolic if and only if \tilde{M} is measure.

Using Proposition 1, 2, we see that D is measure hyperbolic and Γ is measure preserving with respect to the hyperbolic measure μ_D .

LEMMA 2. There exists a constant C>1 such that

$$\frac{1}{C}\int_{D}\|f\|^{2}\mu_{D} \leq \int_{\mathcal{O}}\|f\|^{2}\boldsymbol{\omega}^{n} \leq C\int_{D}\|f\|^{2}d\mu_{D}$$

holds for every $f \in H^0_{(2)}(D, \mathcal{O}_D(K_D^{\otimes m})).$

Proof. Let F be a fundamental domain of $\pi_1(X)$. Since μ_D and ω are $\pi_1(X)$ -invariant, it is sufficient to prove that there exist positive constants C_1 , C_2 such that for every $f \in H^0(\overline{F}, \mathcal{O}_D(K_D^{\otimes m}))$ (where \overline{F} denote the closure of F),

$$\int_F \|f\|^2 \mu_D \leq C_1 \int_F \|f\|^2 \omega^n$$

and

$$\int_F \|f\|^2 \boldsymbol{\omega}^n \leq C_2 \int_F \|f\|^2 d\mu_D$$

hold. Since Ψ_D is $\pi_1(X)$ -invariant, Ψ_D/ω^n is bounded from above by the definition of Ψ_D , this implies the existence of C_1 .

Suppose that C_2 does not exist. Then there exists a sequence $\{f_j\}_{j=1}^{\infty}, f_j \in H^0(\overline{F}, \mathcal{O}_D(K_D^{\otimes m}))$ such that

$$\int_F \|f_j\|^2 \boldsymbol{\omega}^n = 1$$

and

$$\int_F \|f_j\|^2 d\mu_D \leq \frac{1}{2^j}.$$

By the plurisubharmonicity of the square of the absolute value of a holomorphic function, we see that for every relatively compact subset W of F, there exists a constant C_W such that

$$\|f\|^2(x) \leq C_W \int_F \|f\|^2 \omega^n$$

holds for every $x \in W$ and $f \in H^0(F, \mathcal{O}_D(K_D^{\otimes m}))$. Since Ψ_D vanishes only on some measure 0 subset of D, this is a contradiction. Q.E.D.

LEMMA 3. There exists a positive constant c such that

 $h \cdot \Psi_D > c$

holds.

Proof. We note that h and $d\mu_D$ are both $\pi_1(X)$ invariant. Hence we can identify h^{-1} and $d\mu_D$ volume forms on X. Let $f: \Delta^n \to X$ be a holomorphic mapping. Then since curv h a Kähler form on X, by the maximal principle (Schwarz lemma) there exists a positive constant c independent of f such that

HAJIME TSUJI

$$f^*h^{-1} \leq c \Omega_0$$

holds. Then by the definition of $d\mu_D$, we completes the proof of Lemma 2. Q. E. D.

We note that $\Psi_{\overline{D}}^{-1}$ is a Γ -invariant singular hermitian metric of the canonical bundle K_D . By Lemma 2 and Lemma 3, we see that $av(\sigma^{\otimes k})$ is well defined for every $k \ge 2$. We set

$$\varphi = \frac{av(\sigma^{\otimes 2k})}{av(\sigma^{\otimes 2})^{\otimes k}}.$$

 φ is well defined by the following lemma.

LEMMA 4. We may assume that $av(\sigma^{\otimes 2})$ is not identically zero.

Proof. Let x be a point on D. Let η be a generator of $K_D^{\otimes m}$ around x. We set

$$a_{\gamma}=\frac{\gamma^*\sigma}{\gamma}.$$

Suppose that $av(\sigma^{\otimes 2k}) \equiv 0$ for every $k \geq 1$. Then

 $\sum_{\gamma \in \Gamma} a_{\gamma}^{2k} \equiv 0$

holds around x for every k. But this implies that $a_{\gamma} \equiv 0$ around x for every γ . This is the contradiction. Hence replacing σ by $\sigma^{\otimes l}$ for some l, if necessary, we may assume that $av(\sigma^{\otimes 2})$ is not identically 0. Q.E.D.

LEMMA 5. φ is a nonconstant Γ -invariant meromorphic function for some k.

Proof. Suppose that φ is constant for every k. Let x be a point on D such that $av(\sigma^{\otimes 2})(x) \neq 0$. Let y be a point on D. We set

$$f_{\gamma} = \frac{\gamma^* \sigma^{\otimes 2}}{a v(\sigma^{\otimes 2})}.$$

Since φ is constant for every k,

$$\sum_{\gamma \in \Gamma} f_{\gamma}(x)^{k} = \sum_{\gamma \in \Gamma} f_{\gamma}(y)^{k}$$

holds for every k. This implies that

$$\{f_{\gamma}(x)\} = \{f_{\gamma}(y)\}$$

holds. Hence by moving y on a neighbourhood of x, we see that f_{γ} is constant. Since $av(\sigma^{\otimes 2})$ is Γ invariant and D is noncompact, this contradicts the fact that σ is a L^2 -holomorphic section. Q.E.D.

UNIVERSAL COVERING

Let K be the function field generated by such φ . Then there exists a projective variety B whose function field corresponds K. Let $r: \Gamma \setminus D - \cdots \rightarrow B$ be a rational map induced by the inclusion $K(B) \subseteq K(\Gamma \setminus D)$. Let $\mu: (\Gamma \setminus D) \rightarrow \Gamma \setminus D$ be a resolution of the base locus of $r: \Gamma \setminus D - \cdots \rightarrow B$. Let $\tilde{r}: \Gamma \setminus D \rightarrow B$ be the natural morphism. Let \tilde{Y} be a general fibre of \tilde{r} and let Y denote $\mu(Y)$. Suppose that dim $Y \ge 1$. Let $\pi_{\Gamma}: D \rightarrow \Gamma \setminus D$ be the natural projection. Then $\pi_{\Gamma}^{-1}(Y)$ is a Γ invariant subvariety of D and every element of K is constant on $\pi_{\Gamma}^{-1}(Y)$. We note that $H_{(2)}^0(D, \mathcal{L}^2(K_D^{\otimes m}, h^{\otimes m}))$ separates general point of $\pi_{\Gamma}^{-1}(Y)$, if we take Y sufficiently general. Using this fact, repeating the same argument as above, we can construct an element of K which is nonconstant on $\pi_{\Gamma}^{-1}(Y)$. This is the constradiction.

In conclusion, K separates the general points of $\Gamma \setminus D$. Hence $\Gamma \setminus D$ is of general type. This completes the proof of Theorem 1.

References

- [1] T. AUBIN, Equation du type Monge-Ampère sur les variété Kähl ériennes compactes, C. R. Acad. Sci. Paris, 283 (1976), 119-121.
- [2] M. GROMOV, Kähler hyperbolicity and L²-Hodge theory, J. Differential Geom., 33 (1991), 263-292.
- [3] S. KOBAYASHI, Hyperbolic Manifolds and Meromorphic Mappings, Dekker, New York, 1970.
- [4] S. KOBAYASHI AND T. OCHIAI, Meromorphic mappings onto compact complex spaces of general type, Invent. Math., 31 (1975), 7-16.
- [5] S. KOBAYASHI AND T. OCHIAI, Mappings into compact complex manifolds with negative first Chern class, J. Math. Soc. Japan, 23 (1971), 137-148.
- [6] A.M. NADEL, Multiplier ideal sheaves and existence of Kähler-Einstein metrics of positive scaler curvature, Ann. of Math., 132 (1990), 546-596.
- [7] S.-T. YAU, On the Ricci curvature of compact Kähler manifold and the complex Monge-Ampére equation I, Comm. Pure Appl. Math., 31 (1978), 339-411.
- [8] S.-T. YAU, A general Schwarz lemma for Kähler manifolds, Amer. J. Math., 100 (1978), 197-203.

Department of Mathematics Tokyo Institute of Technology Oh-okayama, Meguro Tokyo, 152 Japan