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ON THE UNIVERSAL COVERING OF PROJECTIVE
MANIFOLDS OF GENERAL TYPE

HajimME Tsujl

1. Introduction

Around 1970, S. Kobayashi proposed the following conjecture ([3]).

CONJECTURE 1. Let M be a compact Kdhler manifold. Suppose that M is
measure hyperbolic. Then M is of general type.

We note that a compact complex manifold M of general type is always
measure hyperbolic ([4, p. 9, Lemma 1]).

Recently M. Gromov introduced the notion of Kihler hyperbolicity and
proved that Kéahler hyperbolic manifolds are projective of general type ([2]).
The main tools in the paper are Atiyah’s L%-index theorem and a Lefschetz
type theorem. We note that Kdhler hyperbolicity is a property of the universal
covering manifold.

Although Gromov’s theorem is a partial affirmative answer of Kobayashi’s
conjecture it seems to be hard to check that a given complex manifold is
Kihler hyperbolic.

In this paper we shall give a partial affirmative answer for Kobayashi’s
conjecture for a compact quotient of a universal covering of a projective
manifold of general type.

THEOREM 1. Let X be a projective manifold of general type and let
7w : D—X be the universal covering of X. Then any compact unramified quotient
of D is of general type.

Remark 1. 1If the canonical bundle of X is ample, X carries a Kihler-
Einstein metric gz of negative Ricci curvature by the solution of Calabi’s
conjecture ([1, 7]). By Yau’s Schwarz lemma ([8]), m*gr is invariant under
the action of Aut(D). Hence every compact unramified quotient of D carries
a metric of strictly negative Ricci curvature. This implies that every compact
quotient of D has ample canonical bundle. In particular such a manifold is of
general type.
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2. Proof of Theorem 1

Let X be a projective manifold of general type and let = : D—X be the
universal covering of X.

DEFINITION 1. Let M be a complex manifold of dimension n and let L be
a line bundle on M. L is said to be big, if
lim sup m™" dim H'(M, ©»(L®™))>0

m-—+oo

holds

LEMMA 1 (Kodaira’s lemma) ([5, Appendix]). Let M be a smooth projective
variety and let D be a big divisor on X. Then there exists an effective Q-divisor
E on X such that D—E is an ample Q-divisor.

Since Ky is big, there exists an effective @Q-divisor E such that Ky—F
is ample. Let E=3¥_,a,E, be the irreducible decomposition of E. Let
g, €HX, 0x(E,) be a holomorphic section such that (¢,)=FE,. Then by
Kodaira’s lemma there exists C* hermitian metrics s, on Ky and h, on Ox(E,)
(1<i<k) respectively such that

k
wxy=curv hy— > a,curv h,
1=1

is a Kdhler form on X, where curv denotes +/—13dlog (operator which takes
the curvature form of a hermitian metric).

DEFINITION 2. Let M be a complex manifold and let L be a holomorphic
line bundle on M. h is said to be a singular hermitian metric on L if there
exists a C* hermitian metric A, on L and a locally L' function ¢ such that

h=e ?h,
holds. We define the curvature current curv A by
curv h=curv h,++/—105¢p

where curv hy=+/—130 log h, is the usual curvature form and 09 of ¢ is taken
in the sense of current.

DEFINITION 3. Let T be a closed positive (1, 1) current on a complex
manifold M. T is said to be strictly positive, if for every point x&M, there
exists an open neighborhood U, and a C* Kihler form w, such that T—w, is
a closed positive current on U,.

Let ¢, be a holomorphic section of Ox(E, with divisor E, respectively.
We set
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h is a singular hermitian metric on X and satisfies

h

k
curv hi=w+ X a,E,.
=1

In particular A has strictly positive curvature current. Then n%h is a singular
hermitian metric of K, with strictly positive curvature current. We denote
T*wy by w and m}h again by h for simplicity. The following theorem follows
from the standard L%-estimate for d-operator due to Hormander.

THEOREM 2 ([6, p. 561]). Let (M, wy) be a complete Kihler manifold and
let (L, hy) be a singular hermutian line bundle on M such that

curv hp+Ricy=cwy

holds for some positive constant c¢. Let .L¥L, hy) denote the sheaf of germs of
local L* holomorphic sections of (L, hy). Then we have

H(M, L£%(L, h1)=0

holds for every q=1 and L*L, hi) 1s a coherent sheaf of Ox-module.

CORORALLY 1.
H%y(D, LXKG™, h®™)) —> LYKF™, h®™)/ My My

1s surjective for every x, yED, where M, (resp. M,) denotes the maximal ideal
sheaf at x (resp. y).

Proof. The following proof is routine. First we shall consider the case
x+#y. Let r, (resp. r,) denote the distance function from x (resp. y) with
respect to the Kéhler form w. And let U, (resp. U,) be a small open neigh-
bourhoods of x (resp. v) let W, (resp. W,) be an open neighbourhood of =x
(resp. y) such that W,&U, (resp. W,&U,). Let p be a nonnegative C*
function such that p=1 on W,UW, and SupppCU,UU,. We set ¢=
(2n+2)p(log r,+log r,). Noting that ¢ is plurisubharmonic on a neighbourhood
of x and y, by direct calculation we see that there exists a positive constant ¢
such that

v —=106¢>—cw

holds on D, there exists a positive integer m such that
m curv h++/—103 log ¢+Ric,Zw

holds on D. Then by the above vanishing theorem
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H%,(D, L¥(L®™, e=¢h®™))=0
holds for every ¢=1. Hence by the definition of ¢,
HY(D, L*L®™, h®™)) —> L%(L®™, h®™)/ M, M,
is surjective. In the case of x=y, the proof is similar. Q.E.D.

By Corollary 1, H%) (D, L2(K$™, h®™)) separates generates general points
of D.

Let I' be a discrete cocompact subgroup of Aut(D) acting D without fixed
point. Let ¢ be a nontrivial L? holomorphic section of K§™. For k=2, we set

av(o®*)= 3 r*a®*.
rer

At this moment, av(c®*) is not well defined because I’ may not be an isometry.

To show that av(o®*) is well defined, we shall use the measure hyperbolicity
of D. We shall review the definition of measure hyperbolic manifolds. Let M
be an n-dimensional connected complex manifold. Let A” denote the unit open
polydisk in C". Let us take a point x&M. Let f:A"—M be a holomorphic
mapping such that f(O)=x and f is nondegenerate at 0. Let £, be the Poincaré
volume form on A" defined by

4

g sz(\/~l) Az, NdzZ N\ Ndza NdZy .

Q=
By inverse function theorem there exists 0<r<1 and a neighbourhood U of
x=f(0) such that f|A™():A(r)*—U is a biholomorphic mapping, where A™(r)
denotes the polydisk of radius » with center O. We set

Uy s(x)=(FAF)")*2:(0)
and
U y(x)=inf {¥y, ;(2)},

where the infimum is taken for all holomorphic mapping f:A"—M such that
f(O)=x and nondegenerate at O. Then ¥, is a pseudo-volume form on M.
We call ¥,, the hyperbolic volume form of M. It is easy to check that ¥ is
an upper semicontinuous 2n-form on M. ¥, defines a measure py on M. We
call the measure p) the hyperbolic measure of M. M is said to be measure
hyperbolic, if pu(B)>0 for any non-empty open subset BCM. The following
propositions are well known (cf. [3]).

PROPOSITION 1. Let M be a projective manifold of general type. Then M
is measure hyperbolic.

PROPOSITION 2. Let M be a complex manifold and let 7:M—M be an
unrami fied covering. Then ¥y=n*¥y holds. In particular M is measure hyper-
bolic if and only if M is measure.
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Using Proposition 1, 2, we see that D is measure hyperbolic and I is
measure preserving with respect to the hyperbolic measure up.

LEMMA 2. There exists a constant C>1 such that
1
o = Irrer=cl i1 du

holds for every feH% (D, Op(KE™).

Proof. Let F be a fundamental domain of =,(X). Since up and o are
n.(X)-invariant, it is sufficient to prove that there exist positive constants C,,
C, such that for every feH(F, Op(K8™)) (where F denote the closure of F),

[irrm=c 1o
and
[ 1r1ror=c.f 1 17dp

hold. Since ¥, is n,(X)-invariant, ¥p/w™ is bounded from above by the defini-
tion of ¥'p, this implies the existence of C,.

Suppose that C, does not exist. Then there exists a sequence {f;}5;, ;€
H(F, 0p(K$™)) such that

127 —
[ Irrom=1
and

1
[ It dp=-yy.

By the plurisubharmonicity of the square of the absolute value of a holomorphic
function, we see that for every relatively compact subset W of F, there exists
a constant Cy such that

1713 < cWSFn Flfo”

holds for every x&W and f€ HYF, 0p,(K$™)). Since ¥, vanishes only on some
measure 0 subset of D, this is a contradiction. Q.E.D.

LEMMA 3. There exists a positive constant c¢ such that

h-Tp>c
holds.

Proof. We note that h and dyp are both =,(X) invariant. Hence we can
identify A™' and dpp volume forms on X. Let f:A"—X be a holomorphic
mapping. Then since curv A a Kédhler form on X, by the maximal principle
(Schwarz lemma) there exists a positive constant ¢ independent of f such that
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f*hi<cf,

holds. Then by the definition of dpp, we completes the proof of Lemma 2.
Q.E.D.

We note that ¥3! is a [-invariant singular hermitian metric of the canon-
ical bundle Kp. By Lemma 2 and Lemma 3, we see that av(e®%) is well defined
for every £=2. We set

_av(a®*)
0= a(ger

¢ is well defined by the following lemma.
LEMMA 4. We may assume that av(o®?®) is not identically zero.

Proof. Let x be a point on D. Let n be a generator of K§™ around x.
We set

Suppose that av(g®**)=0 for every k=1. Then

S ai*=0

rel’

holds around x for every k. But this implies that a,=0 around x for every 7.
This is the contradiction. Hence replacing ¢ by ¢® for some [, if necessary,
we may assume that av(o®?) is not identically 0. Q.E.D.

LEMMA 5. ¢ 1s a nonconstant I'-invariant meromorphic function for some k.

Proof. Suppose that ¢ is constant for every 2. Let x be a point on D
such that av(6®)(x)#0. Let y be a point on D. We set

T*o-®2
av(c®?) °

=
Since ¢ is constant for every &,
> ()= 3 fr(y)*k
rel rel’
holds for every k. This implies that

{fr(D} ={f:(»)}

holds. Hence by moving y on a neighbourhood of x, we see that f; is constant.
Since av(o®?) is [" invariant and D is noncompact, this contradicts the fact that
o is a L*holomorphic section. Q.E.D.
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Let K be the function field generated by such ¢. Then there exists a
projective variety B whose function field corresponds K. Let »: ['\D— --- —B
be a rational map induced by the inclusion K(B)c. K(/'\D). Let p: (I'\"D)—~I'\D
be a resolution of the base locus of »: /'\D— .- —B. Let #:I'\"D—B be the
natural morphism. Let ¥ be a general fibre of 7 and let Y denote p(Y). Suppose
that dimY =1. Let n,: D—I'\D be the natural projection. Then z7'(Y) is a
[’ invariant subvariety of D and every element of K is constant on n7}(Y). We
note that H%,(D, .L%(K$™, h®™)) separates general point of z7'(Y), if we take Y
sufficiently general. Using this fact, repeating the same argument as above, we
can construct an element of K which is nonconstant on #7'(Y). This is the
constradiction.

In conclusion, K separates the general points of /'\D. Hence /'\D is of
general type. This completes the proof of Theorem 1.
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